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1 Introduction

The earth rotates on its axis with a period T∗ called the sidereal day (after the Latin for
“star”, since it is the rotation period of the earth with respect to distant stars). T∗ is slightly
shorter than the so-called mean solar day, or clock day, of duration TM = 86400 seconds.
This is because the earth is a prograde planet, that is, it rotates about its axis in the same sense
(counterclockwise looking down on the North Pole) as it orbits the sun. Specifically, say the
sun crosses the meridian of some location at a particular time. And imagine there is a distant
star directly behind the sun at that moment. After one sidereal day the location will rotate 360◦

about the earth’s axis and the distant star will again cross its meridian. But during that time
the earth will have moved a small counterclockwise distance around its orbit and so it will
take a small additional rotation of the earth for the sun to also cross the meridian and thereby
complete a solar day.

Put another way, a solar day is slightly longer than a sidereal day because the sun appears
to move slowly eastward across the celestial sphere with respect to distant stars as the year
passes. The path of this motion is called the ecliptic. Clearly, what governs the length of
a solar day is the apparent velocity of the sun along the ecliptic, or, more particularly, the
equatorial component of that velocity. But both the magnitude and equatorial component
of the solar ecliptic velocity change during the year, the former because the earth’s orbit is
elliptical, not circular, and the latter because the earth’s axis of rotation is tilted with respect to
the orbital (ecliptic) plane. Thus the length of a solar day changes during the year. While these
factors cause only a small perturbation to the length of the solar day (less than 30 seconds), the
perturbations accumulate so that, at different times of the year, apparent solar time (“sundial
time”) and mean solar time (“clock time”) can differ by as much as about 15 minutes. This
difference is called the Equation of Time.

To be more rigorous, in the sequel, let E denote the earth, S the true sun, and M a fic-
titious “mean sun” that moves at constant eastward speed around the celestial equator, com-
pleting a full orbit in a year, namely in the period Y TM, where Y is the number of mean
solar days in a year (e.g., 365.25). Thus, in one mean solar day, TM, the mean sun has moved
an angle 2π/Y eastward. Hence, beyond one full earth revolution, period T∗, an additional
earth rotation of (TM− T∗) 2π/T∗ = 2π/Y is required to “catch up with the moving sun”, as
described earlier. Hence TM − T∗ = T∗/Y and so

TM = T∗
Y + 1

Y
, (1)

a constant (near unity) multiple of the fixed sidereal day. TM is the length of the solar day
for the “mean sun”, or the “mean solar day”. Because it is invariant during the year, it is
convenient for timekeeping, and forms the basis for “mean solar time”, which at Greenwich
is essentially UTC. By definition, TM = 24h = 86400s. That is, what we know as “hours”,
“minutes” and “seconds”, are just convenient integer fractions of the mean solar day. In these
units, the sidereal day T∗ is approximately 23h 56m 4s.
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The solar zenith angle calculation (in MAPL sunGetInsolation) needs the local
solar hour angle, hS, which is the angle, measured westward along the equator, from the local
meridian to the sun. This is just the Greenwich solar hour angle, HS, plus the longitude, so
we will henceforth work exclusively with Greenwich hour angles. We should use the hour
angle of the true sun, HS, but a common approximation replaces this with the hour angle of
the mean sun

HM = 2π (u− 1/2), (2)

where u is UTC time (in days) and the offset is needed because the mean solar hour angle
is zero at “noon”. If more accuracy is required, the hour angle of the true sun is typically
obtained as a small correction to HM called the Equation of time, EOT :

HS = HM + EOT, where EOT = HS −HM. (3)

As discussed above, EOT corrects for two factors:

(a) the variable speed of the earth in its elliptical orbit about the sun (e.g., moving fastest
at perihelion), and

(b) the tilt of the earth’s axis of rotation with respect to its orbital plane (the “obliquity”),
which causes the equatorial projection of the sun’s apparent ecliptic motion to vary
with the season (e.g., being parallel to the equator at the solstices.)

