
Enabling Application Relocation in ETSI MEC:
A Container-Migration Approach

Francesco Barbarulo, Carlo Puliafito, Antonio Virdis, Enzo Mingozzi
Department of Information Engineering, University of Pisa, Pisa, Italy

{f.barbarulo@studenti., carlo.puliafito@ing., antonio.virdis@, enzo.mingozzi@}unipi.it

Abstract—ETSI MEC is a standard for edge computing which
allows the execution of services - called MEC applications - on
hosts in user proximity. One of the emerging concepts within
ETSI MEC is that of MEC application relocation, i.e., the
migration of a MEC application between edge hosts. ETSI
MEC identifies several approaches to relocate a MEC application
along with its internal state. However, some of these approaches
devote the transfer of the application state to the application
itself, whereas others rely on costly virtual-machine migration
procedures. To overcome the above limitations, in this work
we extend ETSI MEC to support MEC application relocation
by exploiting container-migration technologies. We evaluate the
performance of our implementation over a small-scale edge
testbed, showing the overall benefits of the proposed approach.

Index Terms—ETSI MEC, container migration, relocation

I. INTRODUCTION

Edge computing provides end users with services in their
proximity, by leveraging a geo-distributed infrastructure of
micro data centres that are co-located with access networks
or deployed close to them. Having computing power in
proximity of the final users enables low latency and high
bandwidth, which are needed by many emerging applications,
as for example the Internet of Things and augmented/virtual
reality. Given the great interest raised by edge computing, the
European Telecommunications Standards Institute (ETSI) is
working on creating a standardised, open, and multi-vendor
edge-computing environment, which is known as Multi-access
Edge Computing (MEC) [1].

In ETSI MEC, edge services are called MEC applications
1,

which typically run as virtual machines (VMs). More recently,
ETSI MEC has been investigating the support for alternative
virtualisation technologies, such as containers [2]. Containers
are indeed more lightweight and faster to boot up compared to
VMs. This is mainly due to the fact that containers do not need
their own entire operating system. However, on the one hand,
in ETSI MEC vision: “containers are intended to be ephemeral
and stateless; state (i.e. data that needs to live beyond the life
of a container instance) is stored outside of a container” [2].
On the other hand, ETSI MEC considers MEC applications
to be either stateless or stateful, as in the latter case they can
locally maintain some user-related information. For example, a
MEC application for augmented reality can statelessly analyse
video frames one-by-one, or it can process a frame based
on a buffer of previous frames, i.e., the state. Stateful MEC

1MEC applications can also consume services produced by other entities,
such as other MEC applications or the MEC platform itself.

applications can be statefully relocated, i.e., migrated among
MEC hosts along with their state [3] for several reasons. First,
relocation is commonly used to maintain proximity between
a moving user and her MEC application instance [4]. Indeed,
user mobility is for example a key aspect of 3GPP 5G systems,
wherein MEC is seen as a natural solution to enable edge
computing. Moreover, 3GPP and ETSI are actively working
together to enable mutual mobility support between 5G core
and ETSI MEC management [5]. Second, MEC application
relocation can be used to meet application preferences, such
as the co-location with specific context information or services
exposed by MEC hosts. Finally, it can be used to optimise
the usage of MEC resources [6], e.g., to balance the load
during high-load periods or to reduce the number of active
hosts during low-load periods, thus enabling more dynamic
power-saving mechanisms.

