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SUMMARY 
 

Magnetite is an important ore and gangue mineral in many economic deposits, and the ability to model the modal 

magnetite abundance from cost-effective data, such as hyperspectral reflectance spectra, has widespread applications. 

However, magnetite reflectance spectra collected with field and drill core sensors, which are increasingly used by the 

mineral resources industry, are characterised by very broad and poorly defined diagnostic features. Magnetite content 

could be modelled indirectly from mixed mineral spectra, but these efforts have been limited by the lack of quantified 

training datasets of mixed mineral assemblages.  

We created two hyperspectral libraries (n=104) of magnetite mixed with quartz, chlorite, and siderite collected from 

two different wavelength ranges to address this knowledge gap. Mineral ratios and particle size variation, which are 

important when modelling hyperspectral data, were determined using quantitative X-ray diffraction (QXRD) and 

scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS) analysis. Hyperspectral data 

were acquired across the visible-near, shortwave, mid to thermal infrared (VNIR-SWIR-MIR-TIR, 380-16669 nm) 

wavelength range, using HyLogger-3 and Bruker Vertex 80v Fourier transform infrared (FTIR) instruments. Predictive 

modelling was carried out using CSIRO’s The Spectral Geologist (TSG) software partial least squares (PLS) modelling 

tool, which allows for modelling of one variable (e.g., magnetite wt%) from another (e.g., reflectance spectra) via 

calibration using a training dataset (magnetite mixture spectral library), and subsequent model validation using other 

hyperspectral data (e.g., from drillhole) of a similar wavelength range. Use of magnetite mixture PLS calibration 

enabled prediction of magnetite wt% from drill core VNIR-SWIR data that that matches the Fe2O3 assay and magnetic 

susceptibility detected from the core. We also noted several mineral diagnostic features in the MIR wavelength region, 

which can provide lower detection limits and an improvement in the accuracy of predictive modelling for magnetite 

and gangue minerals in the future. 
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INTRODUCTION 
  

Magnetite is a major ore mineral in Banded Iron Formation (BIF)-hosted high-grade iron ore deposits and ubiquitous 

gangue mineral in iron-oxide copper gold (IOCG) deposits. BIF-hosted high-grade iron ore deposits contain up to 75% 

magnetite and specular hematite (Davies and Twining, 2018). In IOCGs, magnetite is a crucial part of the ore-forming 

process, representing up to 20% as a gangue mineral in addition to chlorite, quartz, and carbonate minerals which are 

also common in BIF-hosted high-grade iron ore deposits (Del Real et al. 2021). Demand for a low cost and early-stage 

ore and gangue mineral quantification process is steadily growing, as this information is crucial for efficient ore 

processing, which is the part of the mining cycle that consumes the highest amount of energy and has significant impact 

on the economics of a deposit. With the mining industry rapidly moving towards minimizing environmental impact and 

energy consumption, predictive modelling methods will play an increasingly critical role in maintaining a social license 

to operate. All advanced modelling requires large, diverse, well-quantified and consistently collected training data, 

organized in a manner that can be scaled up as a project proceeds. Hyperspectral data are well established as a cost-

effective method for rapid and multi-scale mineral detection from early exploration to ore processing, and its use in 

predictive modelling has been researched substantially in Australia (Haest et al. 2017; Ramanaidou et al. 2015; Rodger 

and Ramanaidou, 2022). However, success in predictive modelling for magnetite has been limited by its rather 

featureless reflectance spectra within the visible-near (VNIR), shortwave (SWIR), and thermal infrared (TIR) 
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wavelength ranges, and the lack of quantified mineral mixture training datasets, which could enable indirect detection 

and quantification of magnetite. 

To address this knowledge gap, we created sets of fully quantified and grain-size controlled two-mineral mixtures of 

magnetite with chlorite, quartz, or siderite, which were analysed using two different hyperspectral instruments across 

the whole wavelength range from VNIR to TIR (380-16669 nm). Partial least squares (PLS) fitting methods were applied 

to the mixed magnetite-gangue spectral library to model the actual versus predicted magnetite wt%. The PLS model 

was validated against drillhole MSDP11 HyLogger-3 data (Stromberg et al., 2021) that contains sufficient 

complimentary data for estimating magnetite wt% prediction success. We present here the resulting spectral libraries 

and results from the PLS modelling. 

