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Abstract 15 

Methyl salicylate (MeSA) is a plant-signaling molecule that plays an essential role in the 16 

regulation of the plant responses to biotic and abiotic pathogens. In this work, solid phase 17 

microextraction (SPME) and multi-capillary column (MCC) are coupled to ion mobility 18 

spectrometer (IMS) to detect MeSA in tomato leaves. The SPME-MCC-IMS method provides 19 

two-dimensional (2D) separation by both MCC and IMS, based on the retention and drift times. 20 

The effect of the IMS polarity on the separation efficiency of MCCs was also investigated. In 21 

the positive polarity, ionization of MeSA resulted in ([MeSA+H]+) while in the negative  22 

deprotonated ions ([MeSA-H]-) and O2
- adduct ion ([MeSA+O2]- were formed. In the real 23 

sample analysis, the negative polarity operation resulted in the suppression of many matrix 24 

molecules and thus in the reduction of interferences. Four different SPME fibers were used 25 

for head space analysis and four MCC columns were investigated. In the negative polarity, 26 

complete separation was achieved for all the MCCs columns. The limits of detection (LODs) 27 

of 15 and 22 ppb (v/v) were achieved for the direct injection of head space of MeSA in positive 28 

and negative polarities, indicating high sensitivity of IMS toward MeSA. Limits of detection 29 

(LOD) of 0.1 µg g-1 and linear range of 0.25-14 µg g-1 were obtained for measurement of MeSA 30 

by the SPME-MCC-IMS method with 5 min extraction time. The MeSA content of fresh tomato 31 

leaves were determined as 1.5-9.8 µg g-1, 24-96 h after inoculation by tomato mosaic virus 32 

(ToRSV).  33 

 34 

 35 
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1. Introduction 36 

Plant hormones (PHs) or phytohormones, are signaling molecules produced within plants 37 

influencing the plant growth, seed germination, fruit maturation and fruit ripening and control 38 

the physiological processes including the embryogenesis, regulation of the organ size, 39 

pathogen defense, and reproductive developments.1,2 Hence, the quantitative analysis of the 40 

PHs and determination of their concentrations in different tissues is crucially important to 41 

understand the role of these molecules in physiological processes occurring in plants. 42 

Classical biological methods such as bioassay and immunoassay were the first methods 43 

employed for quantification of the PHs. However, these methods suffer from low precision 44 

because of interfering effects of other compounds, which resulted in the problems related to 45 

linearity, sensitivity and reproducibility of response.3-5  46 

Because of the complex matrix of the plant extracts and the low concentration of the PHs in 47 

the plant tissues, the methods for analysis of PHs require extraction, pre-concentration, and 48 

analytical techniques with high sensitivity. The solid phase (micro)extraction (SPME) with 49 

different modified surfaces and compositions is widely used for the purification, pre-50 

concentration, and extraction of the PHs.6-11 To date, several analytical methods have been 51 

developed for sensitive quantitative and qualitative analysis of PHs in different parts of fruits 52 

and plants using chromatographic techniques, mainly liquid chromatography (LC) and gas 53 

chromatography (GC), in combination with mass spectrometry (MS). GC-MS and LC-MS can 54 

be used for simultaneous analysis of PHs mixtures and provide a wide linear dynamic range 55 

(≥ 2 order) and limit of detection (LOD) less than few µg g-1.12-17 There are also other methods 56 

based on techniques such as capillary electrophoresis,18,19 Raman spectroscopy,20,21 and 57 

desorption electrospray ionization mass spectrometry imaging.22 58 

Methyl salicylate (MeSA), synthesized in plants from salicylic acid (SA), is a plant hormone 59 

which plays an important role in the resistance of plants to pathogens, thermogenesis in some 60 

flowers, and flower durability.1,2,23 Numerous methods have been developed for determination 61 

of MeSA in leaves and fruits of plants and its vapor in gas phase.24-28 The reported amounts 62 

of MeSA in tomato and white tea leaves are in the range of 1-7 µg g-1.29-31 Concentration of 63 