2 Derivation of Equation of Time

We can write
HS = HΥ − (HΥ −HS) = HΥ − αS, (4)

where HΥ is the Greenwich hour angle of the First Point of Aries (the location of the vernal
equinox, denoted Υ) and is also known as the Greenwich sidereal hour angle, and where αS is
the right ascension of the true sun (since the right ascension of any object is just the difference
between the hour angles of Υ and the object). Hence,

EOT = HΥ −HM − αS. (5)

All three terms on the right of (5) are time variable: αS changes slowly throughout the year,
and is known from the earth-sun two-body elliptical orbit solution, while HΥ and HM vary
rapidly with Earth’s rotation. HM has a period of one mean solar day, TM, and HΥ has a
period of one sidereal day, TS .

It may seem from from (2) that the mean sun and its hour angle are fully specified.
That, in fact, is not yet the case: (2) is really just a definition of UTC, namely, that one UTC
day is one mean solar day and that the time of culmination of the mean sun, what we call
“noon”, occurs at UTC 12h00m. What we are still at liberty to do is specify the phasing of the
mean sun in its equatorial orbit, e.g., by specifying the time uR at which the mean sun passes
through Υ (both on the equator). At this time, HΥ(uR) = HM(uR), and so

HΥ(u)−HM(u) = 2π (u− uR) (Y + 1)/Y − 2π (u− uR)

= 2π (u− uR)/Y

= MA(u)−MA(uR),

(6)

where
MA(u) ≡ 2π (u− uP)/Y (7)

is the so-called “mean anomaly”, known from the earth-sun two-body orbital solution, and uP
is the time of perihelion. Thus, to fully determine EOT , through (5) and (6), we need only to
specify MA(uR).

To understand the mean anomaly MA, consider the standard two-body earth-sun prob-
lem in which the earth E moves in an elliptical orbit about the sun S at one focus, all in the

–2–



Confidential manuscript submitted to Please set Journal Name by using \journalname

ecliptic plane. The point on the ellipse closest to S is called the perihelion P. Obviously, the
center of the ellipse O, the focus S and the perihelion P are co-linear, the so-called major axis
of the ellipse. Additionally, let C be the circumscribing circle of the ellipse, with center O
and passing through P (and the corresponding aphelion A). By Kepler’s Second Law, the sun-
earth vector sweeps out equal areas in equal times, so the fractional area of the elliptical sector
PSE is a linear function of time, being zero at perihelion and one a year later. Specifically,
this fractional area is none other than the scaled mean anomaly MA(u)/(2π) = (u− uP)/Y
from (7). Clearly MA(u) can also be interpreted as an angle, the angle ∠POQ of a point Q
orbiting on the circumcircle C at constant speed in the same direction as the earth, also with
a yearly period, and passing through P at the same time uP as the earth. Thus the point Q
can be conceptualized as a sort of “mean earth” orbiting a “second mean sun” (different from
M above) at O. Note that while the angle MA(u) = ∠POQ of this mean earth at time u is
a linear function of time, the corresponding angle of the real earth, namely TA(u) ≡ ∠PSE,
called the true anomaly, is a non-linear function of time, since the real earth has a variable
speed in its elliptical orbit, e.g., moving faster at perihelion, so that its areal fraction is linear
in time. The relationship between MA(u) and TA(u) is known from the orbital solution and
will be discussed later. Finally, the ecliptic longitude of the earth, λ ≡ ∠ΥSE is the angle at
the sun, measured in the same direction as the earth’s motion, from the First Point of Aries Υ
to the earth. Then

TA(u) ≡ ∠PSE(u) = ∠PSΥ + ∠ΥSE(u) = λ(u)− λP, (8)

where λP = λ(uP) ≡ ∠ΥSP = −∠PSΥ is known as the longitude of perihelion, and is
currently about 283◦, or equivalently −77◦.

With this background, we can understand the quantityMA(uR) we are trying to specify.
If we choose

MA(uR) = −λP = ∠PSΥ ⇐⇒ ∠POQ(uR) = ∠PSΥ, (9)

then at uR, viewed from the mean earth Q, the second (ecliptic) mean sun O is in direction of
Υ. And at that same time, by definition of uR, the first (equatorial) mean sun M, as seen from
the real earth E, is also in direction of Υ.

