
International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878 (Online), Volume-11 Issue-5, January 2023

58

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: 100.1/ijrte.E74210111523
DOI: 10.35940/ijrte.E7421.0111523

Journal Website: www.ijrte.org

Abstract: During software development and maintenance,

predicting software bugs becomes critical. Defect prediction early

in the software development life cycle is an important aspect of the

quality assurance process that has received a lot of attention in the

previous two decades. Early detection of defective modules in

software development can support the development team in

efficiently and effectively utilizing available resources to provide

high-quality software products in a short amount of time. The

machine learning approach, which works by detecting hidden

patterns among software features, is an excellent way to identify

problematic modules. The software flaws in NASA datasets MC1,

MW1, KC3, and PC4 are predicted using multiple machine

learning classification algorithms in this work. A new model was

developed based on altering the parameters of the previous

XGBoost model, including N_estimator, learning rate, max depth,

and subsample. The results were compared to those obtained by

state-of-the-art models, and our model outperformed them across

all datasets.

Keywords: Machine Learning, Dataset, Supervised Learning,

Random Forest, XgBoost, Ada Boost, Decision Tree.

I. INTRODUCTION

Completing a software project nowadays is a major

challenge. A project manager's main concern is defects or

problems. Poor code design and implementation cause these

issues to appear. Creating a bug-free software is the most

demanding job in the software industry. Even if they are

totally focused on testing, software development companies

will struggle to tackle this issue.

Manuscript received on 23 December 2022 | Revised

Manuscript received on 30 December 2022 | Manuscript

Accepted on 15 January 2023 | Manuscript published on 30

January 2023.
*Correspondence Author(s)

Sowjanya Jindam*, Assistant Professor, Department of Information

Technology, Maturi Venkata Subba Rao (MVSR) Engineering College,

Osmania University, Hyderabad (Telangana), India. Email:

sowjanya_it@mvsrec.edu.in ORCID ID:

https://orcid.org/0000-0001-6959-2110
Sai Teja Challa, Student, Department of Information Technology, Maturi

Venkata Subba Rao (MVSR) Engineering College, Osmania University,
Hyderabad (Telangana), India. Email: saitejachalla2001@gmail.com

Sai Jahnavi Chada, Student, Department of Information Technology,

Maturi Venkata Subba Rao (MVSR) Engineering College, Osmania
University, Hyderabad (Telangana), India. Email:

jahnavisekharreddy02@gmail.com

Navya Sree B, Student, Department of Information Technology, Maturi
Venkata Subba Rao (MVSR) Engineering College, Osmania University,

Hyderabad (Telangana), India. Email: navyasree140301@gmail.com
Srinidhi Malgireddy, Student, Department of Information Technology,

Maturi Venkata Subba Rao (MVSR) Engineering College, Osmania

University, Hyderabad (Telangana), India. Email:
malgireddysrinidhi51@gmail.com

© The Authors. Published by Blue Eyes Intelligence Engineering and

Sciences Publication (BEIESP). This is an open access article under the

CC-BY-NC-ND license http://creativecommons.org/licenses/by-nc-nd/4.0/

Defects are a normal occurrence in any human-created

application because it is not automated process. Software

development companies, on the other side, place high

importance on early fault detection through a range of

inspection and testing methodologies. Predicting bugs has a

significant impact in today's world, which is becoming

increasingly dependent on software. We wish to compare the

effectiveness of the XgBoost Algorithm against classic

machine learning methods like logistic regression, decision

trees, random forest, and AdaBoost in detecting defects in

software in this project Machine Learning algorithms such as

logistic regression and decision trees were used in past

studies. They have lower accuracy and make many

assumptions on datasets, which might lead to biases if the

assumptions are not met. Later, for classification, ensemble

techniques such as Random Forest were created, which

outperform decision trees. However, we employed boosting

techniques like AdaBoost for Classification to avoid bias

from generation. However, it, too, has poor accuracy.