MeSA in the tomato leaves change with time after inoculation with a pathogen, however, the 64 

change is within the above range.29 65 

The above-mentioned methods involve costly apparatus and require a high degree of technical 66 

knowledge. Ion mobility spectrometry (IMS) is a fast, inexpensive, and sensitive technique 67 

with growing application in analysis of various classes of analytes.32-36 In IMS, the analytes 68 

are vaporized and ionized in an ion source, then, the produced ions move toward a detector 69 

under an electric field through a drift gas (mainly air, or N2). The ion separation is based on 70 
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the interactions of ions with the buffer gas under action of an electric field (depends on the 71 

drift gas, m/z, geometry of ions, pressure, and temperature).37 IMS can be operated in both 72 

positive and negative polarities for detection of cations and anions, respectively. Over the past 73 

few years, SPME coupled to IMS has been used for collection and preconcentration of 74 

analytes in both gas phase and from solution for analysis by IMS.38-39 MCCs consist of packs 75 

of parallel capillaries with inner surface covered by film of a stationary phase enables fast 76 

separation in gas phase analysis. The multi-capillary column (MCC), as a fast separation 77 

technique, in combination with IMS has found application mainly in the field of breath 78 

analysis.40  79 

In this work, an IMS-based method was developed to exploit the advantages of SMPE, MCC 80 

and IMS for fast and sensitive analysis of real samples in complex matrix. The SPME-MCC-81 

IMS method was employed for quantitative analysis of MeSA in tomato leaves. 82 

2. Experimental Section 83 

2.1 Materials and Methods 84 

Methanol (99.9%) and MeSA (99%) were purchased from Sigma Aldrich. The standard 85 

samples of MeSA were prepared in a mixture of water and methanol (50:50). For direct 86 

injection measurements, 1 µL of the standard solutions was injected to the injection port using 87 

a 10 µL Hamilton syringe. A similar method as reported in ref.30 was used to treat the tomato 88 

leaves by tomato ringspot virus (ToRSV) and prepare the leaf samples. The ToRSV 89 

inoculation buffer was obtained from Institute of Virology, Biomedical Research Center of 90 

Slovak Academy of Sciences (store at -20 oC).41 The lower leaves of the tomato plants with 91 

an age of 5 weeks were inoculated by ToRSV. 100 mg fresh tomato leaves were taken and 92 

frozen in liquid nitrogen, ground to fine powder. Then, the sample was transferred to a 20-mL 93 

amber vial for headspace SPME analysis. The spiked samples were obtained by adding 100 94 

µL of standard solutions (1-20 µg mL-1) to 100 mg ground leaf. 95 

The SPME fibers used in this work were commercially available SPME Arrow (Restek PAL, 96 

Switzerland) coated with (i) carbon WR/PDMS, (ii) DVB/carbon WR/PDMS, (iii) PDMS, and 97 

(iv) DVB/PDMS. Detailed description of the fiber composition of the SPME arrows is provided 98 

in Table S1 (Supporting Information). Pre and re-conditioning of the Arrow fibers were done 99 

thermally in the injection port of IMS according to the manufacturer’s instruction. In the SPME 100 

experiments, the fiber was exposed to head space of 100 µL (standard solution) or 100 mg 101 

ground leaves (real sample) in a 20-mL sealed vial (Figure 1). To desorb the adsorbed 102 

compounds, the SPME fiber was put in an injection port with temperature of 220 °C. The 103 

desorbed compounds were transferred to the MCC by a carrier gas with flow rate of 50 mL 104 

min-1.  105 
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Four multicapillary columns (MCCs) including OV1, OV5, OV17, OV20 (Multichrom Ltd. 106 

Russia) of 20 cm length were used for pre-separation of the volatile compounds released from 107 

tomato leaves. The stationary phases for the MCCs were as OV1: 100% - 108 

polydimethylsiloxane (non-polar), OV5: 5% - diphenyl, 95% - dimethylpolysiloxane (non-109 

polar), OV17: 50% - diphenyl, 50% - dimethylpolysiloxane (weak-polar), and OV20: 20% - 110 

diphenyl, 80% - dimethylpolysiloxane (weak-polar). A temperature-controlled chamber was 111 

designed and constructed to house the MCC capillaries. The MCC was heated by heating 112 

elements powered by a power supply with voltage of 30 V. The temperature of MMC was kept 113 

