
ABC: A Developer-Friendly Static Analysis Framework for Java
by Harnessing the Good Designs of Classics (Artifact Document)

1 Introduction
The accompanying paper describes our static analysis framework for Java, Tai-e. For anonymity, in our submission
paper, we changed the framework’s name to “ABC”. Since the reviewing process of artifact evaluation is single-blind, we
revert the frameworks’ name back to “Tai-e” in this artifact. Before diving into this artifact, we want to point out that the
best artifact of Tai-e is its GitHub repository (https://github.com/pascal-lab/Tai-e), where we actively develop
and maintain Tai-e. Currently, we have released Tai-e for a year, and it has obtained 600+ stars.

This artifact is provided to reproduce the results of RQ4 in Section 6 of our companion paper, i.e., the data in:

• Table 1 (for pointer analysis)

• Table 2 (for data flow analysis)

Note that the data in Table 1 and Table 2 are the average numbers summarized from detailed evaluation results for all
benchmarks under each analysis tool. Actually, when we submitted our paper, we also submitted a separate supple-
mentary material which includes all the detailed evaluation results for RQ4 of the paper. For your convenience,
we copied those detailed results in the supplementary material to Table 1.0.1 and Table 1.0.2, which contain the
experimental results for each benchmark under pointer analysis and data flow analysis, respectively. This artifact
supports reproducing not only the summarized results but also the detailed results.

To thoroughly evaluate the effectiveness of Tai-e, we compared it with other five analysis tools, Qilin, Doop, Soot,
WALA and SpotBugs, which make our evaluation complex. So for your convenience, we compose easy-to-use scripts with
different options to easily reproduce the data in our paper and to run any analysis that you are particularly interested in.

Research questions RQ1 - RQ3 in Section 6 involve in a survey as we explained in the paper. However, because the
survey is not conducted in English, and the participants did not give us permission to share their answers in the survey
(including for review), they cannot be included in the artifact.

In this document, we will first introduce how to setup our artifact and run basic tests in Section 2, and then explain
how to use the artifact with different options and reproduce experimental results in Section 3.

2 Getting Started

2.1 Basic Requirements
• Machine. In our paper, all experiments were carried out on a machine with an Intel Xeon 2.2GHz processor and

128GB of memory. Since pointer analysis can be very memory-consuming, using a machine with a smaller
RAM may cause some analyses to be more slower or even to the point of being unscalable. If the user’s
memory resource is limited, we recommend you concentrate on cheap analyses, i.e., data flow anlaysis and context-
insensitive pointer analysis (ci for short), and avoid heavy context-sensitive analyses (like 2-call). Also note that
the results concerning execution time of analysis may vary in different running environments.

• Docker. To ease the setup of our artifact and make it cross-platform, we packed it as a Docker image with the
experimental environment completely setup (e.g., JDK 17, Python 3, and Souffle 1.5.1 have been installed).

2.2 Experimental Setup
Firstly, please install Docker on your system (users who have already installed Docker can skip this step). If you are a Mac
or Windows user, please follow the instructions on https://docs.docker.com/get-docker/ to install the Docker Desktop. If
you are a Linux user, we recommend you install the Docker engine by following instructions on https://docs.docker.com/eng-
ine/install/.

1

https://github.com/pascal-lab/Tai-e
https://docs.docker.com/get-docker/
https://docs.docker.com/engine/install/
https://docs.docker.com/engine/install/

Table 1.0.1: Pointer analysis results in terms of recall and analysis time. “Total”, “Recall” and “R/T ” mean the real results
collected by running dynamic analysis, the real results resolved by a pointer analysis, and Recall/Total (recall rate),
respectively. “#varpt”, “#reach” and “#edges” mean the total number of points-to relations for all variables, reachable
methods and call graph edges respectively. “2-obj” and “2-call” represent two widely adopted context-sensitive pointer
analysis algorithms (2 levels of object sensitivity and call-site sensitivity). As Soot does not support context sensitivity,
its results for “2-obj” and “2-call” are all not application (“N/A”). “–” means the analysis cannot finish running within
time budget or run out of memory.