II. RELATED WORK

In this methodology, they used the machine learning models -

Logistic regression, Decision Tree, Random Forest,

Adaboost, and XGBoost as state-of-art models for four

datasets of NASA-KC2, PC3, JM1, CM1. Later on, a new

model was proposed based on tuning the existing XGBoost

model by changing its parameters, namely N_estimator,

learning rate, max depth, and subsample[1]. Proposed a novel

sparsity-aware algorithm for sparse data and a weighted

quantile sketch for approximate tree learning. More

importantly, we provide insights on cache access patterns,

data compression, and sharding to build a scalable tree

boosting system. By combining these insights, XGBoost

scales beyond billions of examples using far fewer resources

than existing systems[2]. Using a random selection of

features to split each node yields error rates that compare

favorably to Adaboost (Y. Freund & R. Schapire, Machine

Learning: Proceedings of the Thirteenth International

Conference, ***, 148–156), but are more robust with respect

to noise. Internal estimates monitor error, strength, and

correlation and these are used to show the response to

increasing the number of features used in the splitting.

Internal estimates are also used to measure variable

importance. These ideas are also applicable to regression[3].

An approach to the construction of classifiers from

imbalanced datasets is described[4].They used three

supervised machine learning algorithms are considered to

build the model and predict the occurrence of the software

bugs based on historical data by deploying the classifiers

Logistic regression, Naïve Bayes, and Decision Tree.

Prediction of Software Defects using Ensemble

Machine Learning Techniques
Sowjanya Jindam, Sai Teja Challa, Sai Jahnavi Chada, Navya Sree B, Srinidhi Malgireddy

https://www.doi.org/10.35940/ijrte.E7421.0111523
https://www.doi.org/10.35940/ijrte.E7421.0111523
http://www.ijrte.org/
mailto:sowjanya_it@mvsrec.edu.in
https://orcid.org/0000-0001-6959-2110
mailto:saitejachalla2001@gmail.com
mailto:jahnavisekharreddy02@gmail.com
mailto:navyasree140301@gmail.com
mailto:malgireddysrinidhi51@gmail.com
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijrte.E7421.0111523&domain=www.ijrte.org

Prediction of Software Defects using Ensemble Machine Learning Techniques

59

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: 100.1/ijrte.E74210111523
DOI: 10.35940/ijrte.E7421.0111523

Journal Website: www.ijrte.org

Proposed bug detection as a binary classification problem,

e.g., correct and wrong, and used the deep Bugs framework to

train a classifier that can identify faulty code from correct

code [5]. Proposed a defect detector system that works with a

variety of compilers and languages, such as javac, gcc, and

Visual Studio [6]. Using marginal R square values, proposed

a strategy that uses the smallest and most accurate number of

performing metrices at a time. The Eclipse JDT Core dataset

[7] was chosen. Using One Class SVM, proposed a one-class

SFP (Software Fault Prediction) Model [8]. Machine learning

was used to forecast vulnerability in web applications. This

article generates input validation and sanitation properties.

For each sink, it computes a static backward slice. The

control flow graph, control dependence graph, and system

dependence graph of a web software [9] are used to analyse

the programme. The suggested approach is to first prioritise

the problems based on severity and component attribute. It

employs the Xmean Clustering algorithm in conjunction with

the Bayes Net Classifier [10].

III. METHODOLOGY

In our research and extensive literature review, we found that

Random Forest works well for Software Defect Prediction

with high accuracy, but that it can be further improved by

another recently introduced algorithm called XGBoost. In

this paper, we propose a method for building a predictive

model with a higher accuracy using Ensemble Machine

Learning Techniques.

Fig-1: Architectural Diagram

The above figure depicts that data preprocessing is done in

various phases. Firstly, the data is preprocessed and then data

is classified into training and testing data. After the

classification, imbalance class handling and model building

is done. Then the data is validated using a certain satisfactory

accuracy. If the satisfied accuracy is not met, it is again fed

back to the feature scaling.

● Data Preprocessing

 The most fascinating thing of our time is machine learning.

For their organizations, everyone is starting to use machine

learning models. Data is at the center of the complex process.