3 Integrals

Does this particular choice of uR gives zero mean EOT , as required for a mean solar
time? Let 〈·〉 denote a time average over one orbit (one year), so that (5), (6) and (9) yield

〈EOT 〉 = 〈MA(u)〉+ λP − 〈αS〉 = MA(〈u〉) + λP − 〈αS〉, (10)

since MA is a linear function of u. In particular, let

〈f〉X ≡ Y
−1

∫ X+Y/2

X−Y/2
f(u) du, (11)

whence
〈EOT 〉uX = MA(uX) + λP − 〈αS〉uX . (12)

For example,

〈EOT 〉uP
= λP − 〈αS〉uP

, and 〈EOT 〉uΥ
= MA(uΥ) + λP − 〈αS〉uΥ

. (13)

The right ascension of the true sun, αS ∈ (−π,+π], is given by

αS = atan2 (sinλ cos ε, cosλ), (14)

where ε be the earth’s obliquity (≈ 23.5◦). Both λ and αS are zero at Υ. To proceed, we will
use the following rate of change of λ from the two-body theory:

dλ
du

=
dν
du

=
2π

Y
(1− e2)−3/2 (1 + e cos ν)2, (15)
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where e is the eccentricity and ν ≡ λ(u)− λP is shorthand for the true anomaly of the earth,
TA(u). Then, without being precise on limits for now,

〈αS〉 = Y −1

∫
αSdλ
dλ/du

=

∫
atan2 (sinλ cos ε, cosλ)

(1− e2)−3/2 [1 + e cos(λ− λP)]2
dλ
2π
. (16)

Finally, just as Υ denotes the location of the vernal equinox, λ = αS = 0, we will also use Υ′

to denote the location of the autumnal equinox, λ = αS = ±π. In general, uΥ − uΥ′ is not
exactly half a year.

3.1 Zero obliquity

For the simple case where the obliquity is zero, cos ε = 1 and αS = λ = ν+λP, and so

〈αS〉uP
=

∫ +π

−π

ν + λP
(1− e2)−3/2 [1 + e cos ν]2

dν
2π

=
λP
2π

∫ +π

−π

dν
(1− e2)−3/2 [1 + e cos ν]2

,

(17)

since perihelion and aphelion are half a year apart by symmetry and since the ν term is odd.
The true anomaly can be expressed in terms of the eccentric anomaly E ∈ (−π,+π]:

cos ν =
cosE − e

1− e cosE
and sin ν =

√
1− e2 sinE

1− e cosE
, (18)

whence
1 + e cos ν =

1− e2

1− e cosE
. (19)

and

− sin ν
dν
dE

= − sinE
1− e2

(1− e cosE)2
=⇒ dν

dE
=

√
1− e2

1− e cosE
(20)

Hence,

〈αS〉uP
=
λP
2π

∫ +π

−π
(1− e cosE) dE =

λP
2π

∫ +π

−π
dM = λP. (21)

where M ≡ E− e sinE. Hence, as required, 〈EOT 〉uP
= 0 by (13). Note that M(u) is none

other than MA(u), as per Kepler’s Equation of the two-body solution.

3.2 Zero eccentricity

For zero eccentricity, e = 0, we get the simple form

〈αS〉 =

∫
atan2 (sinλ cos ε, cosλ)

dλ
2π
, (22)

and, in particular,

〈αS〉uΥ′+Y/2
=

∫ uΥ′+Y

uΥ′

αS(u)
du
Y

=

∫ +π

−π
atan2 (sinλ cos ε, cosλ)

dλ
2π

= 0, (23)

since since atan2 is odd in λ. Then, by (12),

〈EOT 〉uΥ′+Y/2
= MA(uΥ′ + Y/2) + λP − 〈αS〉uΥ′+Y/2

= MA(uΥ) + λP, (24)

since Υ′ and Υ are a half year apart for a circular (e = 0) orbit. But also for a circular orbit,
MA(u) = TA(u) = λ(u)− λP, so

〈EOT 〉uΥ′+Y/2
= (λ(uΥ)− λP) + λP = λ(uΥ) ≡ 0, (25)

as required.
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3.3 General case

For the general general case,

〈αS〉uΥ′+Y/2
=

∫ uΥ′+Y

uΥ′

αS

du
Y

=

∫ +π

−π

atan2 (sinλ cos ε, cosλ)

(1− e2)−3/2 [1 + e cos(λ− λP)]2
dλ
2π

=

∫ π

0

atan2 (sinλ cos ε, cosλ)