When relocating a MEC application, one must ensure
service continuity, which involves two aspects. Firs, network
connectivity between the client application running on the user
device and the MEC application instance must be preserved
after the latter has been relocated. ETSI MEC identifies
different ways to do this, which are all up to the MEC system.
One example is DNS support, which requires the client-side
application to locally update the IP address associated to the
MEC application instance by querying a DNS server. How-
ever, this solution does not fit highly-dynamic scenarios like
mobility ones [7]. Another example is the reconfiguration of
the underlying traffic-routing transparently to the application
[6], e.g., through SDN-based techniques, which yet introduces
further complexity in the network. Alternative methods exist in
the literature, e.g., [8], which leverages on transport protocols
to maintain active connections transparently to the application.
A second aspect involved in MEC application relocation
is that the state of the MEC application instance, which
is called user context in ETSI MEC terminology, must be
transferred to the target MEC host. The standard identifies
several ways to do this, all of which present some limitations.
An approach considers user context transfer as an application-
level operation and therefore devoted as a responsibility of the
application developer [6]. As a result, if the application does
not implement mechanisms to transfer user context, stateful
relocation of the MEC application is not possible. Another
approach is to statefully migrate the whole VM [9]. While this
approach is transparent to the application, it generates a user
context having a large footprint, which may impair Quality of

This is a pre-print version. The paper has been published in the proceedings of 2022 IEEE 33rd Annual 
International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC)

original DOI: 10.1109/PIMRC54779.2022.9977561



Service during relocation. For this reason, the latter approach
is proposed only for relocation between a MEC system and
an external cloud and left for further study [3].

The core idea of our work is to take the best out of the above
solutions, considering MEC application instances as stateful
containers and leveraging container-migration techniques to
transfer user context, as container state, to a target MEC host.
By doing this, the footprint of user context is significantly
reduced compared to that of VMs [10], leading to improved
service continuity for the final user. Furthermore, user-context
transfer becomes a responsibility of the Virtualisation Infras-
tructure Manager (VIM), which is an element in the ETSI
MEC architecture that manages the lifecycle of VMs or
containers. The migration process becomes thus transparent to
the application and has no longer to be handled by developers.
We thus propose MEC application relocation based on con-
tainer migration to become a built-in mechanism for managing
resources in ETSI MEC systems. This mechanism can be
indeed considered as an enabler for relocation in different
scenarios, e.g., user mobility or resource optimisation.

The contribution of this work is therefore the following:
• an extension to ETSI MEC and its Application Program-

ming Interfaces (APIs) that let it trigger, support, and
coordinate container-based MEC application relocation in
two scenarios, i.e., user mobility and resource shortage;

• a Proof-of-Concept (PoC) implementation, which vali-
dates our proposal and shows the benefits of container-
based MEC application relocation in a mobility scenario.

A few existing works leverage container migration in the
context of ETSI MEC [11], [12]. However, to the best of our
knowledge, no work provides details on which ETSI MEC
functionalities are used to enable container migration, nor
describes how to extend ETSI MEC and its APIs in this
direction. This work also differs from our previous one [13],
as it presents extensions to ETSI MEC that make container
migration a core mechanism for managing MEC resources
in different scenarios, as triggered either by user mobility or
resource shortage.

The rest of the paper is organised as follows. Section II
provides a background on ETSI MEC reference architecture,
highlighting the core elements that we consider in this work.
Then, Section III discusses the design of our solution. Next,

Fig. 1. Simplified ETSI MEC architecture (only the reference points consid-
ered in the paper are shown).

Section IV describes the PoC implementation of our proposal
and reports the performance evaluation that we carried out
over a small-scale edge testbed. Finally, Section V concludes
the paper and outlines the future work.

II. REFERENCE ARCHITECTURE OF ETSI MEC

In this section we provide a brief description of the ETSI
MEC reference architecture, introducing the functional ele-
ments and the reference points - i.e., the interfaces among
elements - involved in this work. The reference architecture
of ETSI MEC is defined in details in [9] and depicted, in
a simplified version, in Fig. 1. Colours in figure represent
different levels in which elements operate: white elements run
on User Equipments (UEs); blue elements are deployed on
MEC hosts, whereas orange elements operate at system level.

UEs are end devices, such as smartphones, IoT devices, or
vehicles. The client application is the application logic running
on the UE, which communicates with a MEC application
running on a MEC host in its proximity. The definition of the
communication interface between client and MEC application
is not covered by ETSI MEC. Since the client application
is MEC-unaware, it needs to be complemented by a device

application that interacts with the MEC system for control
operations, such as MEC-application instantiation request.