Our machine learning tools ensure that the data we process is

of high quality. In that case, Data Pre-processing is an

important stage in creating a successful prediction model.

The method of feature scaling is used to determine the range

of independent variables or data attributes. In our study, we

employed a normalization approach to bring our data to the

same scale.

Class Imbalance Handling: As we can observe from our

target variable's distribution graph. If our target variable is

very uneven, our prediction model will ignore the minority

class while being highly prejudiced toward the majority. In

this study, we used SMOTE, which is a synthetic minority

oversampling technique, to solve this problem.

● Software Defect Dataset

We chose a normal NASA Promise Repository software bug

dataset to test the effectiveness of our technique. The datasets

MC1, MW1, KC3 and PC4 are used.

https://www.kaggle.com/datasets/aczy156/nasa-software-def

ect-prediction is the public URL for this repository. The

following is a brief description of these datasets: NASA

created the dataset as part of its Metrices Data Program.

Shepperd et al. cleaned up the dataset in 2013 by removing

duplicate and inconsistent data. The PROMISE database

contains this enhanced information. As a result, for the

cleaned data in our investigation, we used NASA Dataset.

NASA uses Halstead and McCabe metrics for each

occurrence in their data.

https://www.doi.org/10.35940/ijrte.E7421.0111523
https://www.doi.org/10.35940/ijrte.E7421.0111523
http://www.ijrte.org/
https://www.kaggle.com/datasets/aczy156/nasa-software-defect-prediction
https://www.kaggle.com/datasets/aczy156/nasa-software-defect-prediction

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878 (Online), Volume-11 Issue-5, January 2023

60

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: 100.1/ijrte.E74210111523
DOI: 10.35940/ijrte.E7421.0111523

Journal Website: www.ijrte.org

There are around 40 features, such as the unique operator

value (MU1), unique operator value (MU2), total number of

operators (N1), total number of operands (N2), rows Code

(LOC), and so on. Each NASA project has its own set of

features. Table 1 lists the specific number of attributes

available.

TABLE-1. Dataset Insights

Dataset
Project

Name
#Instances Features

NASA MC1 1988 40

 MW1 253 39

 KC3 194 41

 PC4 1287 39

● Data Splitting

We can't use the dataset to train our model. If we train our

model for all data points, we will have an issue with

overfitting, and our model may make an incorrect prediction

of a new statement. To test the effectiveness and reliability of

our model, we decided to split our dataset into two sections

with an 80:20 ratio. The model is trained using 80% of the

data set, while the remaining 20% is used to evaluate the

model's performance using projected and actual value

comparisons.

IV. RESULT ANALYSIS AND DISCUSSION

Each dataset is trained on 5 different machine learning

algorithms and their respective accuracies are recorded.

These accuracies are then used for comparison between the

models.

A. Logistic Regression

Logistic regression is a statistical model that uses a logistic

function to represent a binary dependent variable in its most

basic form, though there are many more advanced variants.

Logistic regression (or logit regression) is a technique for

estimating the parameters of a logistic model in regression

analysis (a form of binary regression).

Fig-2: Logistic regression

https://www.doi.org/10.35940/ijrte.E7421.0111523
https://www.doi.org/10.35940/ijrte.E7421.0111523
http://www.ijrte.org/

Prediction of Software Defects using Ensemble Machine Learning Techniques

61

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: 100.1/ijrte.E74210111523
DOI: 10.35940/ijrte.E7421.0111523

Journal Website: www.ijrte.org

This linear relationship can be written in the following

mathematical form (where ℓ is the log-odds, is the base of the

logarithm, and are parameters of the model):

 (1)

 (2)

The variables x1 and x2 are explanatory variables and β0, β1

and β2 are coefficients. The probability odds ratio eb has a

simpler interpretation in the case of a categorical explanatory

variable with two categories; in the case it is just the odds

ratio for one category compared with the other.

B. Decision Tree

For classification and regression, decision trees are a

nonparametric supervised learning method. The goal is to

learn simple decision rules using data attributes to build a

model that predicts the value of a target variable.

