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Abstract: During software development and maintenance, 

predicting software bugs becomes critical. Defect prediction early 

in the software development life cycle is an important aspect of the 

quality assurance process that has received a lot of attention in the 

previous two decades. Early detection of defective modules in 

software development can support the development team in 

efficiently and effectively utilizing available resources to provide 

high-quality software products in a short amount of time. The 

machine learning approach, which works by detecting hidden 

patterns among software features, is an excellent way to identify 

problematic modules. The software flaws in NASA datasets MC1, 

MW1, KC3, and PC4 are predicted using multiple machine 

learning classification algorithms in this work. A new model was 

developed based on altering the parameters of the previous 

XGBoost model, including N_estimator, learning rate, max depth, 

and subsample. The results were compared to those obtained by 

state-of-the-art models, and our model outperformed them across 

all datasets. 

Keywords: Machine Learning, Dataset, Supervised Learning, 

Random Forest, XgBoost, Ada Boost, Decision Tree. 

I. INTRODUCTION 

Completing a software project nowadays is a major 

challenge. A project manager's main concern is defects or 

problems. Poor code design and implementation cause these 

issues to appear. Creating a bug-free software is the most 

demanding job in the software industry. Even if they are 

totally focused on testing, software development companies 

will struggle to tackle this issue.  
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Defects are a normal occurrence in any human-created 

application because it is not automated process. Software 

development companies, on the other side, place high 

importance on early fault detection through a range of 

inspection and testing methodologies. Predicting bugs has a 

significant impact in today's world, which is becoming 

increasingly dependent on software. We wish to compare the 

effectiveness of the XgBoost Algorithm against classic 

machine learning methods like logistic regression, decision 

trees, random forest, and AdaBoost in detecting defects in 

software in this project Machine Learning algorithms such as 

logistic regression and decision trees were used in past 

studies. They have lower accuracy and make many 

assumptions on datasets, which might lead to biases if the 

assumptions are not met. Later, for classification, ensemble 

techniques such as Random Forest were created, which 

outperform decision trees. However, we employed boosting 

techniques like AdaBoost for Classification to avoid bias 

from generation. However, it, too, has poor accuracy. 

II. RELATED WORK 

In this methodology, they used the machine learning models - 

Logistic regression, Decision Tree, Random Forest, 

Adaboost, and XGBoost as state-of-art models for four 

datasets of NASA-KC2, PC3, JM1, CM1. Later on, a new 

model was proposed based on tuning the existing XGBoost 

model by changing its parameters, namely N_estimator, 

learning rate, max depth, and subsample[1]. Proposed a novel 

sparsity-aware algorithm for sparse data and a weighted 

quantile sketch for approximate tree learning. More 

importantly, we provide insights on cache access patterns, 

data compression, and sharding to build a scalable tree 

boosting system. By combining these insights, XGBoost 

scales beyond billions of examples using far fewer resources 

than existing systems[2]. Using a random selection of 

features to split each node yields error rates that compare 

favorably to Adaboost (Y. Freund & R. Schapire, Machine 

Learning: Proceedings of the Thirteenth International 

Conference, ***, 148–156), but are more robust with respect 

to noise. Internal estimates monitor error, strength, and 

correlation and these are used to show the response to 

increasing the number of features used in the splitting. 

Internal estimates are also used to measure variable 

importance. These ideas are also applicable to regression[3]. 

An approach to the construction of classifiers from 

imbalanced datasets is described[4].They used three 

supervised machine learning algorithms are considered to 

build the model and predict the occurrence of the software 

bugs based on historical data by deploying the classifiers 

Logistic regression, Naïve Bayes, and Decision Tree.   
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Proposed bug detection as a binary classification problem, 

e.g., correct and wrong, and used the deep Bugs framework to 

train a classifier that can identify faulty code from correct 

code [5]. Proposed a defect detector system that works with a 

variety of compilers and languages, such as javac, gcc, and 

Visual Studio [6]. Using marginal R square values, proposed 

a strategy that uses the smallest and most accurate number of 

performing metrices at a time. The Eclipse JDT Core dataset 

[7] was chosen. Using One Class SVM, proposed a one-class 

SFP (Software Fault Prediction) Model [8]. Machine learning 

was used to forecast vulnerability in web applications. This 

article generates input validation and sanitation properties. 

For each sink, it computes a static backward slice. The 

control flow graph, control dependence graph, and system 

dependence graph of a web software [9] are used to analyse 

the programme. The suggested approach is to first prioritise 

the problems based on severity and component attribute. It 

employs the Xmean Clustering algorithm in conjunction with 

the Bayes Net Classifier [10]. 

III. METHODOLOGY 

In our research and extensive literature review, we found that 

Random Forest works well for Software Defect Prediction 

with high accuracy, but that it can be further improved by 

another recently introduced algorithm called XGBoost. In 

this paper, we propose a method for building a predictive 

model with a higher accuracy using Ensemble Machine 

Learning Techniques. 

