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SUMMARY 

 

Many mineral deposits lie under thick accumulations of post-mineral cover, making exploration expensive and risky. 

Exploration targeting is thus often focussed mainly on various combinations of gravity and magnetic anomalies. In the 

case of IOCG style deposits the fluid pathway footprint is generally expressed as district-scale alteration and 

geochemical haloes. However, it is generally difficult to focus successful exploration due to the extensive geochemical 

“smoke”.  In addition, many seemingly attractive accumulations of iron oxide alteration are often barren or at best host 

low metal grades, and it is rarely obvious which iron oxide masses might host economic Cu and Au deposits. 

 

Our solution for successfully identifying the “fire” in IOCG systems of the Gawler Craton of South Australia is to apply 

a range of methodologies that combine the strengths of both empirical and conceptual, process-based targeting. Our 

integrated “Mantle to Mine” approach minimizes interpretation bias and reduces the reliance on specific deposit 

models. Specifically, we have utilized a data-driven methodology (machine learning) that systematically tests for the 

relative importance of a large number of geological factors on known deposits, which is additionally guided by an 

integrated mineral systems approach that analyses the processes operative in the passage of ore fluids and metals to 

their eventual deposition sites. Finally, we have utilized an analogue-driven methodology to test geological processes 

(geomechanical modelling) that simulates rock failure and ore fluid flow at potential metal trap sites in the upper crust 

to further hone district-scale targeting. As an independent test of their accuracy, the results of the machine learning and 

geomechanical modelling were compared with the location of known mineral occurrences and geochemical anomalies. 

The hit rate was very high in the case of both methodologies and this test has given us confidence in the predictions 

made for less well-known zones. 
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INTRODUCTION 

  

 

The Archaean-Mid Proterozoic Gawler Craton of southern South Australia covers some 200,000 km2, and is 

demonstrably well endowed with world class copper, gold and uranium deposits. In the several decades since the 

discovery of Olympic Dam in 1975, intensive exploration has delivered further large iron oxide-associated copper-gold 

discoveries such as Prominent Hill and Carrapateena, in addition to smaller gold deposits in the Gawler Gold Province 

further to the west. Recognizing the probable existence of further undiscovered mineral deposits in the Gawler Craton, 

the South Australian Government recently initiated the 2020 Gawler Craton Challenge, which aimed to leverage the 

value of their large database to accelerate the discovery process in South Australia. Our response to the challenge is that 

we have integrated and analysed the majority of the available exploration data through an effective combination of data-

driven and conceptually-driven approaches. 

 

THE CHALLENGE OF EXPLORING COVERED AREAS 

 
Exploring extensively covered areas for mineral deposits is becoming increasingly technically challenging and 

expensive. Regional targeting studies may be empirical or conceptual, or a combination of both (Woodall, 1994). Both 

approaches have their strengths and weaknesses. Purely empirical, data-driven targeting suffers in areas where data 

coverage is poor and tends to focus on analogues to known deposits. It tends to emphasize local understanding of ore 

controls and correlations that may not hold up at larger scales (McCuaig and Sherlock, 2017). On the other hand, purely 

conceptual targeting analyses the essential elements of mineral systems analysis (Wyborn et al. 1994) and seeks to 

identify combinations of proxies in the numerous datasets acquired (Hronsky and Groves, 2008). However, this 
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approach is prone to bias, due to the imperfect understanding of mineral systems and the imperfect ability to interpret 

datasets (McCuaig and Sherlock, 2017). 

 

The solution in a largely covered area like the Gawler Craton, where limited “training data” exist in the form of numerous 

mineral deposits, is to reduce targeting risk at an early stage and apply methodologies that combine the strengths of both 

empirical and more conceptual, process-based targeting. This integrated approach can minimize interpretation bias and 

reduce the reliance on specific deposit models that may or may not apply at larger scales. A data-driven methodology 

(machine learning) that systematically tests for the relative importance of a large number of potential controlling factors 

in the known deposits represents an important element of the targeting toolbox. In addition, a conceptual, integrated 

mineral systems approach that analyses the processes operative in the transport of ore fluids to their eventual 

deposition sites serves as an important guide in information extraction. Finally, an analogue-driven methodology 

(geomechanical modelling) that simulates ore fluid flow at potential mineral system sites, as a result of stress 

partitioning during deformation events, represents a critical tool in identifying key locations of fluid focusing in upper 

crustal rocks. 