.

Program Tool
Reachable methods Call graph edges Context insensitivity 2-obj 2-call

Recall Total R/T Recall Total R/T Time (s) #varpt #reach #edges Time (s) Time (s)

findbugs

Tai-e 5,808

5,857

99.2% 13,899

14,075

98.7% 15.2 7,355,719 17,353 107,339 1419.1 2114.5
Qilin 5,663 96.7% 13,323 94.7% 23.5 7,360,275 16,988 106,998 2033.0 4214.6
Doop 4,835 82.6% 11,121 79.0% 46.0 5,239,275 13,660 83,699 638.0 5292.0
Soot 5,379 91.8% 12,548 89.2% 44.4 9,959,179 15,425 116,642 N/A N/A

soot

Tai-e 4,288

4,372

98.1% 16,233

16,452

98.7% 107.7 84,628,666 32,918 415,728 − −
Qilin 4,225 96.6% 16,120 98.0% 173.9 82,179,258 32,780 420,243 − −
Doop 4,253 97.3% 16,156 98.2% 454.0 74,564,948 32,600 413,411 − −
Soot 3,175 72.6% 10,446 63.5% 47.0 19,829,796 21,072 264,506 N/A N/A

gruntspud

Tai-e 14,360

14,543

98.7% 41,426

42,099

98.4% 69.0 48,179,683 39,800 274,872 − −
Qilin 14,279 98.2% 41,261 98.0% 113.9 50,073,466 39,247 273,794 − −
Doop 9,508 65.4% 25,363 60.2% 159.0 22,309,125 25,077 154,763 − −
Soot 12,835 88.3% 35,683 84.8% 111.4 54,498,294 31,968 265,090 N/A N/A

columba

Tai-e 6,673

6,757

98.8% 14,368

14,689

97.8% 135.8 107,856,623 56,787 425,149 − −
Qilin 6,617 97.9% 14,260 97.1% 170.0 101,298,328 56,726 416,791 − −
Doop 4,983 73.7% 9,798 66.7% 616.0 70,315,191 42,665 286,990 − −
Soot 5,710 84.5% 11,635 79.2% 183.9 131,367,643 49,081 433,320 N/A N/A

antlr

Tai-e 2,697

2,786

96.8% 10,086

10,341

97.5% 9.0 2,003,409 8,674 59,190 37.1 654.0
Qilin 2,568 92.2% 9,531 92.2% 11.5 2,066,405 8,363 58,486 71.0 2009.9
Doop 2,510 90.1% 9,401 90.9% 31.0 2,385,993 8,250 57,560 282.0 1472.8
Soot 2,407 86.4% 8,774 84.8% 13.4 2,291,874 7,491 63,279 N/A N/A

bloat

Tai-e 3,339

3,421

97.6% 11,794

12,029

98.0% 11.7 3,270,010 9,936 69,219 452.3 1107.0
Qilin 3,292 96.2% 11,722 97.4% 13.1 3,363,502 9,631 68,922 1253.8 2691.2
Doop 3,231 94.4% 11,297 93.9% 26.0 3,393,681 9,509 67,604 1394.0 −
Soot 3,122 91.3% 11,592 96.4% 15.9 3,604,082 8,902 75,226 N/A N/A

xalan

Tai-e 3,826

3,966

96.5% 9,254

9,614

96.3% 9.8 2,805,148 12,942 72,661 1854.0 1221.5
Qilin 3,650 92.0% 8,571 89.2% 16.5 2,697,455 12,526 70,612 869.3 2546.6
Doop 3,132 79.0% 6,999 72.8% 28.0 1,681,360 9,956 53,278 439.0 1359.4
Soot 3,470 87.5% 8,082 84.1% 22.6 4,030,969 11,479 77,437 N/A N/A

eclipse

Tai-e 7,080

8,093

87.5% 18,050

20,916

86.3% 26.8 22,633,879 23,920 184,294 − −
Qilin 6,936 85.7% 17,476 83.6% 48.1 24,230,566 23,550 184,290 − −
Doop 3,378 41.7% 6,860 32.8% 21.0 2,044,456 9,764 56,595 146.0 −
Soot 2,927 36.2% 5,266 25.2% 17.9 2,091,670 8,153 55,881 N/A N/A