constant during the measurements at 100±1 °C. The MCC was put between an injection port 114 

and the inlet of IMS (Figure 1). The desorbed compounds from the SPME fiber are separated 115 

in MCC before entering to the ionization region of IMS. 116 

 117 

2. 2 Instrumentation 118 

A standalone IMS and IMS combined with time-of-flight mass spectrometer (IMS-119 

TOFMS)used in this study were equipped with a point to plane CD-APCI ionization source 120 

operating in both positive and negative polarities. Both IMS and IMS-TOFMS are homemade 121 

instruments constructed at the Department of Experimental Physics of Comenius University 122 

in Slovakia. A detailed description of the instruments can be found elsewhere.39 The internal 123 

pressure and temperature of the IMS drift tube were 700 mbar and 110 ± 2 °C, respectively. 124 

A Faraday plate was used as the IMS detector at the end of the drift tube. The flow rate of the 125 

drift gas (zero air) was 700 mLmin-1. A voltage of 8 kV was applied to the whole drift tube of 126 

IMS (12.5 cm) to provide a drift field of 640 Vcm-1. The potential difference between the needle 127 

and plane electrodes of the CD ion source was 3 kV. The length of TOF–MS tube was 54.7 128 

cm with internal pressure of 10–6 mbar. A multichannel plate (MCP) was used as a detector 129 

for TOF–MS. 130 
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 131 

Figure 1. Schematic presentation of the experimental set-up. 132 

 133 

2.2 Computational details 134 

The structures of neutral molecules and ions were fully optimized by density functional (DFT) 135 

calculations at the ωB97xD/6-311++G(d,p) level of theory. Frequency calculations were 136 

carried out at 25 °C at the same level of theory to compute thermodynamic quantities including 137 

enthalpies (∆H) and Gibbs free energies (∆G) of ion formation in the gas phase. Gaussian 16 138 

software was used for all calculations.42  139 

 140 

3. Results and Discussion 141 

3-1 Ionization mechanism of MeSA 142 

MeSA is a volatile compound with a relative high vapor pressure (0.0343 mmHg), the direct 143 

injection of its head space vapor into IMS leads to signal saturation. Hence, the MeSA vapor 144 

was diluted by zero air via a T-shaped connector before entering to the ionization region 145 

(Supporting information, Figure S1-a). Figure 2a are compared the IMS-spectra of 100-fold 146 

diluted vapor head space of MeSA in the positive and negative polarities of IMS. The 147 

corresponding MS spectra in Figure 2b show that the reactant ions (RI) in the positive mode 148 

are hydronium ions, H+(H2O)3,4, and RIs in the negative modes are mainly O2
- clusters with 149 

H2O and CO2. MeSA is ionized in the positive mode via proton transfer resulting in formation 150 

of [MeSA+H]+ (m/z 153). According to the calculation of relative energies, the C=O group is 151 

the preferred site of protonation in the gas phase (Supporting Information, Figure S2). In the 152 

negative polarity, ionization of MeSA is resulting in two ions, deprotonated [MeSA-H]- (m/z 153 

151), and adduct ion [MeSA+O2]- (m/z 184). According to calculations, deprotonation occurs 154 
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at the phenolic OH group of MeSA. The calculations indicate that both negative ions 155 

[MeSA+O2]-and [MeSA-H]-, are thermodynamically possible (Table S2), however, O2
- adduct 156 

ion (∆G=-129 kJ mol-1) is more favorable than deprotonated ion (∆G=-20 kJ mol-1). These 157 

thermodynamics values are in accordance with the relative intensities of the [MeSA+O2]- and 158 

[MeSA-H]- in MS.  159 

The effect of NH3 dopant on the ionization of MeSA in positive polarity was investigated. It was 160 

found that presence of NH3 decreases the intensity of MeSA peak (Supporting information, 161 

Figure S3). It may be due to higher proton affinity of NH3 compared to H2O so that protonation 162 

of MeSA by H3O+ is more efficient compare to NH4
+. 163 

  

Figure 2. (a) Comparison of the (a) IMS and (b) MS spectra of MeSA in the positive and 164 
negative polarities for direct injection of 100-fold diluted vapor head space of MeSA. RIP: 165 
reactant ion peak. 166 