 

UNIQUE APPROACH 

 

Our unique, geologically-grounded approach consists of the following workflow depicted in Figure 1: 

 

• Definition of prospective mineral belts through multivariate analysis of factors controlling heat and fluid migration from 

the mantle to the mid crust (data driven, machine learning phase 1). Because of thick post mineral cover sequences, the 

overall limits of prospective mineral belts is commonly poorly understood. 

• Assuming all processes essentially equal within given mineral belts, prediction of new mineral systems through 

multivariate analysis of their controlling physiochemical factors in the upper crust (data driven, machine learning phase 

2); 

• Prediction of zones of fossil fluid focussing and ore precipitation through analysis of palaeostress and flow fluid in the 

upper crust (forward modelling, geomechanical modelling phase); 

• Identifying potential expressions of mineral systems in the near surface environment, including in hard rock, regolith 

and groundwaters (data driven, machine learning phase 3 and expert knowledge-driven). 

The Mineral Systems Approach is a logical extension of the traditional petroleum systems approach and was first 

introduced into mineral science literature by Wyborn et al. (1994). The mineral systems approach has evolved over the 

past couple of decades, but the basic premises remain the same. Here, the original seven factors of Wyborn et al. (1994) 

have been further developed, and the idea of a critical time window has been introduced. The critical components leading 

to formation of a significant ore deposit in the upper crust can be summarized as follows: 

• Tectonic events that trigger and define temporal windows for mineralising events; 

• Geochemical and tectonic processes that produce a source of ore constituents, include metals, ligands and fluids; 

• Energy to drive the mineral system; 

• Tectonic processes that cause the activation of favourable crustal and lithospheric architecture that permitted the passage 

of melts and fluids; 

• A focussing mechanism that concentrates (or throttles) the flow of fluids or magmas into depositional ‘trap’ sites; 

• Strong physio-chemical gradients around the site of ore precipitation that cause ore precipitation; 

• Post-mineral processes that cause exhumation, preservation and upgrading of mineralisation. 

 

A key concept at the core of understanding mineral systems is that the passage of ore fluids through the crust leaves a 

much larger footprint than the actual scale of the ore deposits themselves. This is because the passage of potentially ore-

forming fluids along the pathways between a deep source and a shallower sink may be marked by modification of the 

physio-chemical properties of the surrounding rocks which in turn are potentially imaged in the form of geophysical 

contrasts. Thus, when direct detection of orebodies may be difficult due to thick post-mineral cover and poor geophysical 

contrast the altered fluid pathway, although perhaps subtle and more widespread, could be the best expression of the 

mineral system to initially try and detect. A number of examples from the literature document the deeper crustal 

expression of these probable ore fluid pathways having apparently been directly imaged in geophysical datasets such as 

seismic and magnetotellurics (Skirrow et al., 2018; Heinson et al., 2018). 

It is worth bearing in mind that the next orebody will almost definitely not look the same as those previously discovered, 

but will likely share common threads in terms of processes, controls and alteration in the surrounding rocks. 

 

MACHINE LEARNING 

 

Machine learning (ML) is a well-documented information technology that is a subset of Artificial Intelligence (AI).  ML 

uses a suite of algorithms to simultaneously seek patterns in massive amounts of multivariate data. Once the algorithm 

“learns” the patterns or rules relating to these data through bivariate or multivariate statistical means, it can make 

predictions about other data. 
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After experimenting on the Gawler data and comparing the results, we settled on the Random Forest (RF) algorithm 

as it lends itself to both classification and regression problems in supervised learning. The Random Forest algorithm 

was found to be particularly efficient in more data poor environments where training data is sparse, commonly 

outperforming other methods such as Logistic Regression and Artificial Neural Networks (Rodriguez-Galiano et al., 

2014; Carranza and Laborte, 2016). 

 

Predictor layers derived from gridding the various geological and geophysical proxies are sampled on a systematic grid 

to generate a large, 2-dimensional data array with numerous features. Training sets derived from different areas/subsets 

are used to train the Random Forest model. Unknown test data is then run through the trained Random Forest model: 

the output from the ML algorithm is either a classification code (in the case of ML Phase 1 a simple binary MIN or 

NOMIN prediction is returned) or a regression predicted value (in the case of ML2, a “distance to mineralisation” value 

in metres is returned). The returned values are then imported into the QGIS environment where they are gridded, imaged 

and contoured. The resultant maps form the basis for validation against known deposits and further integration with the 

other methodologies in this study, including the geomechanical forward modelling. 