hsqldb

Tai-e 2,608

2,733

95.4% 5,856

6,295

93.0% 11.7 1,838,669 11,588 64,393 − 654.6
Qilin 1,707 62.5% 2,996 47.6% 8.8 1,016,624 7,570 42,896 36.2 968.3
Doop 1,626 59.5% 2,841 45.1% 31.0 839,150 6,945 37,414 70.0 2477.4
Soot 2,356 86.2% 5,040 80.1% 18.0 6,341,781 10,195 73,532 N/A N/A

jython

Tai-e 4,243

4,835

87.8% 11,639

35,970

32.4% 17.0 10,885,453 13,076 121,603 − −
Qilin 4,056 83.9% 10,847 30.2% 25.7 10,101,462 12,650 119,872 − −
Doop 3,985 82.4% 10,717 29.8% 78.0 11,267,651 12,507 118,706 − −
Soot 3,879 80.2% 10,393 28.9% 28.3 12,062,834 11,881 132,383 N/A N/A

luindex

Tai-e 2,179

2,266

96.2% 4,461

4,710

94.7% 8.8 829,314 7,899 41,520 18.4 515.8
Qilin 2,052 90.6% 3,907 83.0% 9.1 889,969 7,590 40,828 30.4 1226.4
Doop 1,973 87.1% 3,376 71.7% 14.0 921,998 7,456 39,743 46.0 469.2
Soot 1,859 82.0% 3,689 78.3% 11.1 1,313,139 6,807 44,422 N/A N/A

lusearch

Tai-e 1,736

1,826

95.1% 3,261

3,511

92.9% 9.2 981,532 8,574 44,839 18.9 509.8
Qilin 1,606 88.0% 2,705 77.0% 9.5 1,048,650 8,263 44,166 47.7 1234.2
Doop 1,545 84.6% 2,534 72.2% 15.0 1,099,851 8,136 43,072 49.0 1435.8
Soot 1,440 78.9% 2,319 66.0% 10.8 1,409,394 7,103 46,628 N/A N/A

pmd

Tai-e 3,908

4,025

97.1% 9,287

9,635

96.4% 10.1 2,848,296 13,311 73,890 39.1 1174.2
Qilin 3,735 92.8% 8,613 89.4% 15.8 2,974,963 12,981 73,292 75.0 2136.0
Doop 2,718 67.5% 5,737 59.5% 29.0 1,330,917 8,905 46,862 68.0 1605.9
Soot 3,562 88.5% 8,196 85.1% 23.3 4,802,443 11,898 79,917 N/A N/A

chart

Tai-e 5,197

5,326

97.6% 12,751

13,110

97.3% 17.4 5,755,512 16,455 87,938 184.9 856.7
Qilin 5,024 94.3% 12,064 92.0% 21.8 6,103,008 16,109 87,848 283.6 2281.8
Doop 4,691 88.1% 11,172 85.2% 42.0 4,679,309 13,643 73,106 216.0 3506.0
Soot 4,483 84.2% 10,405 79.4% 31.5 9,994,315 13,802 96,449 N/A N/A

2

Table 1.0.2: Live variable analysis results in terms of efficiency. “#Classes” and “#Methods” mean the number of classes
and methods analyzed by each analysis for each program. “Time(s)” gives the analysis time in seconds. “#Methods/s”
mean how many methods are analyzed per second.

.