 167 

3-2 Optimization of SPME sampling 168 

The MeSA content of tomato leaves is about 1-7 µg g-1,29 these concentration range was used 169 

for SPME sampling optimization. Four SMPE needles with different fiber composition were 170 

considered. The fibers were exposed to the head space of MeSA sample solution with 171 

concentration of 2 µg mL-1 for 30 min. Figure 3a shows a comparison of the signal intensity of 172 

MeSA for the four different SMPE fibers. Although all fibers can adsorb MeSA successfully, 173 

the maximum signal intensity was achieved for the SPME needle with PMDS fiber. 174 

To find the optimal condition for SPME sampling, the effects of concentration, extraction time, 175 

and temperature were investigated. Figure 3b shows the effect of SPME extraction time on 176 

the signal intensity for standard samples with concentrations of 2 and 7 µg mL-1. For the lower 177 

concentration 2 µg mL-1, the maximum signal intensity is achieved at 30 min without any signal 178 

saturation. After 30 min, a decrease in the signal intensity was observed which was attributed 179 

to liquification of the solvent on the SPME fiber washing the absorbed MeSA. For the sample 180 
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with concentration of 7 µg mL-1 the signal was saturated after 10 min. Hence, 5 min was 181 

selected as an optimal extraction time of SPME to avoid saturation in the real sample 182 

measurements.  183 

Figure S4 (Supporting information) shows the signal intensity of MeSA versus different 184 

extraction temperature for 2 µg mL-1 standard sample of MeSA and grounded leaves spiked 185 

with 0.2 µg MeSA with 30 min extraction time. With the increasing extraction temperature, 186 

signal intensity for the standard sample decreases. This may be due to vaporization of solvent 187 

and its liquification on the SPME fiber. However, for grounded leaves, the MeSA signal 188 

smoothly increases up to 55 °C, then the signal decreases. As the increase in the signal 189 

intensity from 25 °C to 55 °C in not significant, room temperature was used for the SPME 190 

experiments.   191 

 
 

 192 

Figure 3. (a) Comparison of the signal intensity of MeSA for four SMPE needles with different 193 
fiber composition for extraction time of 30 min and MeSA concentration of 2 µg mL-1 in 100 µL 194 
solution (b) Effect of concentration of SPME exposure time on the signal intensity and signal 195 
saturation of SPME. 196 

 197 

3-3 Measurement of MeSA vapor in the gas phase 198 

MeSA is a volatile compound and its measurement in the gas phase is of interest for different 199 

purposes.27 The limits of detection (LODs) of MeSA in the gas phase were obtained by direct 200 

infusion and by SPME preconcentration. In the case of direct infusion, the dilution was carried 201 

out by zero air with a T-shaped connector as shown in Figure S1-a (Supporting information). 202 

The calibration curves are shown in Figures S1-b and c. The obtained LODs for the direct 203 

infusion of gaseous MeSA were 15 and 22 ppb (v/v) in positive and negative polarities. Using 204 

SMPE preconcentration, LODs of 0.08 and 0.1 ppb (v/v) were achieved in positive and 205 

negative polarities. These LODs are lower than those reported for bi-enzyme electrochemical 206 

sensor (1.8 ppb)43 and photonic crystal nanobeam cavity (1.5 ppb).44 207 
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3-4 Detection of MeSA in tomato leaves by SMPE-IMS and SPME-MCC-IMS methods 208 

The goal of this study was detection of MeSA in the tomato leaves. For this purpose, the 209 

calibration curves, LODs, and linear ranges of MeSA detection in tomato leaves were 210 

obtained, using head space SPME analysis. Two types of samples were measured: (i) 100 µL 211 

of MeSA solution (0.1-20 µg ml-1) as standard sample, and (ii) 100 mg grounded leaves with 212 

and without spiked MeSA. It should be mentioned that in case of direct infusion of head space 213 

of 100 mg grounded leaves spiked with 1 µg MeSA into IMS (at sampling flow rate of 10 mL 214 

min-1) an IMS spectrum with few peaks of the matrix molecules, however, without MeSA peak, 215 

was observed (Supporting information, Figure S5). This could be due to low concentration of 216 