(1− e2)−3/2
D(λ;λP)

dλ
2π
,

(26)

since atan2 is odd in λ, where

D(λ;λP) ≡ 1

[1 + e cos(λ− λP)]2
− 1

[1 + e cos(λ+ λP)]2

=
[1 + e cos(λ+ λP)]2 − [1 + e cos(λ− λP)]2

[(1 + e cos(λ− λP))(1 + e cos(λ+ λP))]2

=
2e(cos(λ+ λP)− cos(λ− λP)) + e2(cos2(λ+ λP)− cos2(λ− λP))

[1 + e(cos(λ− λP) + cos(λ+ λP)) + e2 cos(λ− λP) cos(λ+ λP)]2

=
−4e sinλ sinλP − 4 e2 cosλ cosλP sinλ sinλP

[1 + 2e cosλ cosλP + e2(cos2λ cos2λP − sin2λ sin2λP)]2

=
−4e sinλ sinλP(1 + e cosλ cosλP)

[(1 + e cosλ cosλP)2 − e2 sin2λ sin2λP)]2
.

(27)

Continuing with the reduction,

〈αS〉uΥ′+Y/2
=

∫ π/2

0

atan2 (sinλ cos ε, cosλ)

(1− e2)−3/2
D(λ;λP)

+
atan2 (cosλ cos ε,− sinλ)

(1− e2)−3/2
D(λ+π/2;λP)

dλ
2π

=

∫ π/2

0

arctan(tanλ cos ε)
D(λ;λP)

(1− e2)−3/2
+ [π − arctan(cotλ cos ε)]

D(λ+π/2;λP)

(1− e2)−3/2

dλ
2π
,

(28)

where
D(λ+ π/2;λP) =

−4e cosλ sinλP(1− e sinλ cosλP)

[(1− e sinλ cosλP)2 − e2 cos2λ sin2λP)]2
. (29)

We will attempt a solution by expanding in powers of e, since e ≈ 0.0167� 1. Clearly
for e = 0 both D terms are zero and we get our earlier special case result.

3.3.1 First order in e

To first order in e:

D(λ;λP)

(1− e2)−3/2
≈ −4e sinλ sinλP,

D(λ+ π/2;λP)

(1− e2)−3/2
≈ −4e cosλ sinλP, (30)

and so

〈αS〉uΥ′+Y/2

≈ −4 e sinλP

∫ π/2

0

arctan(tanλ cos ε) sinλ+ [π − arctan(cotλ cos ε)] cosλ
dλ
2π

=
−e sinλP
π/2

[
cot ε artanh(sinλ sin ε)− cosλ arctan(tanλ cos ε)

+ cot ε artanh(cosλ sin ε)− sinλ arctan(cotλ cos ε) + π sinλ
]π/2

0

=
−e sinλP
π/2

[
cot ε[artanh(sin ε)− artanh(0)]− {0 arctan(∞)− arctan(0)}

+ cot ε[artanh(0)− artanh(sin ε)]− {arctan(0)− 0 arctan(∞)}+ π
]

= −2e sinλP.

(31)
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Now, by (12),

〈EOT 〉uΥ′+Y/2

= MA(uΥ′ + Y/2) + λP − 〈αS〉uΥ′+Y/2

= MA(uΥ′) + π + λP + 2e sinλP

= E(uΥ′)− e sinE(uΥ′) + π + λP + 2e sinλP

= 2 arctan

[√
1− e
1 + e

tan

(
ν(uΥ′)

2

)]
− e
√

1− e2 sin ν(uΥ′)

1 + e cos ν(uΥ′)
+ π + λP + 2e sinλP

= −2 arctan

[√
1− e
1 + e

tan

(
λP + π

2

)]
+
e
√

1− e2 sin(λP + π)

1 + e cos(λP + π)
+ π + λP + 2e sinλP

= −2 arctan

[√
1− e
1 + e

tan

(
λP + π

2

)]
− e
√

1− e2 sinλP
1− e cosλP

+ π + λP + 2e sinλP,

(32)

since MA = E − e sinE and since the eccentric anomaly E obeys the following relations
from the two-body solution,

sinE =

√
1− e2 sin ν

1 + e cos ν
, tan(E/2) =

√
1− e
1 + e

tan(ν/2), (33)

with ν = λ − λP, and since ν(uΥ′) = λ(uΥ′)− λP = −(λP + π). Hence, to our first order
in e approximation,

〈EOT 〉uΥ′+Y/2
≈ −2 arctan

[
(1− e) tan

(
λP + π

2

)]
− e sinλP + π + λP + 2e sinλP

≈ −2 arctan

[
tan

(
λP + π

2

)]
+

2e tan
(
λP+π

2

)
1 + tan2

(
λP+π

2

) + π + λP + e sinλP

= e sin 2

(
λP + π

2

)
+ e sinλP = e[sin(λP + π) + sinλP] = 0,

(34)

as required. We could proceed to higher order in e by this method, but first we will try a
slightly different approach, using integration by parts, which will be turn out to be easier . . .