On MEC hosts, MEC applications run on a Virtualisation

Infrastructure (VI) and can be packaged as VMs or containers.
MEC applications can interact with the MEC platform (MEP)
to consume and/or provide MEC services. The standard defines
a number of MEC services, such as the RNIS, which provides
radio network information to MEC applications. Yet, new
services can be designed by third parties and onboarded in
an ETSI MEC system. In the reference architecture, two
elements are involved in the host-level management. The
MEC Platform Manager (MEPM) manages the life cycle
of MEC applications, including informing the system-level
management of application-related events, and handles aspects
such as traffic rules and authorisations to MEC services. The
VIM instead manages compute and network resources of the
VI and reports performance and faults information about the
virtualised resources to the MEPM.

At system level, the User Application Life Cycle Manage-

ment Proxy (UALCMP) is the entry point to the MEC system
for any device application. Requests coming from a device
application first need to be granted by the Operations Support

System (OSS) and are then forwarded to the MEC orchestrator

(MEO). The MEO maintains a view of the whole system and
makes core decisions such as selecting where to instantiate
a MEC application, based on aspects like latency, available
resources, and available MEC services.

III. EXTENDING ETSI MEC

MEC application relocation is under investigation by ETSI
MEC and is specified in [6]. As we anticipated in Section I,
the standard defines several approaches to statefully relocate a
MEC application. However, those approaches either require
direct intervention from the application itself or - in case



of VMs - can produce a big-sized user context, which may
cause MEC application relocation to take a long time, thus
impairing user experience. To overcome the above limitations,
in this work we assume MEC application instances as stateful
containers and consider user context as container state. As
a result, user-context transfer is no longer devoted to the
application but becomes a functionality of the VIM, which
can leverage available container-migration technologies.

Container migration is being used as an effective reloca-
tion technique in the context of microservices. The de-facto
standard for container migration is Checkpoint/Restore In
Userspace (CRIU

2), and migration support is already included
as part of the Docker runtime and as an experimental feature
of Kubernetes. However, relocating MEC applications using
container migration requires also extensions to ETSI MEC to
let it trigger, support, and coordinate the proposed approach.
To this purpose, in this section we describe an extension of
the APIs over reference points Mm1, Mm3 and Mp1 and the
modifications in the information flow to include interaction
with the VIM for what concerns user-context transfer.

In the following, we will use the terms source and tar-

Fig. 2. MEC application relocation triggered by end-device mobility.

Fig. 3. MEC application relocation triggered by resource shortage.

Fig. 4. Create container at the target MEC host.

2criu.org/Main Page

get when referring to the MEC hosts handling the MEC
application instances execution respectively before and after

the migration occurs. The proposed procedure consists in the
following steps: (i) create a container at the target MEC host;
(ii) checkpoint (i.e., save) user context as container state and
transfer it to the target MEC host; and (iii) restore container
execution at the target MEC host based on the transferred state.

A. Initiating relocation and creating the container

As ETSI MEC states in [6], MEC application relocation can
be initiated by different functional elements and for different
purposes, here we focus on two of them: one handling user
mobility and one resource shortage. In the first scenario, when
the user moves, it may be indeed necessary to relocate the
MEC application instance to a MEC host that is closer to
the new location of the user. In the second scenario, instead,
relocation is initiated due to resource shortage. Specifically,
when a MEC host does not have enough resources for the
instantiation of a high-priority MEC application, one or more
low-priority ones can be relocated to free up resources.

For what concerns the first scenario, ETSI MEC specifi-
cation [6] reports a possible example wherein relocation is
initiated based on notifications provided by the Radio Network
Information Service (RNIS), a MEC service which - among
other things - informs the MEC system when the UE changes
its serving cell. Alternatively, we propose MEC application
relocation to be initiated by the device application. As this is
already in charge of requesting instantiation or termination of
a MEC application, we believe that it could also be responsible
of asking for relocation. This assumption is in line with
[9], which considers this possibility, even though only for
relocation to external clouds, which is left for further study.