The root of a decision tree is at the top of an upside-down

tree. The bold writing in black in the figure on the left

represents an internal node/condition that causes the tree to

break into branches/edges. The decision/leaf, in this case

whether the passenger died or survived, is shown by red and

green text, respectively, at the end of the branch that doesn't

divide anymore.

Fig-3: Block Diagram for Decision Tree Algorithm

C. Random Forest

As the name implies, a random forest is made up of a huge

number of individual decision trees that work together as an

ensemble. Each tree in the random forest produces a class

prediction, and the class with the most votes becomes the

prediction of our model.

Bootstrap aggregation is known as bagging. It combines

many learners to reduce estimate variance.

The Random Forest algorithm is a bagging-based supervised

classification system. The amount of trees in the forest has a

direct relationship with the accuracy of the results: the more

trees there are, the more accurate the result.

The following are some of the advantages of Random Forest

over Decision Trees:

● Overfitting is a serious issue that can damage results, but

with the Random Forest technique, the classifier will

not over-fit the model if there are enough trees in the

forest.

● The same random forest approach may be utilized for

classification and regression tasks.

● The Random Forest technique may be used to feature

engineers, or discover the most relevant characteristics

from a training dataset.

D. AdaBoost

Ada-boost, or Adaptive Boosting, is an ensemble classifier

that uses the boosting idea. It combines many classifiers to

improve classifier accuracy.

AdaBoost is a technique for creating iterative ensembles. The

AdaBoost classifier creates a powerful classifier by merging

several low-performing classifiers, resulting in a

high-accuracy classifier.

Adaboost's core principle is to establish the weights of

classifiers and train the data sample in each of iteration so that

reliable predictions of uncommon observations may be made.

Any machine learning method that accepts weights on the

training set can be used as a basic classifier.

https://www.doi.org/10.35940/ijrte.E7421.0111523
https://www.doi.org/10.35940/ijrte.E7421.0111523
http://www.ijrte.org/

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878 (Online), Volume-11 Issue-5, January 2023

62

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: 100.1/ijrte.E74210111523
DOI: 10.35940/ijrte.E7421.0111523

Journal Website: www.ijrte.org

Adaboost must meet two requirements:

1. The classifier should be interactively trained using a

variety of weighed training examples.

2. It seeks to offer an excellent fit for these instances in

each of iteration by minimizing training error.

It operates in the following manner:

1. Adaboost picks a training subset at random at first.

2. It trains the AdaBoost machine learning model

iteratively by picking the training set based on the last

training's accurate prediction.

3. It gives incorrectly categorized observations a larger

weight so that they have a higher chance of being

classified in the next iteration. It also allocates weight to

the trained classifier in each of iteration based on the

classifier's accuracy. The more precise classifier will be

given more weight.

4. This approach is repeated until all of the training data

fits perfectly or until the maximum number of

estimators is reached.

5. Perform a "vote" across all of the learning algorithms

you created to categorize them.

6. It also allocates weight to the trained classifier in each of

iteration based on the classifier's accuracy. The more

precise classifier will be given more weight.

7. This approach is repeated until all of the training data

fits perfectly or until the maximum number of

estimators is reached.

8. Perform a "vote" across all of the learning algorithms

you created to categorize them.

Fig-4: Block Diagram of AdaBoost Algorithm

E. XG Boost

Gradient boosting also includes an ensemble method, similar

to traditional boosting, that sequentially adds predictors and

corrects previous models. Rather than providing changing

weights to the classifiers after each of iteration, this method

fits the new model to fresh residuals from the prior prediction

and then minimizes the loss when adding the most recent

prediction.

So, in the end, you're utilizing gradient descent to update your

model, which is why it's called gradient boosting. Both

regression and classification issues are supported by this.

This approach is implemented for decision tree boosting in

XGBoost with an additional custom regularisation term in the

goal function.

Let’s us understand the reason behind the good performance

of XGboost -

Regularization: This is considered as the algorithm's most

important aspect. The term "regularization" refers to a

strategy for removing overfitting from a model.