 

MATERIALS AND METHODS 

 
Magnetite samples were prepared from ore concentrate from the Middleback Ranges iron ore camp in South Australia. 

The quartz, chlorite (clinochlore), and siderite were sourced from the CSIRO Mineral Resources mineral collections. 

Hematite was removed from the magnetite ore concentrate using a clay separation technique, where red tinted hematite 

suspended in distilled water was removed and black magnetite deposited at faster rate. All samples were wet sieved to 

controlled particle size ranges using stainless steel sieves and a constant flow of distilled water. Physically separable 

contaminants were removed from samples through a combination of hand picking under a binocular microscope and 

repeated passes with a hand magnet. The particle size and mineral composition for magnetite (<30, 30-45, and 45–90 

μm), quartz (<45, 45–90, 90–125, and 125–180 μm), chlorite (<45, 45–90, 90–125, and 125–180 μm) and siderite (<45, 

45–90, and 90–125 μm), were confirmed using scanning electron microscopy (SEM) and quantitative X-ray diffraction 

(QXRD) methods, respectively.  

Back-scatter electron images taken using Philips SEM–XL40CP scanning electron microscope at 12.7 mm working 

distance and 30 kV accelerating voltage. Chemistry for visually different particles in a sample were characterized using 

non-quantitative energy dispersive x-ray (EDS) point analysis and Bruker Nano Qantax software. For XRD analysis, 

single mineral samples were hand-ground with ethanol and top loaded to zero background silicon plates. Bruker D4 

Endeavor AXS instrument was set to operate with Co radiation, data collection range of 2θ angle from 5 to 90°, with 

step size of 0.02°, and data collection time of 7 minutes per sample. Initial XRD data analysis and spectrum image 

acquisition were done using DiffracEVA, and the advanced quantitative analysis was done using SIROQUANT 

software based on Rietveld method (Rietveld 1967; 1969). Each peak above the background was examined and mineral 

identification in the analysed samples was done manually in SIROQUANT to ensure that all components present in the 

multiphase mixtures are identified and accounted for. The XRD results were normalized to 100%. 

Mixed magnetite-gangue samples (~2 grams each) were prepared in 10 wt% increments from validated single minerals 

using a precision scale. Mineral wt% were calculated based on single mineral wt% from QXRD and the measured 

weight. In total 104 samples were analysed using the HyLogger-3 system (Schodlok et al. 2017), and a Bruker Vertex 

80v Fourier transform infrared (FTIR) spectrometer.  

The HyLogger-3 chip mode which collects three reflectance spectra per sample and are averaged to one when pre-

processing spectra from 380-2500 (VNIR-SWIR) and 6000-14500 nm (TIR) wavelength ranges, was used in the data 

acquisition. HyLogger-3 reflectance spectra were collected from 10 mm area and using a 4 nm spectral resolution 

within VNIR-SWIR and 25 nm within TIR wavelength range. FTIR spectra were collected from 7500 to 600 cm-1 

which corresponds to the 1333-16669 nm (SWIR-MIR-TIR) wavelength range. FTIR measurements were made using 

256 scans at a spectral resolution of 2 cm-1 (resampled to 4 nm in TSG) and a liquid nitrogen cooled mercury cadmium 

telluride (MCT) detector. Powdered samples were placed in the lower sample port and spectra were measured using a 

Bruker integrating sphere (A562-G) accessory that has a 10 mm spot size. A background spectrum was recorded on a 

gold standard reference which had been cleaned in ethanol and dried with Kimwipes tissue (KIMTECH) and high 

purity nitrogen gas prior to sample measurement. All FTIR spectrometer measurements were undertaken at room 

temperature (20 ± 2°C) and the infrared spectra have been presented as raw reflectance data.  

Hyperspectral data of the two instruments were compiled into two libraries in The Spectral Geologist (TSG) software 

and calculated mineral wt% resulting from QXRD analysis (single minerals) and mixing ratios were imported in the 

respective HyLogger-3 and FTIR TSG files. The predictive modelling was carried out using the PLS modelling tool in 

TSG. PLS creates a linear model that is robust to highly correlated spectral variables, and predicts one variable (e.g. 

mineral wt%) from multiple correlated variables (e.g. hyperspectral data). The method utilises cross-validation to 

choose the number of factors incorporated into the model to avoid overfitting, given the volume and inherent variability 

in the training data. The PLS calibration process for all HyLogger-3 mixed magnetite VNIR-SWIR spectra (n=104) 

considered up to thirty factors and 12 factors were selected based on the predicted residual sum of squares (PRESS). 

