
README.md 4/14/2023

1 / 11

Supplementary data for "Chromosome-Level Genome
Assembly and Circadian Gene Repertoire of the
Patagonia blennie Eleginops maclovinus"

This dataset constains the genome assembly and associated annotation of the Patagonian Blennie

(Eleginops maclovinus), extracted circadian rhythm sequences for E. maclovinus, other notothenenioid taxa,

and teleost outgroups, as well as a copy of the bioinformatic scripts used for the assembly, annotation, and

other downstream analysis. It is linked to the following publication:

Cheng, CCH, Rivera-Colón, AG, Wilson, L, et al. (in prep) Chromosome-Level Genome Assembly

and Circadian Gene Repertoire of the Patagonia blennie Eleginops maclovinus - the closest

ancestral proxy of Antarctic cryonotothenioids.

Methods

An E. maclovinus specimen was collected from the Puerto Natales, Chile in January 2018. HMW DNA was

extracted and sequenced using PacBio Sequel II and a Hi-C library. A contig-level genome assembly was

first generated using wtdgb2 (a.k.a. redbean) v2.5 (Ruan & Li 2020), and scaffolded with juicer v1.6.2

(Durand et al. 2016). PacBio and HiC raw data is available under NCBI BioProject PRJNA857989. For

annotation, the RNA-seq data generated by Bilyk et al. (2018) was aligned to the genome, and processed

using BRAKER v2.1.6 Brůna et al. 2021. The generated annotation was then further processed using TSEBRA
v1.0.1 (Gabriel et al. 2021). Using a custom Python script (see scripts section), we curated the TSEBRA
output to guarantee consistency in the naming of genes and transcripts, as well as incorporating gene

names and description based on the corresponding zebrafish orthologs.

A conserved synteny analysis using synolog (Catchen et al. 2009; Small et al. 2016) was employed for the

manual curation of the assemblies. For example, we identifying missasemblies in structural variants limited

to contig boundaries or merged scaffolds belonging to the same chromosome sequences. We used a

custom Python program to propagate these changes through the constituent assembly files.

For the circadian rhythm comparative analysis, assemblies and annotation were downloaded from genomic

databases (e.g., ENSEMBL, NCBI). Circadian gene orthologs were identified using synolog and extracted

using custom Python scripts.

A detailed step-by-step description of the methods is available on the publication (Cheng et al. in prep).

Usage Notes

All assembly and annotation files are gzipped, but are otherwise standard bioinformatic formats (i.e., FASTA

for genome assembly and coding/amino acid sequences, GTF for annotation, AGP for scaffolding). In

addition, bioinformatic scripts for data generation and analysi are in Python (*.py) or Bash (*.sh, but
might require the installation of additional, open-source software (e.g., wtdbg2, BRAKER)

See links for a description of the FASTA (http://www.ncbi.nlm.nih.gov/blast/fasta.shtml), and GTF

(https://useast.ensembl.org/info/website/upload/gff.html), and AGP

(https://www.ncbi.nlm.nih.gov/assembly/agp/AGP_Specification/) file format specifications.

https://doi.org/10.1038/s41592-019-0669-3
https://doi.org/10.1016/j.cels.2016.07.002
https://doi.org/10.1186/s12862-018-1254-6
https://doi.org/10.1093/nargab/lqaa108
https://doi.org/10.1186/s12859-021-04482-0
https://doi.org/10.1101%2Fgr.090480.108
https://doi.org/10.1186/s13059-016-1126-6
http://www.ncbi.nlm.nih.gov/blast/fasta.shtml
https://useast.ensembl.org/info/website/upload/gff.html
https://www.ncbi.nlm.nih.gov/assembly/agp/AGP_Specification/

README.md 4/14/2023

2 / 11

Genome assembly and annotation

Files for the de novo assembly and annotation of E. maclovinus. Files have the label emac.rtc.rv5, which
denotes the species (emac), the annotation (rtc, redbean+TSEBRA curated), and integration (rv5,
redbean assembly, 5th iteration).