Cross-Validation: We use cross-validation by importing the

sklearn function, however XGboost has an inherent CV

function.

Missing Value: It is built in such a way that it can cope with

missing values. It identifies and apprehends trends in the

missing values.

Flexibility: It enables objective functions to be supported.

They are the functions that are used to evaluate the model's

performance and can also handle user-defined validation

metrics.

Save and load: It allows you to save the data matrix and then

reload it, saving both resources and time.

The results achieved for state-of-art models are compared

with our model in the form of Figures 5 to 8.

https://www.doi.org/10.35940/ijrte.E7421.0111523
https://www.doi.org/10.35940/ijrte.E7421.0111523
http://www.ijrte.org/

Prediction of Software Defects using Ensemble Machine Learning Techniques

63

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: 100.1/ijrte.E74210111523
DOI: 10.35940/ijrte.E7421.0111523

Journal Website: www.ijrte.org

Fig-5: MW1 Model Comparison

Fig-6: MC1 Model Comparison

Fig-7: KC3 Model Comparison

https://www.doi.org/10.35940/ijrte.E7421.0111523
https://www.doi.org/10.35940/ijrte.E7421.0111523
http://www.ijrte.org/

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878 (Online), Volume-11 Issue-5, January 2023

64

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: 100.1/ijrte.E74210111523
DOI: 10.35940/ijrte.E7421.0111523

Journal Website: www.ijrte.org

Fig-8: PC4 Model Comparison
The accuracies for all models and all datasets are shown

below:

Table 2. Accuracies

Logistic

Regression

Decision

Tree

Random

Forest

Ada

Boost

Xg

Boost

MC1 0.41025 0.6923 0.717949 0.6923 0.794872

MW1 0.58291 0.9422 0.949749 0.9396 0.959799

KC3 0.66666 0.745 0.862745 0.7647 0.843137

PC4 0.76356 0.8333 0.856589 0.8643 0.864341

V. CONCLUSION

In this research, we use feature scaling to pre-process the data

for better extraction and selection. Using the SMOTE

technique, we were able to solve the problem of class

imbalance in datasets. Then we applied the state-of-the-art

machine learning models – Logistic regression, Decision

Tree, Random Forest, Adaboost, and XGBoost – on four

NASA datasets: KC3, PC4, MC1, and MW1. Later, a new

model was presented that was based on tweaking the old

XGBoost model's parameters, such as N_estimator, learning

rate, max depth, and subsample. When the findings were

compared against state-of-the-art models, we found that our

model outperformed them across all datasets.

DECLARATION

Funding Not funding.

Conflicts of Interest/

Competing Interests

No conflicts of interest are

observed to the best of my

knowledge.

Ethics Approval and

Consent to Participate

The article does not require ethical

approval and consent to

participate.

Availability of Data

and Material

Dataset that is used in this project

is available at https://www.

kaggle.com/datasets/aczy156/

nasa-software-defect-prediction

Authors

Contributions

All authors have equal

participation in this article.

REFERENCES

1. A. Gupta, S. Sharma, S. Goyal and M. Rashid, "Novel XGBoost Tuned
Machine Learning Model for Software Bug Prediction," 2020

International Conference on Intelligent Engineering and Management

(ICIEM). [CrossRef]
2. Chen, Tianqi & Guestrin, Carlos. (2016). XGBoost: A Scalable Tree

Boosting System. 785-794. 10.1145/2939672.2939785. [CrossRef]

3. Leo Breiman. 2001. Random Forests. Mach. Learn. 45, 1 (October 1
2001), 5–32. DOI:https://doi.org/10.1023/A:1010933404324

[CrossRef]

4. Chawla, Nitesh & Bowyer, Kevin & Hall, Lawrence & Kegelmeyer, W..
(2002). SMOTE: Synthetic Minority Over-sampling Technique. J. Artif.