Program Tool #Classes #Methods Time(s) #Methods/s Program Tool #Classes #Methods Time(s) #Methods/s

findbugs

Soot 1,332 9,865 0.19 51,921

eclipse

Soot 379 3,006 0.11 27,327
Tai-e 1,332 9,865 0.39 25,295 Tai-e 379 3,006 0.28 10,736
WALA 400 2,201 0.37 5,949 WALA 159 977 0.25 3,908
SpotBugs 2,274 16,611 5.09 3,263 SpotBugs 6,930 65,200 18.49 3,526

soot

Soot 3,085 31,928 0.43 74,251

hsqldb

Soot 23 255 0.02 12,750
Tai-e 3,085 31,928 1.64 19,468 Tai-e 23 255 0.24 1,063
WALA 2,575 25,021 8.98 2,786 WALA 10 54 0.05 1,080
SpotBugs 3,837 36,673 10.75 3,411 SpotBugs 416 5,240 2.86 1,832

gruntspud

Soot 876 5,539 0.14 39,564

jython

Soot 586 5,907 0.18 32,817
Tai-e 876 5,539 0.37 14,970 Tai-e 586 5,907 0.4 14,768
WALA 832 4,902 0.69 7,104 WALA 226 2,075 0.44 4,716
SpotBugs 1,460 9,534 3.13 3,046 SpotBugs 920 8,549 2.88 2,968

columba

Soot 664 4,843 0.12 40,358

luindex

Soot 181 1,331 0.06 22,183
Tai-e 664 4,868 0.26 18,723 Tai-e 181 1,331 0.18 7,394
WALA 4 6 0.01 600 WALA 72 354 0.19 1,863
SpotBugs 13,783 118,429 28.42 4,167 SpotBugs 349 2,563 1.64 1,563

antlr

Soot 153 1,475 0.06 24,583

lusearch

Soot 220 1,602 0.07 22,886
Tai-e 153 1,475 0.17 8,676 Tai-e 220 1,602 0.19 8,432
WALA 102 771 0.2 3,855 WALA 139 732 0.19 3,853
SpotBugs 228 2,483 2.13 1,166 SpotBugs 349 2,563 1.67 1,535

bloat

Soot 320 3,457 0.14 24,693

pmd

Soot 1,039 8,643 0.2 43,215
Tai-e 320 3,457 0.32 10,803 Tai-e 1,039 8,643 0.67 12,900
WALA 266 2,525 0.57 4,430 WALA 257 1,753 0.35 5,009
SpotBugs 360 3,836 2.28 1,682 SpotBugs 553 3,850 1.77 2,175

xalan

Soot 24 258 0.03 8,600

chart

Soot 554 6,907 0.18 38,372
Tai-e 24 258 0.24 1,075 Tai-e 554 6,907 0.53 13,032
WALA 12 57 0.03 1,900 WALA 109 815 0.18 4,528
SpotBugs 566 5,512 2.31 2,386 SpotBugs 515 6,093 2.13 2,861

With Docker installed, our artifact can be easily setup via following steps:

1. Load the docker image into your system (Note that for Mac or Windows users, you need to first start the Docker
Desktop to enable command docker, and them type the following command in your terminal):

$ docker load --input tai-e-artifact.tar.gz

This step may take several minutes since the Docker image is large. (Note: if you are using finch rather than
docker, please add the option --all-platforms into the command.)

2. Launch a container from the loaded image, where tai-e:issta23 is the image name and tai-e-artifact is the
container name:

$ docker run --shm-size=<SIZE> --name tai-e-artifact -it tai-e:issta23

The argument <SIZE> is to configure size of shared memory, and it is recommended to use the same size of your
physical memory (e.g., --shm-size=32g for a machine with 32GB of memory).

After you launched the container, you will enter an interactive shell of the container as shown in Figure 1.

That’s it! Now you can start evaluating our artifact.

3

Figure 1: Load the Docker image and launch a Docker container.

To exit the interactive shell, use the command exit. If you want to re-enter the container after exiting it, use the
following command to restart and enter the same container again:

$ docker restart tai-e-artifact

$ docker exec -it tai-e-artifact bash

2.3 Basic Testing
This artifact supports reproducing two sets of experiments, one for pointer analysis and the other for data flow analysis,
with several different analysis tools. Below we introduce how to test whether these analysis tools have been successfully
set up.