 

GEOMECHANICS 

 

Several methods of geomechanical modelling have been applied within the geosciences in an attempt to better 

understand geological processes, and in particular the mechanical processes responsible for the migration and focusing 

of metal laden fluids. The main modelling technique employed here to simulate the response of the structural architecture 

and stress transfer though the rock packages is a discontinuous method known as Discrete Element Modelling. This type 

of modelling treats the rock masses as elastic-plastic discrete blocks, and focuses on the deformation along faults and 

lithological boundaries between such blocks. Areas of low values minimum principal stress (σ3) and areas requiring 

lowest values of fluid pressure increases for material failure may indicate dilation and potential sites of fluid focusing, 

and are of great interest in mineralised hydrothermal systems. The ability to predict areas that have mechanically failed 

or are more susceptible to failure, and hence focus fluids, can be advantageous in defining sites of increased prospectivity 

within any region (McLellan et al., 2016). 

The data required to undertake this style of modelling can be conceptualised as two main components; 1. The structural 

and geological architecture of the area or system under investigation, and 2. The geological history of events and 

understanding of tectonic periods of instability and its relationship to mineralisation. Structural and geological 

architecture is developed from interpretation of previous mapping and geophysics. Here the geophysical datasets 

allowed us to carry out a large-scale interpretation and the recently completed Gawler Aeromagnetic Survey was key 

data to this interpretation. Due to the scale of this project only the main structural features were identified for inclusion 

in the model geometry.  

 

The application of numerical modelling to mineral exploration problems typically follows a two-stage approach. The 

two stages are known as the model validation phase and the predictive modelling phase. Initial simulations are designed 

to test the conceptual geological/mineralisation model(s) for a known deposit in a region of interest: this is the model 

validation phase. These simulations aim to reproduce, or forward model, the observed distribution of mineralisation, 

strain or alteration within the known system in order to constrain the critical parameters controlling this distribution. A 

potential outcome of the model validation phase is the identification of previously unknown or unexpected anomalies, 

or the identification of preferential structural host orientations, within the ore system. This can yield either a better 

understanding of the grade distribution within the deposit, or identify new structural orientations or locations requiring 

a revised detection method (such as a different drill direction) in order to optimise detection and definition. The 

quantitative results of the model validation phase constrain the input parameters for generic or specific predictive 

models, which aim to predict the location of anomalies outside the area of known deposits. It is therefore critical that 

the results must be non-intuitive at some level. 

 

TARGETING 

 

A 2-stage approach using ML was applied, with ML1 used to map out broad permissible belts for copper, gold and 

silver-lead-zinc mineralisation in the whole of the Gawler Craton, and the second stage ML2 was to predict potential 

zones of ore precipitation for copper and gold mineralisation in the northern half of the Gawler Craton. The ML used 

training datasets to predict the regressed distance to ore, and the results are verified against known mineral deposits, 

with positive results. An example of this is the near perfect prediction of the location of Prominent Hill and other 

surrounding mineralisation using only the Olympic Dam area training data (Fig. 2) which is over 100 km to the southeast. 

These predictions provided great confidence in the anomalies and potential targets from the ML analysis. 

 

Geomechanical analyses were then used to further hone and identify the upper crustal locations for rock failure and 

focused fluid flow. The partitioning of strain and localisation of dilation and fluids showed and incredible correlation 

with both the Au and Cu Provinces. In the IOCG Province many of the major deposit locations were predicted (Fig. 3), 

based on values of fluid pressures required for rock failure. Similarly, in the Au Province, the geomechanics predicted 

corridors of increased prospectivity and correlated exceptionally well with gold distributions for the surface and drillhole 

geochemical data. 
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This project defined forty-five target areas, each reflecting a confluence of the various machine learning and 

geomechanical modelling results. The 45 targets consist of 21 Cu targets for 9,765 km2 (average 465 km2 each) and 24 

Au targets for 13,580 km2 (average 565 km2 each). These targets cover some 2.39% (Cu) and 3.32% (Au) of the total 

Gawler project area, representing a substantial reduction in the search area. The average area of the target areas defined 

is a maximum and they effectively define district-scale areas. A further reduction of the search area within each 

prospective box-shaped target area was achieved by considering in detail the outlines of the prospective zones defined 

by the individual machine learning and geomechanical modelling studies. The key to ascertaining ‘solid’ and reliable 

targeting was to investigate confluences between the two proven and complimentary techniques. Numerous district-

scale target zones were defined, which when filtered with the geology (e.g., post mineral processes, geochemistry, depth 

of cover) to provide robust geologically focused targets (Fig. 4).  