Intell. Res. (JAIR). 16. 321-357. 10.1613/jair.953. [CrossRef]

5. Abdullah Alsaeedi, Mohammad, Zubair Khan “Software Defect
Prediction Using Supervised Machine Learning and Ensemble

Techniques: A Comparative Study” JSEA, 2019. [CrossRef]

6. Amod Kumar, Ashwni Bansal “Software Fault Proneness Prediction
Using Genetic Based Machine Learning Techniques” IEEE,2019.

[CrossRef]
7. Meiliana, Syaeful Karim, Harco Leslie Hendric Spits Warnars, Ford

Lumban Gaol, Edi Abdurachman, Benfano Soewito “Software Metrics

for Fault Prediction Using Machine Learning Approaches” IEEE-2017.
8. Keita Mori and Osamu Mizuno “An Implementation of Just-In-Time

Fault-Prone Prediction Technique Using Text Classifier” IEEE, 2015.

[CrossRef]

9. Ali Ouni, Marwa Daagi, Marouane Kessentini, Salah Bouktif,

Mohamed Mohsen Gammoudi. “A Machine Learning-Based Approach

to Detect Web Service Design Defects” IEEE, 2017. [CrossRef]
10. Uma Subbiah, Muthu Ramachandran and Zaigham Mahmood

“Software Engineering Approach to Bug Prediction Models using

Machine Learning as a Service (MLaaS)” IEEE-2019. [CrossRef]

AUTHORS PROFILE

Sowjanya Jindam is an Assistant Professor from

MVSR Engineering College with qualifications in
MTech. Her research areas include Big Data Analytics,

Machine Learning and the Internet of Things. Her

recent works include an Integrated Dynamic Approach
for Prediction of Rainfall, Classify Authentic &

Fraudulent Reviews Using Supervised Machine

Learning, Social Distancing Detector using Deep
Learning, Recognition of Traffic Sign Using CNN and

Deep Learning.

https://www.doi.org/10.35940/ijrte.E7421.0111523
https://www.doi.org/10.35940/ijrte.E7421.0111523
http://www.ijrte.org/
https://doi.org/10.1109/ICIEM48762.2020.9160152
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1023/A:1010933404324%E2%80%8B
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1613/jair.953
https://doi.org/10.4236/jsea.2019.125007
https://doi.org/10.1109/IoT-SIU.2019.8777494
https://doi.org/10.1109/COMPSAC.2015.143
https://doi.org/10.1109/ICWS.2017.62
https://doi.org/10.5220/0006926308790887

Prediction of Software Defects using Ensemble Machine Learning Techniques

65

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: 100.1/ijrte.E74210111523
DOI: 10.35940/ijrte.E7421.0111523

Journal Website: www.ijrte.org

Sai Teja Challa, is a Bachelor of Engineering
student, pursuing his final year in Information

Technology at MVSR Engineering College, Osmania

University. His research interests include in the field

of Data Science, Machine Learning, and Artificial

Intelligence. Recently, he worked on the projects,
Age & Gender Prediction Using Face Recognition,

Credit Card Fraud Detection and Pedestrian Detection
Model Using Haar Cascade.

Sai Jahnavi Chada, a Bachelor of Engineering
student, pursuing her final year in Information

Technology at MVSR Engineering College, Osmania

University. Her research interest comprehends in the
fields of Machine Learning and Data Science.

Recently she worked on the project, Heart Disease

Prediction using Machine Learning.

Navya Sree B, is a Bachelor of Engineering student,

pursuing her final year in Information Technology at

MVSR Engineering College, Osmania University.
Her research interest comprehends in the field of Web

development. Recently she worked on the project,

Farmers Portal.

Srinidhi Malgireddy, is a Bachelor of Engineering

student, pursuing her final year in Information
Technology at MVSR Engineering College, Osmania

University. Her research interest comprehends in the

field of Cloud Computing. Recently she worked on the
project, Cross Premises Connectivity Using

Site-to-Site VPN.

https://www.doi.org/10.35940/ijrte.E7421.0111523
https://www.doi.org/10.35940/ijrte.E7421.0111523
http://www.ijrte.org/