Testing Pointer Analysis We compare pointer analysis of four analysis tools, Tai-e, Qilin, Doop, and Soot. To test
these tools, please first change your current directory to the pointer analysis folder:

$ cd /home/pointer

Then you can use the following command to run a pointer analysis using the four tools for benchmark findbugs:

$./pointer.py -all findbugs

This command will start the four tools to perform context-insensitive pointer analysis for findbugs, and may take
several minutes to finish. Note that different tools have different output formats, and to ease the result checking, our
scripts will collect analysis results of these tools and summarize them in a uniform format at the end of each execution as
shown in Figure 2.

If you can observe the outputs for all four analysis tools like in Figure 2, then it means that the four tools for pointer
analysis, i.e., Tai-e, Qilin, Doop and Soot have been successfully set up.

Testing Data Flow Analysis We compare data flow analysis of four analysis tools, Soot, Tai-e, WALA and SpotBugs.
To test these tools, please first change your current directory to the data flow analysis folder:

$ cd /home/dataflow

Then you can use the following command to run a data flow analysis using the four tools for benchmark findbugs:

$./dataflow.py -all findbugs

This command will start the four tools to perform live variable analysis for findbugs, and may take several minutes
to finish. Similar with pointer analysis, our scripts will collect data flow analysis results and statistics of these tools and
summarize them in a uniform format at the end of each execution as shown in Figure 3.

If you can observe the outputs for all four analysis tools like in Figure 3, then it means that the four tools for data flow
analysis, i.e., Soot, Tai-e, WALA and SpotBugs have been successfully set up.

3 Detailed Instructions
We introduce how to run pointer analysis and data flow analysis in Sections 3.1 and 3.2, respectively, and explain how to
relate the analysis results to the data in Tables 1 and 2 of the accompanying paper in Section 3.3.

4

Figure 2: Summarized pointer analysis results for findbugs.

Figure 3: Summarized data flow analysis results for findbugs.

5

3.1 Running Pointer Analysis
To run the experiments, please run the Python script pointer.py under the directory /home/pointer/ by using the
following command (note that | means “or”, and [...] means “optional”):

$./pointer.py tai-e|qilin|doop|soot [-pta=<ANALYSIS>] <BENCHMARK>

The first argument (tai-e|qilin|doop|soot) specifies to run pointer analysis on which analysis tool.

<ANALYSIS> can be one of the following pointer analyses evaluated in our experiments:

ci, 2-obj, 2-call

(ci stands for context-insensitive pointer analysis)

<BENCHMARK> can be one of the following Java programs analyzed in our experiments:

findbugs, soot, gruntspud, columba, antlr, bloat, xalan,
eclipse, hsqldb, jython, luindex, lusearch, pmd, chart

For example, to use 2-obj to analyze antlr by Tai-e, use command:

$./pointer.py tai-e -pta=2-obj antlr

Note that the argument -pta is optional, and when it is not specified, the script pointer.py runs ci analysis.
As mentioned in Section 2, different analysis tools have different output formats, and to ease the result check, our script

will output analysis results in a uniform and prettified format at the end of each execution, so that you could conveniently
compare them with Table 1.0.1.

For your convenience, the command argument <BENCHMARK> can be repeated for multiple times. For example, to run
2-obj for findbugs, antlr and lusearch on Doop, use command:

$./pointer.py doop -pta=2-obj findbugs antlr lusearch

Then the three analysis executions will be performed in sequence.

Also, for your convenience, we provide -all to run pointer analysis collectively. When specifying -all for <ANALYSIS>,
it represents all four analysis tools, and when using -all for <BENCHMARK>, it represents all 14 benchmarks. For example,
to run 2-obj analysis for benchmark antlr on four analysis tools, use command:

$./pointer.py -all -pta=2-obj antlr

To run ci analysis on Tai-e for all benchmarks, use command:

$./pointer.py tai-e -all

For saving your time, when option -all is used, the analyses executions that run beyond the time limit or run out
of memory in our experiment will be skipped. To check whether an analysis execution will run out of time budget or
memory on your machine, you can run this analysis individually using the command we introduced at the beginning of
this Section.

When you specify to analyze more benchmarks (either by given multiple benchmark names or use -all option), the
pointer.py script will output the average numbers for the results of the specified benchmarks at the end.