 

 
Fig-1: Architectural Diagram 

The above figure depicts that data preprocessing is done in 

various phases. Firstly, the data is preprocessed and then data 

is classified into training and testing data. After the 

classification, imbalance class handling and model building 

is done. Then the data is validated using a certain satisfactory 

accuracy. If the satisfied accuracy is not met, it is again fed 

back to the feature scaling. 

●  Data Preprocessing  

  The most fascinating thing of our time is machine learning. 

For their organizations, everyone is starting to use machine 

learning models. Data is at the center of the complex process. 

Our machine learning tools ensure that the data we process is 

of high quality. In that case, Data Pre-processing is an 

important stage in creating a successful prediction model. 

The method of feature scaling is used to determine the range 

of independent variables or data attributes. In our study, we 

employed a normalization approach to bring our data to the 

same scale. 

Class Imbalance Handling: As we can observe from our 

target variable's distribution graph. If our target variable is 

very uneven, our prediction model will ignore the minority 

class while being highly prejudiced toward the majority. In 

this study, we used SMOTE, which is a synthetic minority 

oversampling technique, to solve this problem. 

● Software Defect Dataset  

We chose a normal NASA Promise Repository software bug 

dataset to test the effectiveness of our technique. The datasets 

MC1, MW1, KC3 and PC4 are used. 

https://www.kaggle.com/datasets/aczy156/nasa-software-def

ect-prediction is the public URL for this repository. The 

following is a brief description of these datasets: NASA 

created the dataset as part of its Metrices Data Program. 

Shepperd et al. cleaned up the dataset in 2013 by removing 

duplicate and inconsistent data. The PROMISE database 

contains this enhanced information. As a result, for the 

cleaned data in our investigation, we used NASA Dataset. 

NASA uses Halstead and McCabe metrics for each 

occurrence in their data.  
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There are around 40 features, such as the unique operator 

value (MU1), unique operator value (MU2), total number of 

operators (N1), total number of operands (N2), rows Code 

(LOC), and so on. Each NASA project has its own set of 

features. Table 1 lists the specific number of attributes 

available. 

TABLE-1. Dataset Insights 

Dataset 
Project 

Name 
#Instances Features 

NASA MC1 1988 40 

  MW1 253 39 

  KC3 194 41 

  PC4 1287 39 

●  Data Splitting 

We can't use the dataset to train our model. If we train our 

model for all data points, we will have an issue with 

overfitting, and our model may make an incorrect prediction 

of a new statement. To test the effectiveness and reliability of 

our model, we decided to split our dataset into two sections 

with an 80:20 ratio. The model is trained using 80% of the 

data set, while the remaining 20% is used to evaluate the 

model's performance using projected and actual value 

comparisons. 

IV.  RESULT ANALYSIS AND DISCUSSION 

Each dataset is trained on 5 different machine learning 

algorithms and their respective accuracies are recorded. 

These accuracies are then used for comparison between the 

models. 

A. Logistic Regression 

Logistic regression is a statistical model that uses a logistic 

function to represent a binary dependent variable in its most 

basic form, though there are many more advanced variants. 

Logistic regression (or logit regression) is a technique for 

estimating the parameters of a logistic model in regression 

analysis (a form of binary regression). 

 

 

Fig-2: Logistic regression 
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This linear relationship can be written in the following 

mathematical form (where ℓ is the log-odds, is the base of the 

logarithm, and are parameters of the model): 

            (1) 

                                                  (2) 

The variables x1 and x2 are explanatory variables and β0, β1 

and β2 are coefficients. The probability odds ratio eb has a 

simpler interpretation in the case of a categorical explanatory 

variable with two categories; in the case it is just the odds 

ratio for one category compared with the other.  

B. Decision Tree 

For classification and regression, decision trees are a 

nonparametric supervised learning method. The goal is to 

learn simple decision rules using data attributes to build a 

model that predicts the value of a target variable. 

The root of a decision tree is at the top of an upside-down 

tree. The bold writing in black in the figure on the left 

represents an internal node/condition that causes the tree to 

break into branches/edges. The decision/leaf, in this case 

whether the passenger died or survived, is shown by red and 

green text, respectively, at the end of the branch that doesn't 

divide anymore. 

 

Fig-3: Block Diagram for Decision Tree Algorithm 

C. Random Forest 

As the name implies, a random forest is made up of a huge 

number of individual decision trees that work together as an 

ensemble. Each tree in the random forest produces a class 

prediction, and the class with the most votes becomes the 

prediction of our model. 

Bootstrap aggregation is known as bagging. It combines 

many learners to reduce estimate variance. 

The Random Forest algorithm is a bagging-based supervised 

classification system. The amount of trees in the forest has a 

direct relationship with the accuracy of the results: the more 

trees there are, the more accurate the result. 