Due to their size, files are compressed in a tarball. To extract, do:

tar -xzvf emac_asm_annot.tar.gz

The resulting directory contains the following data:

File description

File * Description

emac.rtc.rv5.fa Genome assembly in nucleotide FASTA format.

emac.rtc.rv5.agp Assembly structure in AGP format.

emac.rtc.rv5.gtf Genome annotation in GTF format.

emac.rtc.rv5.cds.fa
Genomic sequence for all annotated protein-coding genes in

nucleotide FASTA format.

emac.rtc.rv5.protein.fa
Protein sequence for all annotated protein-coding genes in

amino acid FASTA format.

* Does not include the gzipped

compression suffix (.gz)

Circadian Rhythm Orthologs Analysis

Sequence and annotation files for circadian rhythm gene orthologs across notothenioids and teleost

orthologs.

Due to their size and to preserve organization in directories, files are compressed in a tarball. To extract, do:

tar -xzvf circadian_orthologs.tar.gz

Assemblies used

Scientific Name Common Name
Assembly

Label

NCBI/Ensembl

ID
NCBI Accession

Eleginops maclovinus Patagonia Blennie emac.rtc.rv5 NA NA

Chaenocephalus

aceratus
Blackfin icefish cace.kuc.kuc KU_Ca_2.0 GCA_023974075.1

README.md 4/14/2023

3 / 11

Scientific Name Common Name
Assembly

Label

NCBI/Ensembl

ID
NCBI Accession

Champsocephalus esox Pike icefish ceso.ftc.fv8 NA NA

Cottoperca gobio
Channel Bull

Blennie
cgob.def.def fCotGob3.1 GCF_900634415.1

Champsocephalys

gunnari
Mackerel icefish cgun.ftc.fv8 NA NA

Dissostichus mawsoni Antarctic toothfish dmaw.def.def KU_Dm_1.0 GCA_011823955.1

Gymnodraco acuticeps
Antarctic

ploughfish
gyac.def.def fGymAcu1.1 GCF_902827175.1

Harpagifer antarcticus
Antarctic spiny

plunderfish
hant.def.def fHarAnt1.1 GCA_902827135.1

Pogonophryne albipinna
Whitefin

plunderfish
palb.def.def KU_S6 GCA_028583405.1

Pseudochaenichthys

georgianus

South Georgia

icefish
pgeo.def.def fPseGeo1.1 GCF_902827115.1

Trematomus bernacchii Emerald rockcod tber.def.def fTreBer1.1 GCF_902827165.1

Trematomus loennbergii Scaly rockcod tloe.def.def KUTl01 NA

Danio rerio Zebrafish drer.def.def GRCz11 GCF_000002035.6

File description

For each species, the data for the circadian ortholog sequences and annotations is stored in its own

separate directory, named according to its corresponding assembly label shown in the table above. Each

directory contains the following files:

File * Description

<label>.cds.fa Sequence in nucleotide FASTA format.

<label>.gtf
Coordinates and genomic annotation in

GTF format.

<label>.peptide.fa Sequence in amino acid FASTA format.

* <label> is the assembly label and directory name for

the species.

For example, the following files are available for E. maclovinus:

$ ls -1 emac.rtc.rv5/
emac.rtc.rv5.cds.fa

README.md 4/14/2023

4 / 11

emac.rtc.rv5.gtf
emac.rtc.rv5.peptide.fa

E. maclovinus Iso-Seq data

The E. maclovinus fin transcriptome was sequenced using PacBio Iso-Seq in order to confirm expression of

circadian rhythm orthologs. The consensus sequences for this transcriptome are available in nucleotide

FASTA format in the file emac_isoseq_transcripts/emac_isoseq.fa.

Bioinformatic scripts

Genome assembly

Subsample reads

sample_reads.py:

Custom Python script to downsample raw FASTQ files to a given coverage and size distribution. Script

further described in Rayamajhi et al. 2022.