3.4 General case using integration by parts

Alternatively, we can integrate by parts:

〈αS〉uΥ′+Y/2
=

∫ M(uΥ′ )+2π

M(uΥ′ )

αS

dM
2π

=
1

2π

(
[αSM ]

uΥ′+Y
uΥ′

−
∫ +π

−π
M dαS

)
= M(uΥ′) + π − 1

2π

∫ +π

−π
M

dαS

dλ
dλ

= M(uΥ′) + π − 1

2π

∫ +π

−π

(E − e sinE) cos ε dλ
1− sin2λ sin2 ε

,

(35)

where (again) M ≡MA = E − e sinE, and since αS(uΥ′) = ±π and

∂

∂x
atan2(y, x) =

−y
x2 + y2

and
∂

∂y
atan2(y, x) =

x

x2 + y2
, (36)

and so
dαS

dλ
=

d
dλ

atan2 (sinλ cos ε, cosλ) = . . . = .
cos ε

1− sin2λ sin2 ε
(37)
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Hence, before making any approximation in the order of e, we have

〈EOT 〉uΥ′+Y/2
= MA(uΥ′) + π + λP − 〈αS〉uΥ′+Y/2

= λP +
1

2π

∫ +π

−π

(E − e sinE) cos ε dλ
1− sin2λ sin2 ε

= λP +
1

2π

∫ +π

−π

[
2 arctan

(√
1−e
1+e tan

(
ν
2

))
− e
√

1−e2 sin ν
1+e cos ν

]
cos ε dλ

1− sin2λ sin2 ε
,

(38)

with ν = λ− λP. Clearly this method avoids explicit calculation of MA(uΥ′).

3.4.1 First order in e

To first order in e:

〈EOT 〉uΥ′+Y/2

≈ λP +
1

2π

∫ +π

−π

[
2 arctan

(
(1− e) tan

(
λ−λP

2

))
− e sin(λ− λP)

]
cos ε dλ

1− sin2λ sin2 ε

≈ λP +
1

2π

∫ +π

−π

[
λ− λP −

2e tan
(
λ−λP

2

)
1+tan2

(
λ−λP

2

) − e sin(λ− λP)

]
cos ε dλ

1− sin2λ sin2 ε

= λP +
1

2π

∫ +π

−π

[λ− λP − 2e sin(λ− λP)] cos ε dλ
1− sin2λ sin2 ε

= λP +
1

2π

∫ +π

−π

[λ− λP − 2e(sinλ cosλP − cosλ sinλP)] cos ε dλ
1− sin2λ sin2 ε

= λP −
1

2π

∫ +π

−π

[λP − 2e sinλP cosλ] cos ε dλ
1− sin2λ sin2 ε

,

(39)

after removing odd functions of λ in the last line. By (37) we can simplify this to

〈EOT 〉uΥ′+Y/2
= λP −

λP
2π

∫ +π

−π
dαS +

2e sinλP
2π

∫ +π

−π

cosλ cos ε dλ
1− sin2λ sin2 ε

=
2e sinλP

2π

∫ 0

0

cos ε dY
1− Y 2 sin2 ε

= 0, where Y ≡ sinλ,

(40)

so again we have our required result to first order in e.

3.4.2 Higher orders in e

At this point we have not been able to go to higher orders in e. Can cannot say whether
these orders will yield zero contributions to mean EOT or not. Here’s where I got so far,
which perhaps suggest that the mean EOT is only zero to first order . . .