The resulting magnetite mixed mineral library PLS model was applied to drillhole MSDP11 VNIR-SWIR wavelength 

range spectra in TSG. HyLogger-3 data was accessed via AuScope NVCL portal (http://portal.auscope.org.au/). 

Drillhole MSDP11 (Latitude -32.7316 S, Longitude 135.738 E) intersects skarn intervals in porphyry dominated 

lithology in the Gawler Range of South Australia (Stromberg et al., 2021) and had suitable assay Fe2O3% and magnetic 

susceptibility (KT-9 Kappameter, with measuring range of 9.99 x 10⁻³ to 999 x 10⁻³ SI units) data that could be used 

for assessing PLS model-based magnetite wt% prediction. 
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RESULTS 

 
Single minerals labelled as “pure” end members in a series, contain 87, 78 and 61 wt% magnetite in <30, 30-45, 46-90 

μm particle sizes (8 wt% hematite in all samples), respectively based on QXRD analysis. All quartz and chlorite particle 

sizes contain >99 wt% of the mineral, and siderite particle sizes <45, 45-90 and 90-125 μm, contain 97, 95 and 93 

wt% siderite, respectively.  

Magnetite reflectance spectra are relatively featureless within the VNIR-SWIR and TIR wavelength ranges with overall 

low reflectance, however; both particle size and mixing ratios with quartz, chlorite and siderite exhibited a consistent 

linear relationship (Figure 1). Magnetite [Fe3+(Fe2+Fe3+)2O4] VNIR-SWIR spectra had a very broad trough between 

~900 nm and ~1200 nm that can be attributed to a combination of Fe3+ and Fe2+ electronic transitions, respectively 

(Izawa et al. 2019). This 900-1200 nm trough flattens with an increasing magnetite particle size from <30 to 45-90 μm 

and with decreasing magnetite wt% in mixed samples with quartz and chlorite (Figure 1a). Within TIR wavelength 

range, the purest magnetite sample spectrum (<30 μm), which was used for the mixed samples, was flat with a slight 

red slope (Figure 1b). Features in the TIR spectra of 30-45 and 45-90 μm particle size magnetite were caused by the 

quartz (6-13 wt%) and carbonate (4-9 wt%) impurities in the samples.  

Like magnetite, quartz spectra were relatively flat within VNIR-SWIR wavelength range, but there was a subtle trend 

in mixed samples (Mt-Qz), where the 1200 nm trough flattens with decreasing wt% of quartz in the sample (Figure 1a). 

In TIR, the two diagnostic quartz features with narrow troughs centred at 8628 and 12650 nm (Hancock et al., 2013) 

were prominent and decreased with the increasing magnetite wt% in the mixed samples (Figure 1b).  

Chlorite spectra had two diagnostic absorptions centred at 2250 and 2350 nm in the VNIR-SWIR reflectance spectra 

(Bishop et al. 2008), of which the former is commonly used for delineating relative chlorite abundance and Mg# 

composition (Figure 1a, Laukamp et al. 2021). These troughs can also be found in dark mica (biotite and phlogopite), 

so their use requires caution. Chlorite troughs deepen with an increasing particle size and flatten with increasing 

magnetite wt% in mixed samples (Mt-Chl, Figure 1a). In the TIR, chlorite spectra have a peak centred at ~9800 nm, 

dubbed as the “triangle of death” by spectral geologists, as it is a common feature in many mineral spectra (e.g., dark 

micas and amphibole), and is therefore unhelpful for delineating specific mineral groups with certainty (Figure 1b). 

The 9800 nm peak flattens with an increasing chlorite particle size (pure samples) and increasing magnetite wt% in 

mixed samples.  

Siderite SWIR spectra show an asymmetric absorption feature attributed to CO3 centred at ~2320 nm, and Fe3+ and 

Fe2+ electronic transition associated trough centred between 900-1200 nm (Green and Schodlok, 2016), which deepen 

with increasing particle size (pure samples) and flatten with increasing magnetite wt% in mixed samples (Mt-Sid, 

Figure 1a). In the TIR, siderite has two diagnostic peaks centred at ~6500 and 11300 nm and a trough-peak combination 

centred at ~14200 nm (Figure 1b, Green and Schodlok, 2016). In addition, features attributed to minor quartz impurities 

(3-7 wt%) in the samples can be seen in the siderite TIR spectra. Siderite peaks and troughs are flatter and erratic in 

small particle size single mineral samples, which is related to prevalent surface scattering in the TIR wavelength range. 