The procedure then works as follows: in compliance with
[14], the instantiation of a new MEC application creates an
application context. This is a data structure maintained by
the MEC system, which contains information such as the
requirements on the geographic area of interest for the user,
the MEC application identifier, the MEC application address
and the callback reference, which is the address exposed
by the device application to receive notifications from the
MEC system. As shown in Fig. 2, our relocation procedure is
initiated when the user context changes, i.e., any part of the
above information changes. This can be due to user mobility,
to a vertical handover (i.e., one where the access technology
changes, such as from 5G to Wi-Fi or vice versa) or to an
horizontal handover in case of Wi-Fi-based access. As a
result, the device application issues an application context
update [14] to the UALCMP over reference point Mx2. The
UALCMP forwards this update to the OSS. This grants the
request and then contacts the MEO over Mm1. Using the
API over Mm1 [15], the OSS can ask for starting or stopping
a MEC application instance by issuing a POST request to
/app_instances/{appInstanceId}/operate. The
request body is OperateAppRequest, whose attribute
changeStateTo can be changed to either started or
stopped for the purpose. We extended the API to include



Fig. 5. Checkpoint and transfer user context.

Fig. 6. Restore user context.

also the value relocated, hence allowing the OSS to
request MEC application relocation. As a result, the MEO
handles the request to decide whether relocation is actually
needed and eventually selects a target MEC host. Different
policies can be used by the MEO for the purpose; however,
these are out of the scope of this work.

The second scenario is that of relocation due to resource
shortage [15]: whenever a request to instantiate a MEC ap-
plication could not be executed due to lack of resources in
the virtualised environment, a lower-priority MEC application
instance can be terminated to free resources. Termination is
indeed the only option when user-context transfer is either
left to the application, which might not implement it, or
performed as (a costly) VM migration. Container migration
can be instead a key enabler of relocation in this specific
scenario. Fig. 3 illustrates the procedure to initiate relocation
in this context. When the OSS requests to instantiate a high-
priority MEC application, the MEO selects a MEC host and
verifies if resources are sufficient. If they are not, the MEO
coordinates with the OSS to decide which (if any) low-
priority MEC application instance(s) to terminate or relocate.
Coordination takes place through a dedicated interface over
Mm1. We extended the API to allow either termination
or relocation in case of resource shortage. Specifically, we
modified all the exchanged data structures and their attributes
by replacing the term Termination with a more generic
Management and by including RELOCATION as one of the
ManagementOptions.

As shown in Fig. 4, the relocation procedure starts with the
MEO contacting the target MEPM over reference point Mm3

and requesting the creation of a new MEC application instance,
in line with the specifications in [15]. The target MEPM then
asks the target VIM to allocate resources (compute, storage,
and network) for the new container, and the VIM instructs the
target VI for the purpose.

B. Managing user context as container state

Once the container is created on the target MEC host,
checkpoint and transfer of the user context can start, as shown
in Fig. 5. To let the MEO start this procedure, we extended
the API over Mm3 similarly to the extension made to Mm1
and described in Section III-A. Specifically, we included the
checkpointed value for the changeStateTo attribute
of OperateAppRequest to start the operation of check-
pointing and transfer. Besides, we included the targetHost
attribute to indicate where to relocate the MEC application.

When the source MEPM receives the request from the
MEO, it informs the MEC application instance to prepare
for checkpoint. Even though this preparation phase is not
mandatory, it can be used: (i) to let the MEC application
instance finish memory-intensive computation before check-
pointing, thus reducing memory footprint; (ii) to let MEC
and client applications coordinate, as we describe in our
PoC implementation (see Section IV). The preparation phase
requires an extension to Mp1 API [16] and works as follows.
When it starts running on a MEC host, a MEC application
instance can subscribe to a notification to prepare for user-
context transfer. This communication consists in creating
a AppMigrationNotificationSubscription over
Mp1 by performing a POST request to /applications
/{appInstanceId}/subscriptions. Then, when user