 

DISCUSSION & CONCLUSIONS 

 

Economic Cu-bearing IOCG systems, although extremely valuable, are notoriously difficult to find. The footprint of 

these systems is moderate to large over the scale of kilometres to tens of kilometres, commonly expressed in the form 

of district-scale alteration and geochemical haloes. However, it is commonly difficult to focus successful exploration 

due to the extensive occurrences of geochemical “smoke”. Another issue is that large areas of iron oxide alteration, 

usually as magnetite or hematite, may be geochemically barren or at best of low metal grade and it is rarely obvious 

which iron oxide accumulation might host economic Cu and Au. 

 

Our dual methodology of mineral systems-guided, data-driven machine learning combined with geomechanical 

analogue modelling maximizes the probability of locating the “fire” within these systems, recognizing that the Cu and 

Au are usually precipitated late in the alteration paragenesis. Once we independently define the important controlling 

factors in the upper crust, localized fluid flow and metal precipitation can be forward modelled as mechanical processes 

that was focussed in only certain areas. This study has firmly established the relationships between 100 mappable criteria 

ranging in depths from the upper mantle to the upper crust and the spatial distribution of known mineral 

deposits/occurrences. By learning these relationships free of human bias, the machine learning has consistently delivered 

specific zones of high probability where unknown mineral systems may have developed through similar combinations 

of controlling factors and ore-forming processes. 

 

Since we are targeting mineral systems formed originally in the upper crust under a known ambient regional stress 

regime, a powerful check and adjunct on the ML predictive process has been the Geomechanical Modelling. This kind 

of modelling is a proven methodology and has predicted where “exit” zones controlled by variations in rock rheology 

and geometry subject to a far field stress regime may have failed and focussed fluids and metals within the high 

probability districts. This strategy has proven its effectiveness in reducing the search area substantially by enabling us 

to focus on specific zones within the larger target areas. Combined with a detailed appraisal of the “explorability” of 

each high priority target area and comparing the results with gravity and magnetic datasets, we have further defined 

internal zones of interest within the broader target areas. Consequently, the potential search area has been even further 

reduced and this added value is one of the key outcomes of the study. Because of the systematic, process-driven approach 

taken here to targeting yet undiscovered mineral systems under post-mineral cover, systematic exploration conducted 

over the prioritized target areas defined here would be expected to have a high probability of success 
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Figures 

 

 

 
 

Figure 1. Mantle to Mine Workflow presenting the multiple stages of the knowledge driven and data driven 

approaches under the Minerals Systems Analysis umbrella. This workflow allows integration of expert geological 

knowledge in the systematic approach to identifying the ‘key’ geological parameters in the formation of mineral 

systems from the Upper Mantle through to the Upper Crust, where the Geomechanical Modelling is the key to 

identifying the ore localisation as a result of stress partitioning and fluid focusing.  
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Figure 2. This dataset displays an example of Phase 2 Machine Learning results showing regressed distance to 

copper, where we see least values correlating exceptionally well and ultimately predicting the location of the 

Prominent Hill Deposit and other surrounding mineralisation using only the Olympic Dam area training data, 

which is over 100 km to the southeast.  
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Figure 3. Results of the Geomechanical Modelling of the IOCG Province displaying calculated fluid pressure 

required for rock failure (Pff) in Pa. Geomechanical predictions of stress localisation during deformation is 

clearly highlighting areas requiring least additional fluid pressures required for rock failure (whites through to 

pinks and reds), with an excellent correlation of these lowest values areas with known locations of several IOCG 

deposits, and in addition highlighting several key structural locations for exploration. 
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Figure 4. The figure in the top left displays the Machine Learning Phase 2 composite Hit-Scores which were 

derived from the regressed distance values for gold, these results were then compared with the ‘Normalised’ 

Geomechanical outputs which produced a ‘failure probability map’ and confluences between these two 

techniques were the primary input in the derived Target Maps. These maps were then filtered by several 

geological datasets or favourable characteristics e.g., geophysics (top right) and depth to basement criteria 

(bottom right) in addition to several other datasets to provide the most geologically robust targets possible.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