Usage:

$./sample_reads.py -h
usage: sample_reads.py [-h] [-1 SE_PATH] [-2 PE_PATH] [-o OUT] [-r
FRACTION]
 [-g GENOME] [-c DEPTH] [-l LENGTH]
 [--max_length MAX_LENGTH] [--seed SEED]

Subsample a set of reads from one or a pair of FASTQ files. One can either
select a fraction of total reads to sample, or one can specify a genome
length
and depth of coverage to sample to fill.

optional arguments:
 -h, --help show this help message and exit
 -1 SE_PATH, --se_path SE_PATH
 Path to single-end reads.
 -2 PE_PATH, --pe_path PE_PATH
 Path to paired-end reads.
 -o OUT, --out OUT Path to write sampled data.
 -r FRACTION, --fraction FRACTION
 Fraction of reads you want to randomly sample.
 -g GENOME, --genome GENOME
 Approximate size of the genome for use in
determining
 depth of coverage (in basepairs, or with G, M, or
K
 suffix).
 -c DEPTH, --depth DEPTH
 Depth of coverage to randomly sample to (based on
 specified genome size).

https://doi.org/10.1093/g3journal/jkac192

README.md 4/14/2023

5 / 11

 -l LENGTH, --length LENGTH
 Only consider reads longer than length limit for
 sampling (in basepairs, or with G, M, or K
suffix).
 --max_length MAX_LENGTH
 Only consider reads shorter than max_length limit
for
 sampling (in basepairs, or with G, M, or K
suffix).
 --seed SEED Specify a seed to the random number generator to
start
 this sampling.

Readbean genome assembly

wtdbg2.sh:

Generate a contig-level genome assembly from the downsampled PacBio CLR reads using the RedBean

assembler. First, call the assembler wtdbg2, then generate a FASTA consensus with wtpoa-cns.

Self-correct assembly

arrow.sh:

Run a self-polish of a genome assembly with the raw (unprocessed) PacBio CLR reads using the Arrow

pipeline.

Hi-C scaffolding

juicer.sh:

Scaffold the contig-level genome assembly using Juicer. It first aligns the Illumina Hi-C with BWA mem,
processing alignments with SAMtools. Then, it runs the Juicer pipeline to identify the location of DpnII

cutsites, identifying Hi-C junctions with juicer.sh, and scaffolding with 3d-dna.

Contiguity statistics

quast.sh:

Assess the continuity statistics for a genome assembly using Quast.

Gene completeness

busco_v5.sh:

Assess the gene-completeness of a genome assembly using BUSCO v5. Use the

actinopterygii_odb10 lineage and zebrafish protein sequences for comparison in Augustus.

Manually alter genome

README.md 4/14/2023

6 / 11

alter_genome_structure.py:

Custom Python script to alter the structure of the genome assembly. The script is uses to implement

manual corrections to the assembly, e.g., inverting specific contigs, performing splits or merges, renaming

scaffolds, etc.

Usage:

$./alter_genome_structure.py -h
usage: alter_genome_structure.py [-h] --chromosomes CHR_AGP_PATH
 [--scaffolds SCAF_AGP_PATH] [-f
FASTA_PATH]
 [--gff GFF_PATH] [--gtf GTF_PATH] -a
 ALTER_PATH -o OUT_PATH [--prefix
FILE_PREFIX]
 [--synthetic SYNTHETIC_CHR]
 [--linelen LINELEN] [--gapsize GAPSIZE]
 [-w WL] [--contigs CTG_AGP_PATH]

Alter the structure of a genome assembly, including the AGP, GFF/GTF, and
FASTA files by following defined changes listed in the ALTER file.