As with other mixed samples, siderite features become flatter as the magnetite wt% increases (Figure 1b). The slope 

that is attributed to magnetite in the TIR wavelength range also increases towards longer wavelengths in all mixed 

mineral samples with increasing magnetite wt%. 

 

 

 



Magnetite predictive modelling                                                                                                          Lampinen et al.

   

4th AEGC: Geoscience – Breaking New Ground – 13-18 March 2023, Brisbane, Australia   4 

 

 
 

Figure 1.  HyLogger-3 spectral library stacked and normalised reflectance spectra within (a) VNIR-SWIR and 

(b) TIR wavelength range. Reflectance spectra for mixtures between magnetite (light to dark red: <30, 30-45, 

45-90 μm), quartz (light to dark blue: <45, 45-90, 90-125, 125-180 μm), chlorite (light to dark green: <45, 45-90, 

90-125, 125-180 μm), and siderite (light to dark purple: <45, 45-90, 90-125 μm). Mixed series are presented in 

grayscale, where sample spectra darkness in figure increases with each 10 wt% increase of magnetite. In mixed 

series magnetite particle size remains constant <30 μm. Diagnostic chlorite absorption at 2250 nm (discussed in 

Figure 5) is shown in (a) with a green arrow. Missing mid-infrared wavelength range (MIR, 2500-6000 nm, not 

captured by the HyLogger-3) is shown in the middle. 

 

 

Figure 2 summarises the key calibration plots used for creating PLS model for magnetite wt% prediction in TSG from 

magnetite mixture HyLogger-3 VNIR-SWIR wavelength reflectance spectra. The predicted residual error sum of 

squares (PRESS) plot was used for determining the number of factors to be applied in the model (n=12, Figure 2a), the 

final regression coefficient plot was used for viewing which VNIR-SWIR bands (input, i.e., bands along wavelength, 

total 531) contribute to the model most (Figure 2b). Cross-validation actual vs predicted magnetite wt% (Figure 2c) 

shows the PLS model fit within the calibration data set (i.e., magnetite mixture data). The variance indicated by root-

mean-square-error (RMSE) is tighter compared to what would be expected on independent data. RMSE is a frequently 

used metric for comparing the predictive error of different models created and validated on the same dataset. Smaller 

RMSE generally suggests a better predictive model. However, it is not meaningful to use RMSE to compare models 

trained and tested on different datasets. The cross-validation actual vs predicted magnetite wt% plot coloured by mineral 

labels (Figure 2d) shows that magnetite wt% was slightly more overpredicted in mineral mixtures with quartz and 

siderite, that are typically best delineated from TIR wavelength range spectra, whereas chlorite mixtures show no 

obvious trend. 
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Figure 2. HyLogger-3 magnetite mixture VNIR-SWIR spectral library PLS modelling process in TSG: (a) 

selection of number of factors, (b) final regression coefficient plot, (c) cross-validation actual versus predicted 

magnetite wt% in the samples, and (d) cross-validation actual magnetite wt% versus predicted magnetite wt% 

coloured by mineral labels showing slight over prediction for magnetite in mixtures with quartz and siderite 

that are better delineated from TIR wavelength reflectance spectra.  

 

The magnetite mixture spectral library PLS model applied to drillhole MSDP11 HyLogger-3 data enabled prediction 

of magnetite wt% from VNIR-SWIR wavelength range spectra (Figure 3a, d). The predicted high magnetite wt% 

between 320-380 and 410-425 m drillhole depth, coincide with a very high magnetic susceptibility (Figure 4b). Further, 

the predicted magnetite wt% follow Fe2O3% contour (Figure 4c).  
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Figure 3.  Drillhole MSDP11 HyLogger-3 downhole plot demonstrating successful (a) prediction of magnetite 

wt% using magnetite mixture VNIR-SWIR spectral library PLS calibration model. (b) Magnetic susceptibility 

(x 10⁻³ SI units), (c) Fe2O3% assay data and (d) user verified TSA mineral group match based on SWIR 

wavelength range spectra (Stromberg et al. 2021) corroborate with PLS model-based magnetite wt%. 

