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SUMMARY 

Many Australian metallogenic provinces are buried under thick post-mineralization cover. Imaging the depth to 

prospective basement in this type of geological environment is challenging and improving the reliability of the 

geophysical images requires incorporating constraints within the geophysical data inversions. In this study, we 

propose to derive structural depth constraints using a probabilistic magnetotelluric (MT) data driven workflow, to 

constrain a deterministic 2D MT inversion. The workflow is applied to a profile in the Mount Isa region in 

Queensland.  The results show that a geologically realistic model with sharp resistivity boundaries associated with the 

depth to basement transition can be recovered even in presence of a conductive sedimentary cover of thickness 

greater than 500 meters.  
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INTRODUCTION 

 

Magnetotelluric (MT) data is sensitive to changes in the resistivity of the subsurface to great depths, making it suitable 

for mineral exploration in the presence of thick sedimentary cover. Of particular interest is the estimation of the depth 

to the basement, which helps driving exploration strategies. A reliable estimation of the sedimentary cover thickness 

requires a precise detection of sharp geological boundaries such as the one existing at the transition between a 

conductive sedimentary cover and a resistive basement. However, traditional deterministic inversions of MT data 

impose significant smoothness constraints generally resulting in smooth models which are not geologically realistic. 

On the other hand, it has been showed that 1D probabilistic inversion of MT data coupled with a Bayesian 

interpolation approach can accurately estimate depth to basement (Seillé et al, 2021, Seillé et al., 2022a). Therefore, 

combining an inversion approach that considers physics of the MT problem in 2D with structural constraints derived 

from a probabilistic 1D workflow suggests that an improved and more realistic image of the subsurface can be 

obtained.  

 

A typical regularized inversion algorithm optimizes the following cost function Φ: 

 

Φ = Φ𝑑 + λΦ𝑚       with        Φ𝑚 = ‖𝐑𝐦‖2 

 

where Φ𝑑 is the data misfit term, Φ𝑚 the roughness term, λ the regularization parameter, m the vector of model 

parameters and R the roughness operator. The roughness operator R usually penalizes large gradients in the model and 

drives the solution towards smooth models. Therefore, at specific boundaries between model parameters the 

smoothness constrain can be removed or reduced and sharp boundaries can develop in the model without penalizing 

the global cost. Prior information has been incorporated in the cost function in different ways to constrain the inverse 

problem. For example, Brown et al. (2012) and Yang et al. (2017) have defined the roughness operator based on 

seismic velocity gradients and seismic envelope attributes, respectively, to enforce a correlation between EM and 

seismic models. Mackie et al. (2020) incorporated a cross gradient term to the cost function to enforce correlation with 

seismic gradients derived from a seismic image. Constraints derived from seismic data are generally preferred because 

of its high resolution and capability to image sharp interfaces. However, seismic data are not necessarily acquired 

alongside MT data, especially as part or early exploration projects, and little prior information is available to constrain 

MT inversions.  

 

In this paper we present the result of a workflow developed to inform a 2D inversion of MT data with depth 

constraints derived from a probabilistic workflow using 1D MT inversions, to map a sharp sediment basement 

interface along a profile in the Mount Isa province in Queensland. The capability of the 1D probabilistic method to 

detect discrete horizontal resistivity interfaces, coupled with a clustering approach to classify interfaces and a 

probabilistic interpolation algorithm, allow to derive a probabilistic depth to basement surface along the profile. This 

surface is used to constraint a 2D MT inversion, specifying within the roughness operator which model parameter 
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boundaries should have the smoothness constrain relaxed. The results are discussed in comparison with an 

unconstrained 2D inversion, and some limitations of the workflow are discussed.  

 

METHOD AND RESULTS 

 
The workflow we apply here to regularize a 2D inversion using geometrical constraints was described and applied on 

synthetic data in Seillé and Visser (2022b). It consists in 4 successive steps: 1) For each MT site, a 1D trans-

dimensional Markov chain Monte Carlo inversion (Seillé and Visser, 2020) is performed, to which solution is a 

probability density function approximated by an ensemble of 1D resistivity models. 2) A resistivity-lithology 

relationship is then derived fitting a Gaussian mixture model (GMM) to all the MT probability density functions 

summed together and integrated over all depths. 3) The GMM is then used to classify all the 1D models from each 

MT sites into lithologies, from which probability distributions on transitions between the different lithologies is 

derived. The transitions probabilities for each geological interface are then interpolated laterally across the profile 

using a Bayesian Estimate Fusion algorithm (Visser and Markov, 2019). 4) Finally, these transitions probabilities are 

used to derive the geometric constraints for a 2D deterministic inversion. The 2D inversion is carried out using the 

code MARE2DEM (Key, 2016). This code parametrizes the model using unstructured grids, making the inclusion of 

complex geometries such as the constrains previously derived possible.  

 

Dataset 
The workflow described is applied to an MT profile located in Mount Isa, in Queensland, Australia (Figure 1). In this 

study we use 41 audio MT (AMT) sites, with a separation of 500 meters. The frequency range is between 1 − 104 

Hz. A previous modelling of this MT dataset (Simpson and Heinson, 2020) imaged the basement topography in the 

area and located it at depth greater than 500 meters beneath the surface. In this study we are interested in mapping the 

precise and sharp boundary between the sedimentary layers and the basement.  