context transfer is to be performed, the source MEP checks
if a subscription exists for the MEC application instance.
If it does, it sends an AppMigrationNotification
to the MEC application instance. The MEC application in-
stance in turn can perform its preparation procedure, if it
designed to do so. Next, it notifies the source MEP that
preparation has ended and checkpoint can start, by sending
an AppMigrationConfirmation as a POST request to
/applications/{appInstanceId}/confirm_migr
ation. Finally, the source MEP forwards this confirmation
to the source MEPM. If instead the application is relocation-
agnostic, the source MEP immediately returns the control
to the source MEPM, thus keeping the overall relocation
procedure transparent to the MEC application. The source
MEPM can now request the source VIM to checkpoint the
container state as a collection of files on disk and transfer
this state to the target MEC host. To this aim, it provides
the identifier of the container and the address of the target
MEC host. The source VIM interfaces with the source VI to
perform the actions. After checkpoint starts, the container that
encapsulates the MEC application becomes not available to
serve client requests.

Fig. 6 shows the procedure that allows restoring the MEC
application instance at the target MEC host. This procedure
begins after the MEO is informed that the state of the MEC
application instance has been successfully transferred to the
target MEC host. The MEO then contacts the target MEPM
by using our extended APIs. Specifically, the MEO changes
the value of changeStateTo to restored. The MEPM
then asks the target VIM to restore the container through the
target VI, using the container that was previously created (see
end of Fig. 4). However, this operation differs from a simple
container start, as now the container is launched along with
the state that has been transferred from source (see end of
Fig. 5). Next, the target MEPM is notified that the container
is restored. Therefore, the MEC application startup phase
starts. This phase is specified in [16] and is used when a
MEC application instance is started for the first time. We
consider it also as a step at the end of MEC application
relocation, to ensure that the MEC application instance is
running properly after instantiation/relocation. This is done
by making the target MEP wait for a notification from the
MEC application instance. This indeed issues a POST request
to /applications/{appInstanceId}/confirm_re
ady over Mp1, specifying an AppReadyConfirmation as
request body. This confirms that relocation was successful.

IV. IMPLEMENTATION AND PERFORMANCE EVALUATION

In this section, we describe our PoC implementation and
then report a performance evaluation of our solution, carried
out over a small-scale edge testbed. The logic of the MEC-
system modules is written in Python (v3.6+) and implements
the modified procedures described in the previous sections.
Docker is used as the VI, CRIU for container checkpoint and
restore, and rsync to transfer the user context to the target MEC
host. Interactions between the VIM and VI are implemented

0 2 4 6 8 10 12
Application relocation [s]

Creation Preparation Checkpoint Restore Startup

Container downtime

1 2 3 4 5

Fig. 7. Breakdown of MEC application relocation.

through Ansible, an ease-of-use open-source automation tool
that allows system configuration and orchestration of advanced
tasks. Ansible modules to control the docker runtime are
taken from the community.docker collection. The modules for
container checkpoint and restore, instead, are not available and
we developed them for the purpose.

To maintain network connectivity between the client ap-
plication and the MEC application instance after migration,
we rely on a custom extension of the QUIC transport-layer
protocol [17]. This extension leverages custom QUIC frames
to let the server inform the client of an imminent relocation and
of the new server IP address after relocation. Further details
can be found in [8]. We integrated this extension within ETSI
MEC by letting the QUIC-based procedures be triggered in
the preparation phase, which is described in Section III-B.