MeSA in the head space of the tomato leaves or/and suppression of the MeSA signal by the 217 

interfering molecules (preventing MeSA ionization). To avoid the interferences, pre-218 

concentration and pre-separation by SPME and MCC were used for identification of MeSA in 219 

tomato leaves.  220 

Using the head space SPME method with IMS, the LODs of 0.1 µg mL-1 were obtained for 221 

standard samples of MeSA in the negative mode with 5 min extraction times at room 222 

temperature (see Figure S6-a, Supporting information, for the calibration curve). SPME-IMS 223 

was also used for detection of MeSA in a head space a 100 mg ground leaves (Supporting 224 

information, Figure S6-b). Figure 4 compares the SPME-IMS spectra for 5 min extraction time 225 

of 100 mg ground leaves spiked with 1 µg MeSA in positive and negative modes. In the 226 

negative mode, a simpler IMS spectrum containing fewer peaks is observed. However, only a 227 

weak peak of MeSA appeared. In the positive mode, IMS spectrum shows a complicated 228 

pattern without any peak for MeSA or a small peak due to partial peak overlapping. These 229 

different behaviors are due to different ionization mechanisms in the positive and negative 230 

polarities and their efficiency for ionization of the matrix and interfering molecules. In the 231 

positive mode, ionization is mainly based on the proton transfer. Since most of organic 232 

compounds in plants have sufficient proton affinity, they can be easily ionized (protonated) in 233 

the positive polarity. In the negative polarity, only the acidic compounds are mostly ionized. In 234 

other words, ionization in the negative polarity can be considered as a more selective 235 

ionization and a less matrix molecules are ionized, resulting in IMS spectra with less interfering 236 

peaks. Although in the negative polarity only one peak of matrix molecules is observed, it 237 

suppresses the ionization of MeSA causing weak response for MeSA.  238 

The experiments were repeated with a SPME-MCC-IMS (OV5 column) in both positive and 239 

negative polarities. The Figure 4 displays IMS spectra obtained with SPEM-IMS and SPME-240 

MCC-IMS. In case of SPME-MCC-IMS, many additional IMS peaks appear at different 241 
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retention times of MCC, including MeSA. This indicates the importance of MCC separation for 242 

MeSA measurement in leaf tissue with IMS. 243 

 244 

 245 

Figure 4. Comparison of the SPME-IMS and SPME-MCC-IMS spectra for 5 min extraction 246 
time of 100 mg ground leaves spiked with 1 µg MeSA in positive and negative modes.  247 

 248 

Figure 5 presents 2D SPME-MCC-IMS plots of the head space of 100 mg ground leaves 249 

spiked with 1 µg MeSA for four different MCCs (OV1, OV5, OV17, and OV20) in the negative 250 

and positive modes. These plots show 2D separation of the compounds in MCC (retention 251 

time, y-axis) and in IMS (drift time, x-axis). Depending on the MCC type, different retention 252 

times were observed for MeSA. Figure S7 shows, that the retention times of MeSA in OV1, 253 

OV5, OV17, and OV20 are about 25, 35, 70, and 44 s, respectively. The 2D MCC-IMS spectra 254 

in Figure 5 show that in the positive mode, OV1 cannot separate MeSA peak, partial 255 

separation is achieved using OV5 and OV20, while with OV17 complete separation is 256 

achieved. In the negative mode, OV5, OV17, and OV20 successfully separated MeSA.  257 

 258 

 259 

 260 

 261 
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Negative mode Positive mode 

  

  

  

  

Figure 5. 2D MCC-IMS plots of head space of 100 mg ground leaves obtained by commercial 262 
MCC columns OV1, OV5, OV17, and OV20, in the negative and positive modes. 263 

 264 
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Hence, suitability of a MCC depends to some extent on the IMS polarity. As mentioned above, 265 

since in the negative polarity, less matrix interferences appear, the separation is easier in this 266 

polarity. As optimal configuration for the quantitative analysis of MeSA in tomato leaves was 267 

selected SPME-MCC-IMS method with PDMS fiber, and OV5 column, in the negative IMS 268 

polarity.  269 

Two calibration curves were obtained using SPME-MCC-IMS for the standard sample of 270 