The following are some of the advantages of Random Forest 

over Decision Trees: 

● Overfitting is a serious issue that can damage results, but 

with the Random Forest technique, the classifier will 

not over-fit the model if there are enough trees in the 

forest. 

● The same random forest approach may be utilized for 

classification and regression tasks. 

● The Random Forest technique may be used to feature 

engineers, or discover the most relevant characteristics 

from a training dataset. 

D. AdaBoost 

Ada-boost, or Adaptive Boosting, is an ensemble classifier 

that uses the boosting idea. It combines many classifiers to 

improve classifier accuracy. 

AdaBoost is a technique for creating iterative ensembles. The 

AdaBoost classifier creates a powerful classifier by merging 

several low-performing classifiers, resulting in a 

high-accuracy classifier. 

Adaboost's core principle is to establish the weights of 

classifiers and train the data sample in each of iteration so that 

reliable predictions of uncommon observations may be made. 

Any machine learning method that accepts weights on the 

training set can be used as a basic classifier. 
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Adaboost must meet two requirements: 

1. The classifier should be interactively trained using a 

variety of weighed training examples. 

2. It seeks to offer an excellent fit for these instances in 

each of iteration by minimizing training error. 

It operates in the following manner: 

1. Adaboost picks a training subset at random at first. 

2. It trains the AdaBoost machine learning model 

iteratively by picking the training set based on the last 

training's accurate prediction. 

3. It gives incorrectly categorized observations a larger 

weight so that they have a higher chance of being 

classified in the next iteration. It also allocates weight to 

the trained classifier in each of iteration based on the 

classifier's accuracy. The more precise classifier will be 

given more weight. 

4. This approach is repeated until all of the training data 

fits perfectly or until the maximum number of 

estimators is reached. 

5. Perform a "vote" across all of the learning algorithms 

you created to categorize them. 

6. It also allocates weight to the trained classifier in each of 

iteration based on the classifier's accuracy. The more 

precise classifier will be given more weight. 

7. This approach is repeated until all of the training data 

fits perfectly or until the maximum number of 

estimators is reached. 

8. Perform a "vote" across all of the learning algorithms 

you created to categorize them. 

 

Fig-4: Block Diagram of AdaBoost Algorithm 

E. XG Boost 

Gradient boosting also includes an ensemble method, similar 

to traditional boosting, that sequentially adds predictors and 

corrects previous models. Rather than providing changing 

weights to the classifiers after each of iteration, this method 

fits the new model to fresh residuals from the prior prediction 

and then minimizes the loss when adding the most recent 

prediction. 

So, in the end, you're utilizing gradient descent to update your 

model, which is why it's called gradient boosting. Both 

regression and classification issues are supported by this. 

This approach is implemented for decision tree boosting in 

XGBoost with an additional custom regularisation term in the 

goal function. 

Let’s us understand the reason behind the good performance 

of XGboost -  

Regularization: This is considered as the algorithm's most 

important aspect. The term "regularization" refers to a 

strategy for removing overfitting from a model. 

Cross-Validation: We use cross-validation by importing the 

sklearn function, however XGboost has an inherent CV 

function. 

Missing Value: It is built in such a way that it can cope with 

missing values. It identifies and apprehends trends in the 

missing values. 

Flexibility: It enables objective functions to be supported. 

They are the functions that are used to evaluate the model's 

performance and can also handle user-defined validation 

metrics. 

Save and load: It allows you to save the data matrix and then 

reload it, saving both resources and time. 

The results achieved for state-of-art models are compared 

with our model in the form of Figures 5 to 8. 
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Fig-5: MW1 Model Comparison 

 

Fig-6: MC1 Model Comparison 

 

Fig-7: KC3 Model Comparison 
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Fig-8: PC4 Model Comparison 
The accuracies for all models and all datasets are shown 

below: 

Table 2. Accuracies 

  
Logistic 

Regression 

Decision 

Tree 

Random 

Forest 

Ada 

Boost 

Xg 

Boost 

MC1 0.41025 0.6923 0.717949 0.6923 0.794872 

MW1 0.58291 0.9422 0.949749 0.9396 0.959799 

KC3 0.66666 0.745 0.862745 0.7647 0.843137 

PC4 0.76356 0.8333 0.856589 0.8643 0.864341 

V. CONCLUSION 

In this research, we use feature scaling to pre-process the data 

for better extraction and selection. Using the SMOTE 

technique, we were able to solve the problem of class 

imbalance in datasets. Then we applied the state-of-the-art 

machine learning models – Logistic regression, Decision 

Tree, Random Forest, Adaboost, and XGBoost – on four 

NASA datasets: KC3, PC4, MC1, and MW1. Later, a new 

model was presented that was based on tweaking the old 

XGBoost model's parameters, such as N_estimator, learning 

rate, max depth, and subsample. When the findings were 

compared against state-of-the-art models, we found that our 

model outperformed them across all datasets. 
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