optional arguments:
 -h, --help show this help message and exit
 --chromosomes CHR_AGP_PATH
 AGP file describing the scaffolds within each
 chromosome.
 --scaffolds SCAF_AGP_PATH
 AGP file describing unplaced scaffolds. If
specified,
 these will be added to the main chromosome AGP
objects
 for processing.
 -f FASTA_PATH, --fasta FASTA_PATH
 Path to assembly FASTA genome sequence file that
will
 be modifide to implement structural changes.
 --gff GFF_PATH Path to GFF file describing gene annotations that
will
 be modified to implement structural changes.
 --gtf GTF_PATH Path to GTF file describing gene annotations that
will
 be modified to implement structural changes.
 -a ALTER_PATH, --alter ALTER_PATH
 Path to file containing alterations to make to the
 genome.
 -o OUT_PATH, --out OUT_PATH
 Write altered files to this path.
 --prefix FILE_PREFIX Name output files to OUT_PATH naming them with
this
 common prefix [default: original file name date
 stamped].

README.md 4/14/2023

7 / 11

 --synthetic SYNTHETIC_CHR
 Sometimes unordered scaffolds are concatenated
into a
 synthetic chromosome. If so, give the name of that
 chromosome here (must match FASTA/AGP IDs).
 --linelen LINELEN Line length for printing FASTA sequences [default:
 60bp].
 --gapsize GAPSIZE When inserting a new gap between scaffolds make it
 this size [default: 500bp].
 -w WL, --whitelist WL
 Process a single chromosome specified here.
 --contigs CTG_AGP_PATH
 AGP file describing the contigs within each
chromosome
 [rare; use in addition to the --chromosomes
option].

Genome annotation

Align RNA-seq reads

star_alignment.sh:

Generate an index of the reference assembly using STAR genomeGenerate and then align the paired-end

RNAseq reads using STAR alignReads.

Model Repeats

repeat_modeler.sh:

Use RepeatModeler to build a repeat database for a target reference assembly.

Mask Repeats

repeat_masker.sh:

Use RepeatMasker to mask repetitive sequences in a target reference assembly. Script used the repeats

generated by RepeatModeler as inputs, in combination with a RepBase Teleost-specific repeat library.

Protein-based annotation

braker_protein.sh:

Run BRAKER in protein mode, using OrthoDB10 reference protein as an input, to annotate protein-coding

genes in the target reference assembly.

Transcript-based annotation

braker_transcript.sh:

README.md 4/14/2023

8 / 11

Run BRAKER in transcript mode, using aligned RNAseq reads as input, to annotate protein-coding genes in

the target reference assembly.

Merge annotations

tsebra.sh:

Use TSEBRA to merge the BRAKER protein and BRAKER transcript annotations. It exports gene annotations

(in GTF) that are supported by both methods. Then, with the new GTF it runs Agustus

getAnnoFastaFromJoingenes.py to get CDS and protein FASTAs.

Correct TSEBRA output

correct_tsebra_annots.py:

Custom Python script used to make the naming of the resulting TSEBRA annotations uniform across GTF,

CDS FASTA and Protein FASTA files. If available, if can also add the corresponding functional annotation

from InterProScan and the Zebrafish gene names to the GTF annotations. It can also remove "rogue"

annotations (e.g., exon fields without parent gene).

Usage:

$./correct_tsebra_annots.py -h
usage: correct_tsebra_annots.py [-h] -g GTF [-c CDS] [-a FAA] [-o OUTD]
 [-i IPR] [-m HOMOLOGS] [-b BASENAME]
 [--keep-orig-transcript-ids]

optional arguments:
 -h, --help show this help message and exit
 -g GTF, --gtf GTF TSEBRA Annotation GTF
 -c CDS, --cds CDS TSEBRA CDS FASTA
 -a FAA, --faa FAA TSEBRA Amino Acid FASTA
 -o OUTD, --outd OUTD Output Directory
 -i IPR, --ipr IPR InterProScan Output Table
 -m HOMOLOGS, --homologs HOMOLOGS
 Synolog Zebrafish Homologs
 -b BASENAME, --basename BASENAME
 Basename for Files
 --keep-orig-transcript-ids
 Keep the original TSEBRA transcript IDs in all
files.