The testbed used for the evaluation includes: two MEC
hosts, one node for the system-level management and one
for the end device. The MEC hosts and the management
node are mini PCs equipped with an Intel Celeron Quad-
Core at 1.99GHz, 8GB RAM, 64GB SSD and Ubuntu 18.04.4
(kernel 5.6.0). The mini PCs communicate over a switched
Ethernet network having a maximum throughput of 100Mbps.
To replicate realistic network conditions in our testbed [18], we
leverage tc-netem to emulate a RTT of 120ms between the
two MEC hosts. Moreover, both the MEC hosts are configured
as Wi-Fi access points providing connectivity to the end
device. The latter is a Raspberry Pi 4, with a Quad core
Cortex-A72 (ARM v8) at 1.5GHz, 4GB RAM, and 64GB SD,
running Raspberry Pi OS 10. The wireless connection between
the end device and the MEC hosts has an average RTT of
9.557±3.304ms and a packet loss of 15%. For what concerns
the application, we consider a simple client-server RESTful
interaction over QUIC, wherein the client periodically issues
POST requests to the server and the latter responds with an
echo message. When encapsulated within a container as a
MEC application, our server has an average memory footprint
of 60MB. We performed ten independent replicas of each test
case for statistical soundness.

In the first test, we measured the duration of MEC appli-
cation relocation, which is shown in Fig. 7. The tags reported
in figure match with the numbers reported in Figs. 4, 5, and 6
and indicate the beginning of a new phase of MEC application
relocation. We highlight that the results reported in Fig. 7 do
not include the overheads due to Ansible. As reported in Fig.



0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6

Pr
ob

ab
ili

ty

Transaction time [s]

No Migration
Migration

Fig. 8. MEC application relocation for a 10 minutes handover frequency.

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6

Pr
ob

ab
ili

ty

Transaction Time [s]

No Migration
Migration

Fig. 9. MEC application relocation for a 30 minutes handover frequency.

7, the overall relocation lasts for slightly less than 11 s. Yet,
container downtime (i.e., the time interval during which the
container is not running on any MEC host) lasts about 3 s.

The second test aims at evaluating the benefits of the
relocation procedure in a mobility scenario. In each run of the
test, which lasts two hours, the end device performs periodic
handovers between the Wi-Fi networks exposed by the two
MEC hosts, and the MEC application instance is relocated
accordingly. We consider two handover frequencies - and
consequently two relocation frequencies - respectively 10 and
30 minutes. We compare the performance of our approach
against a baseline wherein Wi-Fi handover is performed but
relocation is not. Fig. 8 and Fig. 9 show the ECDF of
the transaction time for the 10- and 30-minutes frequencies,
respectively. We define transaction time as the time between
the beginning of a request from the client and the reception of
the corresponding response sent by the server. As shown, about
70% (for the 10-minutes frequency) and nearly 80% (for the
30-minutes frequency) of the transactions take less than 0.1 s
when relocation is performed, demonstrating the benefits of
maintaining proximity to the MEC application instance. When
instead no relocation is performed, the ECDF shows a bi-
modal behaviour, as the end device moves closer and farther
from the MEC host where the MEC application instance runs.
To conclude, in all scenarios ⇠10% of requests experience
transaction times above 0.6 s, which is coherent with the Wi-
Fi packet loss of 15% experienced in the testbed environment.

V. CONCLUSIONS AND FUTURE WORK

In this work, we presented an extensions to ETSI MEC
to support stateful MEC application relocation by leveraging
container-migration technologies. Our approach lets the relo-
cation procedure be fully transparent to the application and

to the developer. We demonstrated through experimentation
over a small-scale edge testbed that the proposed approach
can improve performance in a mobility scenario, compared
to the case where no relocation is performed. As future work,
we plan to evaluate our solution under multi-device and multi-
application scenarios.

ACKNOWLEDGEMENTS

This work was partially supported by the Italian Ministry
of Education and Research (MIUR) in the framework of the
CrossLab project (Departments of Excellence) and by the
European Commission through the H2020 project Hexa-X
(Grant Agreement no. 101015956).

REFERENCES

[1] ETSI, “Multi-access Edge Computing (MEC),” Mar. 2019,
etsi.org/technologies/multi-access-edge-computing.

[2] ETSI, “Multi-access Edge Computing (MEC); Study on MEC support
for alternative virtualization technologies,” Nov. 2019, etsi.org/deliver/e
tsi gr/MEC/001 099/027/02.01.01 60/gr MEC027v020101p.pdf.