The following binomial series converge absolutely since e� 1:

(1− e2)1/2 = 1 +A, A ≡
∞∑
k=1

(
1/2

k

)
(−1)ke2k ∼ O(e2), (41)

(1− e2)−1/2 = 1 +B, B ≡
∞∑
k=1

(
−1/2

k

)
(−1)ke2k ∼ O(e2), (42)

and

(1 + e cos ν)−1 = 1 + C, C ≡
∞∑
k=1

(
−1

k

)
ek cosk ν ∼ O(e). (43)
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Then √
1− e
1 + e

= (1− e)(1 +B) = 1− e+D, D ≡ (1− e)B ∼ O(e2), (44)

and, √
1− e2

1 + e cos ν
= (1 +A)(1 + C) = 1 + C +A+AC. (45)

So, to general order in e,

Q ≡ 2 arctan

(√
1− e
1 + e

tan
(ν

2

))
− e
√

1− e2 sin ν

1 + e cos ν

= 2 arctan
(

tan
(ν

2

)
+ (D − e) tan

(ν
2

))
− e(1 + C +A+AC) sin ν = . . .

= ν + (D − 2e− eA) sin ν − e(1 +A)C sin ν

+ 2

∞∑
n=2

arctan(n)
(

tan
(ν

2

)) (D − e)n

n!
tann

(ν
2

)
.

(46)

Hence,

〈EOT 〉uΥ′+Y/2
= λP +

1

2π

∫ +π

−π

Q cos ε dλ
1− sin2λ sin2 ε

= . . .

=
1

2π

∞∑
n=2

(D − e)n

n!

∫ +π

−π

2 arctan(n)
(
tan

(
λ−λP

2

))
tann

(
λ−λP

2

)
cos ε dλ

1− sin2λ sin2 ε

− e(1 +A)

2π

∞∑
k=1

(
−1

k

)
ek
∫ +π

−π

cosk(λ− λP) sin(λ− λP) cos ε dλ
1− sin2λ sin2 ε

.

(47)

First look at the cosk(λ− λP) sin(λ− λP) terms:

cosk(λ− λP) sin(λ− λP) = (C1C1p + S1S1p)
k(S1C1p − C1S1p). (48)

where Cn ≡ cos(nλ), Sn ≡ sin(nλ) and the p subscripts are for the λP versions. For k = 1,

(C1C1p + S1S1p)(S1C1p − C1S1p). = (S2C2p − C2S2p)/2. (49)

The first term is odd in λ and will integrate to zero, but the second term is even and will not
be zero! So perhaps our result is only good to first order in e? The order e2 component from
(47) for these terms is then:

e2

2π

∫ +π

−π

cos(λ− λP) sin(λ− λP) cos ε dλ
1− sin2λ sin2 ε

− e2 sin(2λP)

4π

∫ +π

−π

cos(2λ) cos ε dλ
1− sin2λ sin2 ε

=
e2 sin(2λP)

8π sin2 ε

[
(cos(2ε) + 3) arctan(cos ε tanλ)− 4λ cos ε

]+π
−π

= −e2 cot ε csc ε sin(2λP).

(50)

Likewise, the derivatives of arctan term of (47) for order e2 is:

e2

2

1

2π

∫ +π

−π

2 arctan(2)
(
tan

(
λ−λP

2

))
tan2

(
λ−λP

2

)
cos ε dλ

1− sin2λ sin2 ε

= −e
2

2

1

2π

∫ +π

−π

sin2(λ− λP) tan
(
λ−λP

2

)
cos ε dλ

1− sin2λ sin2 ε

= −e
2

2

1

2π

∫ +π

−π

sin(λ− λP)[1− cos(λ− λP)] cos ε dλ
1− sin2λ sin2 ε

=
1

2

e2

2π

∫ +π

−π

sin(λ− λP) cos(λ− λP) cos ε dλ
1− sin2λ sin2 ε

,

(51)
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which is exactly half of (50). So, we conclude that to second order in e,

〈EOT 〉uΥ′+Y/2
= − 3

2e
2 cot ε csc ε sin(2λP) (52)

We will not pursue any higher order terms. For typical J2000 values e ≈ 0.0167, ε ≈ 23.44◦,
and λP ≈ 102.95◦ − 180◦ = −77.05◦, the above formula gives

〈EOT 〉uΥ′+Y/2
≈ 0.00106 rad ≈ 15 sec. (53)

Thus, we conclude that our simple choice of uR in (9) leads to zero mean EOT only to
first order in e.

–9–


