

Findable

Reusable Accessib

Interoperable

repositories and services

Representation of contextual elements

Pragmatic best practices guides

Domain-specific and general-purpose profiles

Mixed object publication and archiving

Practical approaches

Infrastructure independent – avoiding repository/service silos Practical, lightweight, robust

Familiar, developer friendly, web native, machine

Bioschemas are deployed across >67 ELIXIR resources and beyond, covering >180 profile deployments overall.

Signposting

FAIR Signposting uses standard HTTP Link headers (RFC8288) for any resource type (including HTML landing pages). Machine agents then use HTTP HEAD to predictably find the individual components of a FAIR resource: PID, authors, licence, metadata and dataset download.

Any HTTP resource can become full FDOs by providing their own Signposting, with no other changes to their infrastructure.

https://signposting.org/FAIR/

https://pypi.org/project/signposting/

 $\rightarrow \diamond$

∎←●

Data Files

Persons

and human readable, search engine accessible Adoptable Linked Data JSON; guidance, not restrictions

Embrace diversity, legacy, unknowns, openended, multi-interpretation, self-describing, interlingua Adaptable Metadata Profiles, add to existing Web resources

RO-Crate in practice

Computational Workflows

Biosciences, Climate science, Biodiversity

EOSC-Life Research Infrastructure Cluster: The computational workflow registry and its services import, export, store and publish RO-Crates, to support the full workflow life cycle. Technology is domain-agnostic and adopted outside bioscience.

Reliance **Data Cubes** – tabular data, Earth Science, Bioscience The EOSC project RELIANCE use RO-Crate to package data cubes of earth observation data, along with documentation, images and related infrastructures. Metadata includes temporal coverage, spatial coverage and vertical coverage. ROHub publishes the archived RO-Crates to generalpurpose repositories (Zenodo, B2Share) for longevity and PIDs.

RoHub

Institutions O-----BIODT **Repository exchange and archiving** language studies and cultural heritage language data large text corpuses with personally-identifiable information. Adds granular access control and restriction of use on individual texts within

(HMC) Mixed Object publishing and repository exchange The Helmholtz HMC Hub Energy uses RO-Crates to move time series data from different databases exported with metadata description of their structure and content into a single web service. The HERMES project uses RO-Crates for software publication pipelines

the larger RO-Crate, which metadata can be open.

#91

Jupyter Notebooks give programmatical access to crate content for analytics, selecting text by general and domain-specific metadata.

Executing Data and Software Management Plans DSW RO-Crates are combined with machine-actionable Data Management Plans (maDMPs) and Software Management Plans to automate and facilitate management of research data. Within ELIXIR, RO-Crate will integrate the Data Stewardship Wizard with Galaxy workflows to automate FDO creation that also follows data management plans.

https://bioschemas.org/

https://researchobject.org/ro-crate

https://doi.org/10.5281/zenodo.7984529

This work is licensed under a Creative Commons Attribution 4.0 International License.