 

Several mineral specific features can be seen within MIR wavelength range reflectance spectra that was collected from 

magnetite mixture samples by means of FTIR (Figure 4). All particle size magnetite samples have two peaks with a 

narrow trough in the middle, centred at ~4250 nm, and these features can be observed in mixed samples even in low 

magnetite wt% (Figure 4). Our early work on iron oxide MIR reflectance spectra indicates that ~4250 nm features are 

partly due to atmospheric carbon dioxide and iron oxide (magnetite/hematite/goethite) overtones. Quartz sample 

reflectance spectra have two broad peaks with narrow trough centred at ~4670 nm (Laukamp et al. 2021), and numerous 

other features that are yet to be investigated (Figure 4). The chlorite sample MIR reflectance spectra contain a feature 

at 2830 nm, whereas the siderite sample MIR spectra contain several features centred at ~2550 (CO3), 3500, and 4000 

nm (Figure 4). Similar to the VNIR-SWIR and TIR wavelength range (Figure 1), flattening of mineral specific features 

in mixed sample MIR wavelength spectra is proportionally related to magnetite wt% in the sample (Figure 4).  
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Figure 4.  FTIR mid-infrared spectral library stacked and normalised reflectance spectra for mixtures between 

magnetite, quartz, chlorite, and siderite in a series as in Figure 1. Chlorite absorption at ~2830 nm (discussed in 

Figure 5) and magnetite associated features (2 peaks and 1 trough) centred ~4250 nm are shown with green and 

red arrows, respectively. Some of the diagnostic MIR absorptions for siderite (purple) and quartz (blue) are 

shown with dashed lines. 

 

We demonstrate the added value of the MIR wavelength region for the predictive quantitative modelling of minerals 

by using chlorite as an example as chlorite is an important alteration mineral in many ore systems. Chlorite associated 

features within VNIR-SWIR and TIR wavelength range are shared by many other minerals that often occur with chlorite 

(carbonate, biotite, amphiboles), which adds to uncertainty and false positives in predictive modelling. Chlorite 

delineation based on absorption feature depth at ~2250 nm, demonstrated in Figure 5a using 125-180 μm particle size 

magnetite-chlorite mixture series (collected using the Vertex 80v FTIR spectrometer), yields an approximate detection 

limit of >70 wt% for chlorite within VNIR-SWIR wavelength range data. When using similar technique for the chlorite 

feature at 2830 nm within MIR wavelength range, chlorite content above 30 wt% can be detected (Figure 5b).  
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Figure 5.  Example of correlation between depth of chlorite absorption (y-axis) at (a) 2250 nm in SWIR (Figure 

1) and (b) 2830 nm in MIR (Figure 4) and chlorite weight percentage (x-axis) in 125-180 μm particle size series. 

Chlorite is detected after 60 wt% within SWIR and after 30 wt% within MIR. Hyperspectral data with both 

features should enable much more precise predictive modelling. 

 

CONCLUSION 
 

Predictive modelling for quantitative mineralogy from hyperspectral data is generally best carried out using site specific 

training datasets that are acquired using the same instrument, however, this is not always practical or possible in an 

exploration or ore characterization setting. In these cases, a generic but well characterised mixed mineral spectral library 

can be a valuable substitute or addition to a predictive modelling workflow. This work presents such a dataset and 

describes the reflectance spectra characteristics of physically mixed magnetite – quartz/chlorite/siderite pairs in two 

spectral libraries. It also provides an example of early predictive modelling results using PLS tool in TSG for drill core 

dataset. Results from PLS modelling suggest that magnetite wt% can be predicted relatively accurately from any 

routinely collected VNIR-SWIR data when using the spectral library calibration file. Further, mixing ratio related linear 

behaviour and magnetite diagnostic features in MIR wavelength suggest that modelling results using the full 

wavelength range from VNIR to TIR could yield, not only accurate, but precise results. This is an important step 

forward in this field and provides a proof of concept for developing applications and facilitating uptake of new and 

emerging sensor technologies, including handheld instruments (e.g., Agilent 4300) and drill core scanners (e.g., 

HyLogger-4) which have MIR capabilities.  

We will continue to improve predictive modelling applications of mixed spectral libraries using the AuScope National 

Virtual Core Library (NVCL) HyLogger-3 data collected by Australian geological surveys from BIF and IOCG deposit 

types. In the near future many of the surveys will transition to using HyLogger-4 systems, which include the MIR 

wavelength region, making full wavelength range datasets available for testing predictive modelling. 
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