MeSA and the spiked MeSA in 100 mg ground leaves. The standard and spiked calibration 271 

curves are shown in Figure S6 (Supporting information). The obtained LOD and dynamic 272 

range for the standard samples were 0.1 µg mL-1 and 0.25-14 µg mL-1, respectively. The 273 

recovery of the method and relative standard deviation (RSD) for three spiked concentrations 274 

3, 7, and 12 µg g-1 were obtained. The results summarized in Table S3 (Supporting 275 

information) show that the recoveries are between 92%-107% and the smaller RSDs were 276 

obtained for the higher concentrations. 277 

The detection of MeSA in the non-inoculated tomato leaves by GC-MS method, failed.29,30 In 278 

present study a weak MeSA peak was detected for the non-inoculated tomato leaves. This 279 

indicates that there is an initial amount of MeSA in tomato leaves before the plant is exposed 280 

to ToRSV. This initial amount may be due to an unknown abiotic pathogen in the laboratory. 281 

For example, it has been reported that presence of heavy metals such as cadmium in the soil 282 

induces releasing of SA and MeSA in plants.45  The initial amount of MeSA in non-inoculated 283 

leaves was determined about be  0.9 µg g-1. After inoculation of the tomato leaves by ToRSV, 284 

MeSA was measured from the lower and the upper leaves of the tomato plant (Figure 6a) in 285 

24 h time intervals for four days. Figure 6b shows the SPME-MCC-IMS spectra obtained 48 h 286 

after the inoculation. Despite the longer distance from the inoculated leaves, the MeSA content 287 

of the upper leaves was higher, compared to the inoculated lower leaves. Figure 6c shows the 288 

results of daily measurements of MeSA, 24 to 96 hours after the inoculation. MeSA content 289 

reaches its maximum level for both the upper and lower leaves, 48 h after inoculation, then, 290 

its amount decreases in accordance with the previous studies.29 MeSA content 24 h after 291 

ToRSV-inoculation was 3 and 2.1 µg g-1 in the upper and lower leaves. Although these 292 

amounts are low compared to the maximum content, they are substantially larger than in the 293 

non-inoculated leaves. The obtained MeSA content of the tomato leaves by SPME-MCC-IMS 294 

(1.5-9.8 µg g-1) was slightly higher than those reported previously (1-7 µg g-1).29,30 During plant 295 

growth, some yellow leaves appeared. The SPME-MCC-IMS spectra of a fresh green and a 296 

yellow leaf are compared in Figure S8 (Supporting information). In the yellow leaf no MeSA 297 

was detected, but also some of the interfering volatile compounds were absent.  298 
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Figure 6. (a) The ToRSV inoculated, lower and upper leaves in a typical tomato plant. (b) The 299 
MCC-separated IMS spectra obtained 48 h after inoculation by ToRSV. (c) The measured 300 
MeSA content of upper and lower leaves 24 to 96 hours after inoculation. 301 

 302 

4. Conclusion 303 

SPME and MCC were coupled to IMS to benefit from their pre-concentration and pre-304 

separation, simultaneously. The SPME-MCC-IMS was applied successfully for the qualitative 305 

and quantitative analysis of MeSA in the tomato leaves. The measured MeSA content of the 306 

tomato leaves by SPME-MCC-IMS method (1.5-9.8 µg g-1) was in good agreement with those 307 

obtained by GC-MS. Using MCC instead of GC column, fast analysis of MeSA content of 308 

leaves with a run time of less than 100 s was achieved. Furthermore, MCC-IMS is more 309 

affordable than the earlier reported methods for MeSA analysis of the plants. One of the most 310 

important advantages of this method is the CD-ion source of IMS which may operate in both 311 

positive and negative polarities. By changing the ion source polarity to negative, the interfering 312 

matrix molecules were substantially suppressed in the IMS spectra. Finally, optimum 313 

combination of SPME fiber materials and MCC column was found for the detection of MeSA 314 

by IMS. Present results show, that SPME-MCC-IMS technique is suitable for qualitative and 315 

quantitative analysis of volatile compounds released from plants. 316 

 317 

 318 

 319 
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