 

 
Figure 1.  Reduced to pole magnetic map with location of the MT sites along the studied profile. 

  

2D MT unconstrained inversion 
We first ran a 2D unconstrained inversion using the MARE2DEM inversion algorithm, which uses an Occam 

regularization approach, solving for the smoothest model that fits the data. A general NS strike was determined for the 

MT sites of the profile, and the XY and YX polarizations were assigned to the TE and TM polarizations, respectively. 

We assigned to the TE and TM data error floors of 10% and 5%, respectively. The starting model had a homogeneous 

resistivity of 100 Ωm. The inversion converged to an RMS of 1.0 after 13 iterations. The model (Figure 2a) obtained 

shows the succession of 4 layers, from top to bottom: a thin conductive layer / a resistive sedimentary layer / a 

conductive sedimentary layer / a resistive basement. This succession is dipping towards the west.  

 

1D Bayesian MT inversion 
The 1D Bayesian inversions were ran using a Bayesian MT inversion, where input data errors were replaced by 

likelihood functions dependent on the MT phase tensor and specific for each MT site, to account for 2D and 3D 

effects existing in the data (Seillé and Visser, 2020). The inversions were run for each MT sites using 40 chains of 106 

iterations each. The medians of the posterior probability distribution obtained for each MT site are shown in Figure 

2b. A similar pattern with 4 successive lithologies of varying resistivity is observable.  

 

Generation of structural constraints 
We first define a resistivity-lithology relationship for the entire profile, using the resistivity model ensemble. An 

empirical resistivity probability density function (ρPDF) is derived recording resistivity values across all sites, for all 

models, across all depths (Figure 3). A classification algorithm similar to the one proposed by Minsley et al. (2021) is 

then used to find a Gaussian mixture model (GMM) that fits the empirical resistivity pdf. It uses a least square 

minimization, iteratively fitting one Gaussian at a time guided by the local maxima in the empirical ρPDF, given a set 

of bounds on the model parameters. The resulting GMM (Figure 3) is comprised by 3 components, each one being 

associated to a resistivity-lithology class c, with 𝑐 ∈ {𝐺𝑀1, 𝐺𝑀2, 𝐺𝑀3}. 
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Figure 2.  a) Unconstrained 2D MT inversion. b) Stitched median of the 1D probabilistic inversions.  

 

Then, using the GMM, for each layer 𝑙𝑘 of each model of the MT ensembles we denote the probability of  𝑙𝑘 to belong 

to class c given its resistivity 𝜌𝑘 as  𝑝(𝑙𝑘 = 𝑐 | 𝜌𝑘). 
 

The most probable lithology of layer 𝑙𝑘 is defined as  
𝑎𝑟𝑔𝑚𝑎𝑥𝑐  𝑝(𝑙𝑘 = 𝑐|𝜌𝑘) . Having classified the most 

probable lithology for each layer, we can derive 

probabilities on the depth at which transitions between 

the different lithologies occurs. In this study, we focus 

on the transitions between lithology 1 and lithology 2 

(Figure 3), which define the sediment-basement 

boundary probability distribution for each MT site. In a 

final step, these depth to basement probabilities are 

interpolated laterally using a Bayesian estimate fusion 

algorithm (Visser and Markov, 2019) to produce a 

depth to basement probabilistic surface (Figure 4a). 

The median (50th percentile) of this distribution is the 

used as the depth constraint for the 2D constrained 

inversion.  

 

 

Figure 3.  Empirical MT resistivity distribution fitted by the Gaussian mixture model. 

 

2D MT constrained inversion 
The depth to basement surface derived is incorporated into the MARE2DEM inversion. The algorithm allows to relax 

the roughness penalty along parameter boundaries defined by the depth to basement surface. We used the same 

homogeneous starting model and inversion parameters as for the unconstrained inversion. The inversion converged to 

an RMS of 1.0 after 11 iterations. The model (Figure 4b) shows similar structures as the unconstrained model, but the 

top of the resistive basement appears well depicted, contrasting with the overlying sediments.  

 

 

CONCLUSIONS 

 

The workflow that was presented showed that the structural constraints derived through the lithological classification 

of the 1D MT model ensembles are compatible with the 2D MT data, resulting in a 2D constrained model that fits 

well the data while defining a sharp boundary at the sediment basement interface. This type of model is geologically 

more interpretable. Along this short profile in Mt Isa, the basement appears to be very resistive and dipping to the 

west.  However, it is important to note that due to the non-uniqueness of the inversion of noisy MT data, inaccurate 

structural constraints could provide models with acceptable data fit (Brown et al., 2012). Performing 2D inversions 

with a set of constrains would allow in that case to define the range of solutions that are compatible with the data, 

using for example the 10th and 90th percentiles of the posterior distribution on the depth to basement as constraints. 

Also, the workflow would beneficiate from the use of lithological and petrophysical information extracted downhole 

close to the modelling area.   
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Figure 4.  a) Depth to basement probabilistic surface. Blue dashed and solid lines represent the 10th/90th and 

50th percentiles. The 50th percentile is used as the structural constrain for the 2D inversion. b) Structurally 

constrained 2D MT inversion. 
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