[3] ——, “Multi-access Edge Computing (MEC); Phase 2: Use Cases and
Requirements,” Jan. 2022, etsi.org/deliver/etsi gs/MEC/001 099/002/0
2.02.01 60/gs MEC002v020201p.pdf.

[4] C. Puliafito, E. Mingozzi, and G. Anastasi, “Fog computing for the in-
ternet of mobile things: Issues and challenges,” in IEEE SMARTCOMP,
2017, pp. 1–6.

[5] ETSI, “Harmonizing standards for edge computing—A synergized
architecture leveraging ETSI ISG MEC and 3GPP specifications,”
2020, etsi.org/images/files/ETSIWhitePapers/ETSI wp36 Harmonizing-
standards-for-edge-computing.pdf.

[6] ——, “Multi-access Edge Computing (MEC); Application mobility
service API,” Feb. 2022, etsi.org/deliver/etsi gs/MEC/001 099/021/0
2.02.01 60/gs MEC021v020201p.pdf.

[7] ——, “Enhanced DNS support towards distributed MEC environment,”
Sep. 2020, etsi.org/images/files/ETSIWhitePapers/etsi-wp39-Enhanced-
DNS-Support-towards-Distributed-MEC-Environment.pdf.

[8] C. Puliafito, L. Conforti, A. Virdis, and E. Mingozzi, “Server-side QUIC
connection migration to support microservice deployment at the edge,”
Elsevier Pervasive and Mobile Computing, vol. 83, Jul. 2022.

[9] ETSI, “Multi-access Edge Computing (MEC); Framework and reference
architecture,” Mar. 2022, etsi.org/deliver/etsi gs/MEC/001 099/003/03.
01.01 60/gs MEC003v030101p.pdf.

[10] S. Ramanathan, K. Kondepu, M. Razo, M. Tacca, L. Valcarenghi,
and A. Fumagalli, “Live migration of virtual machine and container
based mobile core network components: A comprehensive study,” IEEE

Access, vol. 9, pp. 105 082–105 100, 2021.
[11] M. V. Ngo, T. Luo, H. T. Hoang, and T. Q. Ouek, “Coordinated container

migration and base station handover in mobile edge computing,” in
GLOBECOM 2020, 2020, pp. 1–6.

[12] C. Campolo, A. Iera, A. Molinaro, and G. Ruggeri, “MEC support for
5g-v2x use cases through docker containers,” in IEEE WCNC, 2019.

[13] F. Barbarulo, C. Puliafito, A. Virdis, and E. Mingozzi, “Extending
ETSI MEC towards stateful application relocation based on container
migration,” in IEEE WoWMoM, Jun. 2022, pp. 367–376.

[14] ETSI, “Multi-access Edge Computing (MEC); Device application inter-
face,” Apr. 2020, etsi.org/deliver/etsi gs/MEC/001 099/016/02.02.01 6
0/gs MEC016v020201p.pdf.

[15] ——, “Multi-access Edge Computing (MEC); MEC Management; Part
2: Application lifecycle, rules and requirements management,” Feb.
2022, etsi.org/deliver/etsi gs/MEC/001 099/01002/02.02.01 60/gs M
EC01002v020201p.pdf.

[16] ——, “Multi-access Edge Computing (MEC); Edge platform application
enablement,” Dec. 2020, etsi.org/deliver/etsi gs/MEC/001 099/011/02.
02.01 60/gs MEC011v020201p.pdf.

[17] J. Iyengar and M. Thomson, “QUIC: A UDP-based multiplexed and
secure transport,” May 2021, datatracker.ietf.org/doc/html/rfc9000.

[18] C. Puliafito, C. Vallati, E. Mingozzi, G. Merlino, F. Longo, and A. Pu-
liafito, “Container migration in the fog: A performance evaluation,”
Sensors, vol. 19, no. 7, 2019.


