

healthy all life long

DATA LANDSCAPE INFECTIOUS DISEASES IN BELGIUM

Nina Van Goethem

Surveillance of infectious diseases in Belgium

* non-exhaustive overview

COVID-19 pandemic

DATA

- Transformation public health surveillance landscape
 - Adapt existing systems
 - Establish new systems
 - \rightarrow Ever growing amount of data

POLICY

- Answers to policy-relevant questions, such as
 - Clinical impact of SARS-CoV-2 variants
 - ~ predict hospital/ICU load
 - Vaccine effectiveness
 - ~ evaluate vaccination programs
 - → Timeliness
 - \rightarrow Questions change over time

Causal framework

Data requirements (Common Data Model)

Slide courtesy of Francisco Estupiñán-Romero

Data infrastructure: LINK-VACC project

https://www.sciensano.be/en/projects/linking-registers-covid-19-vaccine-surveillance

Data infrastructure that links data from existing COVID-19 registries based on the national reference number

Psciensand

be

Data infrastructure: strengths & weaknesses

STRENGTHS

- Rapid implementation of a new infrastructure to merge vaccination registry data with SARS-CoV-2 testing data, and linking to socio-economic and hospital data
- Secured linkage of individual-level data based on the national registry number (healthdata.be)
- Repurposing existing data sources to answer multiple clinical/epidemiological questions without extra investments

WEAKNESSES

- Repurposing data without adapting methodology to answer causal research question: depending on the features of the existing data infrastructure
- Sample size depends on the linkage between independent data sources
- Real-time analyses are challenging due to delays in data collection and transfer
- Missing data
- Risk for selection bias

healthy all life long

STUDYING SOCIO-DEMOGRAPHIC AND SOCIO-ECONOMIC FACTORS

Lisa Cavillot

Use of STATBEL data to study sociodemographic and socioeconomic disparities in COVID-19 vaccine uptake in Belgium (LINK-VACC project)

Variables	Data Holder	Time frame
	Outcome	
First COVID-19 vaccine dose uptake	The Belgian Vaccine Register (Vaccinnet+)	As of 31 August 2021
	Exposure	
Age groups	National registry	March 2022
Gender	National registry	March 2022
Region	National registry	March 2022
Household type	Statistics Belgium	August 2021
Migration background	Statistics Belgium	August 2021
Income	Statistics Belgium	2018 (fiscal year 2019)
Education level	Statistics Belgium	2017
Employment status	Statistics Belgium	Year 2019
Health care diploma	Common Base Registry for HealthCare Actors	January 2021

Definition of STATBEL's sociodemographic indicators

Migration background

 \rightarrow Based on a combination of the first nationality and the parents' country of origin

- Native (first nationality = BE)
- First generation EU-migrant (first nationality = EU)
- First generation non-EU migrant (first nationality = NON-EU)
- Second generation migrant (migration background = PAR)
- Missing (first nationality = NA)

Household type

- Couples (married+unmarried)
- Couples with children (married+unmarried)
- Single parents
- One-person households
- Collectivity (e.g. prison, nursing home)
- scien**sano Missing**

Definition of STATBEL's socioeconomic indicators

Income

 \rightarrow Available as deciles of the net income of the household:

- Low income (deciles 1 to 4)
- **Middle income** (deciles 5 to 7)
- **High income** (deciles 8 to 10)
- Missing income

Education

 \rightarrow Based on the International Standard Classification of Education (ISCED):

- Low education (ISCED 0-ISCED 2) → early childhood education + primary education+ lower secondary education
- Middle education (ISCED 3-ISCED 4) → upper secondary education + post-secondary non-tertiary education
- High education (ISCED 5-ISCED 8) → short-cycle tertiary education + bachelor's or equivalent level
 + master's or equivalent level + doctoral or equivalent level
- Missing education

Employment status

- Employed
- Unemployed
- Missing

Main conclusions

Important **social disparities** in COVID-19 vaccine uptake identified in Belgium.

A lower COVID-19 vaccine uptake was found among:

- Young people
- Migrants
- Single parents, one-person household
- SE disadvantaged groups
 - Low income
 - Low education
 - Unemployed

New insights into social patterns in vaccine uptake useful to identify potentially **vulnerable population** in next waves of the epidemic.

HELICON Project: Valuation of administrative data sources through links at individual level

HELICON aims to:

- A. Identify socio-economic and socio-demographic factors of risk and resilience in COVID-19
 testing, infection, hospitalizations and mortality
- B. Describe the medium- and long-term direct
 health impact of COVID-19 infections regarding
 healthcare use after COVID hospitalization
- C. Assess the indirect health impact of the COVID-19 crisis in terms of non-COVID morbidity and mortality and the health economic impact of delayed health care use

healthy all life long

Contact

Nina.VanGoethem@sciensano.be

Marjan.Meurisse@sciensano.be

Lisa.Cavillot@sciensano.be

Laura.VandenBorre@sciensano.be

Pierre.Hubin@sciensano.be

Sciensano • Rue Juliette Wytsmanstraat 14 • 1050 Brussels • Belgium T +32 2 642 51 11 • T Press +32 2 642 54 20 • info@sciensano.be • www.sciensano.be