Synteny analysis

Make BLAST database

make_blast_db.sh:

Make a BLAST database for a given annotation, using the protein FASTA file.

README.md 4/14/2023

9 / 11

Run BLASTs

run_reciprocal_blast.sh:

Run a protein BLAST (blastp) for a given query/subject species pair. Uses the BLAST database generated

by run_reciprocal_blast.sh as an subject input, and the other species' protein FASTA as a query.

Run synteny analysis

run_synolog.sh:

Run a conserved synteny analysis using Synolog. For a list of given species, Synolog requires reciprocal

BLAST outputs for each species' pair, as well as annotations (in GTF/GFF) for each genome.

Processing circadian rhythm orthologs

Find target orthologs IDs

extract_synolog_homologs.py:

Custom Python script that finds the orthologs genes in a query species based on a set of reference genes.

The sequences are extracted based on the orthology determined by Synolog.

Usage:

$ extract_synolog_homologs.py -h
usage: extract_synolog_homologs.py [-h] -r REFERENCE_HOMOLOGS -s
 SYNOLOG_HOMOLOGS_TSV -o OUT_DIR [-i
REF_ID]

optional arguments:
 -h, --help show this help message and exit
 -r REFERENCE_HOMOLOGS, --reference-homologs REFERENCE_HOMOLOGS
 File with the reference IDs
 -s SYNOLOG_HOMOLOGS_TSV, --synolog-homologs-tsv SYNOLOG_HOMOLOGS_TSV
 Path to the XXX-YYY_homologs.tsv
 -o OUT_DIR, --out-dir OUT_DIR
 Output directory
 -i REF_ID, --ref-id REF_ID
 ID of ref annotation in the homologs file

Extract sequence and annotation for the orthologs

Custom Python script to extract the sequence and annotation of a set of target genes, which could be

identified using extract_synolog_homologs.py, from the genome-wide annotation GTF and the

protein/amino acid FASTA.

Usage:

README.md 4/14/2023

10 / 11

$./extract_target_genes.py -h
./extract_target_genes.py -h

usage: extract_target_genes.py [-h] -t TARGET_GENES [-o OUT_DIR] -g GTF -p
 PROTEIN_FA [-c CDS_FA] -n ORG_NAME -a
 ASSEMBLY_ID

optional arguments:
 -h, --help show this help message and exit
 -t TARGET_GENES, --target-genes TARGET_GENES
 Target Gene Table
 -o OUT_DIR, --out-dir OUT_DIR
 Output Directory
 -g GTF, --gtf GTF GTF Annotation
 -p PROTEIN_FA, --protein-fa PROTEIN_FA
 Protein FASTA
 -c CDS_FA, --cds-fa CDS_FA
 CDS FASTA
 -n ORG_NAME, --org-name ORG_NAME
 Name of the Organism
 -a ASSEMBLY_ID, --assembly-id ASSEMBLY_ID
 Assembly ID (used to name outputs)

Additional data availability

Raw PacBio CLR and Hi-C Illumina reads for the E. maclovinus genome assembly are available under NCBI

BioProject PRJNA917608. Raw RNAseq reads used for annotation are indexed under NCBI Bioproject

PRJNA368682 and were originally published in Bilyk et al. (2018).

Notes

2023-04-14

Initial compilation of files and submission to DRYAD.

Authors

Angel G. Rivera-Colón

Department of Evolution, Ecology, and Behavior

University of Illinois at Urbana-Champaign

angelgr2@illinois.edu

Julian M. Catchen

Department of Evolution, Ecology, and Behavior

University of Illinois at Urbana-Champaign

jcatchen@illinois.edu

C-H Christina Cheng

Department of Evolution, Ecology, and Behavior

https://doi.org/10.1186/s12862-018-1254-6

README.md 4/14/2023

11 / 11

University of Illinois at Urbana-Champaign

c-cheng@illinois.edu