Running 2-call Analysis on Doop For 2-call analysis, as the latest version of Doop either runs out of memory (and
killed by operating system) or exceeds time limit for all evaluated benchmarks, we instead adopt the results of running an
old version of Doop for 2-call in pointer analysis.

By default, our artifact uses Java 17 as default JDK to run virtually all analysis tools. However, old Doop requires
Java 8, so please switch Java version before running old Doop. We have prepared a script java-switcher.sh in folder
/home for switching Java version, and this can be done by command:

6

$ source /home/java-switcher.sh 8

Next, change current directory to /home/pointer/doop-old. Then you could run old Doop by using the following
command:

$./doop-old.py <ANALYSIS> <BENCHMARK>

The arguments <ANALYSIS> and <BENCHMARK> are the same as above. For example, to run 2-call for benchmark
luindex on old Doop, use command (note that this could be time and space consuming):

$./doop-old.py 2-call luindex

If you want to run other analysis (after running old Doop), remember to switch Java version back to 17:

$ source /home/java-switcher.sh 17

3.2 Running Data Flow Analysis
The command line usage of data flow analysis in the artifact is similar with that of pointer analysis.

To run the experiments, please run the Python script dataflow.py under the directory /home/dataflow/ by using
the following command (note that | means “or”, and [...] means “optional”):

$./dataflow.py soot|tai-e|wala|spotbugs <BENCHMARK>

The first argument (soot|tai-e|wala|spotbugs) specifies to run data flow analysis (specifically, live variable
analysis) on which analysis tool.

Similar with pointer analysis, in data flow analysis, our script outputs uniform results at the end of each execution,
so that you could easily compare them with Table 1.0.2. Note that the data for column “#Methods/s” you got may be
different from the table, as their computation depends on analysis time.

Again, for your convenience, the command argument <BENCHMARK> can be repeated for multiple times. For example,
to analyze findbugs, antlr and lusearch with Soot, use command:

$./dataflow.py soot findbugs antlr lusearch

Also, for your convenience, we provide -all to run data flow analysis collectively. When specifying -all for
<ANALYSIS>, it represents all four analysis tools, and when using -all for <BENCHMARK>, it represents all 14 bench-
marks. For example, to run live variable analysis for benchmark eclipse on four analysis tools, use command:

$./dataflow.py -all eclipse

To analyze all benchmarks with SpotBugs, use command:

$./dataflow.py spotbugs -all

Similar with pointer analysis, when you specify to analyze more benchmarks (either by given multiple benchmark
names or use -all option), the dataflow.py script will output the average numbers for the results of the specified
benchmarks at the end.

3.3 Reproducing Tables 1 and 2
As mentioned in Section 1, in Tables 1 and 2 of RQ4 in the accompanying paper, we give the summarized average
numbers of each analysis tools for all the benchmarks (excluding unavailable cases, e.g., the analysis runs out of time
budget). These results (except the ones concerning analysis time which vary on different runtime environments) can be
easily reproduced with -all options, which output the average results at the end of each execution.

Although the results concerning analysis time may not be precisely reproduced, you should be able to observe the
same performance trends among different analysis tools as in the paper, e.g., Tai-e generally runs faster than all other
tools for context-insensitive pointer analysis.

In Table 1, for reproducing data under columns “Recall” and “Context Insensitivity”, use command:

7

$./pointer.py -all -all

For column “2-obj”, use command:

$./pointer.py -all -pta=2-obj -all

For column “2-call”, use command:

$./pointer.py -all -pta=2-call -all

Note that the commands for “2-obj” and “2-call” could be very time consuming.
To reproduce Table 2, use command:

$./dataflow.py -all -all

The data for column “#Methods/s” you got may also be different from Table 2 of the paper, as their computation
depends on analysis time.

8

	Introduction
	Getting Started
	Basic Requirements
	Experimental Setup
	Basic Testing

	Detailed Instructions
	Running Pointer Analysis
	Running Data Flow Analysis
	Reproducing Tables 1 and 2

