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SUMMARY 

 

Large volumes of geophysical data have been acquired by universities, industry, federal/state government agencies 

since the 1950s.  However, in many geophysical disciplines the valuable raw time series data has not been made publicly 

accessible and research geophysicists often have to go through a myriad of hurdles to gain access to raw and time series 

datasets of interest.  In order to increase online collaboration, reduce time for analysis, and enable reproducibility and 

integrity of scientific discoveries, geophysical datasets will need to evolve to adopt the FAIR (Findable, Accessible, 

Interoperable, Reusable) data principles for both human and machine-to-machine interactions. 

 

The ARDC/AuScope/NCI/TERN funded National High-resolution Geophysics Reference Collections for 2030 

Computation Project is working towards making accessible online the rawer, high-resolution versions of AuScope 

coinvested magnetotelluric and passive seismic datasets, ensuring that they comply with the FAIR data principles and 

can be integrated with existing government datasets on the NCI HPC platform.  Targeted raw geophysical datasets will 

be ingested and organised at NCI so that they can be (re)processed with computational tools available within the NCI 

compute systems, and derivative versions of processed data can be linked back to the source datasets.  Geophysical 

data releases will be discoverable through the NCI data catalogue and Research Data Australia: metadata will be 

structured to enable ‘vertical’ integration between repositories that have higher level products, but still reference the 

rawer data at NCI. 

 

The project will make high-resolution geophysical datasets suitable for programmatic access in HPC environments at 

NCI with the intention of more easily enabling inter-geophysical disciplinary science.  Managed geophysical software 

environments will be created that allow users the ability to fluently scale their Jupyter analysis notebooks to NCI’s 

HPC Gadi system using CPUs and GPUs.  This will ultimately lay the foundations for more rapid data processing by 

2030 next-generation scalable, data-intensive computation including artificial intelligence, machine learning and data 

assimilation. 
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INTRODUCTION 

  

 

Historically, the more voluminous rawer time series forms of geophysical data (processing levels L0-L1 in Table 1 of 

Rees et al., 2019) which have been acquired by universities, industry, federal/state government agencies, have been hard 

to access.  In part, this is because there is a perception that most users only want calibrated, pre-processed Analysis 

Ready Datasets (ARD) or visualisations of the datasets in formats that can easily be consumed by online dashboards 

and GIS products.  A more practical barrier to releasing these less processed L0 to L1 time series datasets has been 

because they are measured in GBs to TBs, whereas higher level products are often merely MBs in volume.  Most data 

suppliers cannot manage and process these larger volume L0-L1 datasets on their current internal infrastructures and 

the datasets are too large to make accessible as downloads from conventional online catalogues and portals.  Although 

copies of the time series datasets can be obtained by direct request to the data supplier, the average consumer is not 

likely to have onsite infrastructures suitable for processing.  Even on externally available commercial cloud 

infrastructures, the time series datasets are expensive to store and process, and it is difficult to aggregate multiple datasets 

to enable processing and modelling at regional to national scales and at high resolutions.  As a result, geophysical 
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datasets available online have typically been highly processed and/or downscaled/subsampled products to facilitate 

online transfer and processing.  Further, the majority of these higher level derivative data products rarely have sufficient 

metadata or provenance documentation and for the user, it was almost impossible to determine what processing steps 

and input parameters had been used in preparing the released dataset/data product.  Thus, practitioners were reliant on 

the processing of others which may not have been optimal to their target depth and/or their specific processing 

requirements (Rees et al, in press). 

 

The 2017-2020 Australian Research Data Commons (ARDC), National Computational Infrastructure (NCI), AuScope 

co-funded Geophysics Data-enhanced Virtual Laboratory (GeoDeVL) Project (Wyborn et al., 2020) focussed on helping 

accelerate the development of the AuScope National Geophysics Network and fostering a change towards a more 

flexible, online, virtual research environment, that enabled geophysicists to easily compose their own workflows 

specifically tailored to their particular research questions.  This project prototyped new and open methods of making 

magnetotelluric (MT) time series data Findable, Accessible, Interoperable and Reusable (FAIR, Wilkinson et al., 2016).  

Transparent workflows were also developed for processing the rawer, full resolution MT data collected with Earth Data 

Logger instruments.  By adapting MT time series data to modern High Performant Data (HPD) formats and enabling 

parallelisation of processing codes on HPC, data processing times were reduced from days and weeks to minutes. 

 

As a result of the GeoDeVL, minimally processed L0-L1 geophysical time series datasets are now being progressively 

organised at the NCI and housed in the AuScope National Research Data Collection.  This new, publicly accessible 

collection is focused on datasets from geophysical surveys whose acquisition, and/or instruments used to collect the 

data, have been funded through co-investments from AuScope.  At NCI, the datasets are collocated with current 

capabilities for processing and modelling MT data including NCI’s High Performance Computing (HPC) infrastructure, 

HPC/HPD-enabled codes, as well as new capabilities for interactive computing services, Jupyter notebooks and 

visualisation. 

 

The 2021-2023 ARDC/AuScope/NCI/Terrestrial Ecosystem Research Network (TERN) funded National High-

resolution Geophysics Reference Collections for 2030 Computation (2030 Geophysics Collections) Project (ARDC, 

2021) aims to both extend the current NCI geophysical data holdings and more importantly, it seeks to position time 

series geophysical data collections to be capable of taking advantage of the next generation technologies and 

computational infrastructures of 2030.  There are still many unknowns about geophysical processing in 2030, but what 

is definitely known is that by 2030, exascale HPC resources will be commonplace, data volumes will be measured in 

Zettabytes (1021 bytes) and it will be mandatory for data access to be fully machine-to-machine readable as is also 

required by the 2016 FAIR principles (Wyborn et al., 2022).  Internationally, projects are already exploring geophysical 

programs that can operate at exascale (e.g., Folch et al., 2022), whilst geophysical research teams from across the globe 

are beginning to collaborate and develop computationally reproducible narratives on open libraries of multi-physics 

geophysical data at multiple scales (Figure 1) in-situ on HPC. 

 

This paper will discuss progress on the 2030 Geophysics Collections project during 2021-2022 and will outline the work 

being done to prepare Data, Software and Computation for these next generation environments. 

 

PREPARING GEOPHYSICAL DATA FOR 2030 ENVIRONMENTS 

 
As a first step towards preparing for 2030 geophysical processing environments, we aim to expand the AuScope 

National Research Data Collection by publishing raw and calibrated, standardised time series data for magnetotellurics, 

passive seismic and Distributed Acoustic Sensing (DAS).  These datasets will be made accessible online and available 

for processing on NCI’s HPC infrastructure.  They will also be interoperable with existing government datasets at the 

NCI.  In order for these national geophysical reference collections to be usable on the exascale computers of 2030, 

existing datasets will need to be adapted and curated to follow international data standards that are suitable for 

programmatic access in HPC environments: they will also need to be fully compliant with the FAIR principles and be 

both human and machine readable.  This will require datasets to be accompanied by sufficient machine-readable 

metadata to enable long-term (re)use and aggregation into multiple, composite datasets that can be progressively 

updated as new processing methods and tools become available.  Processing codes, inversion codes and analysis 

software will need to be tuned for 2030 compute environments and be carefully managed/versioned to enable users to 

create transparent workflows from the original time series data through to the transfer functions and modelling outputs. 

 

As noted, for computation at the scales that will be available in 2030, all data will be required to be machine readable. 

The FAIR principles of Wilkinson et al. (2016) actually explicitly state that data needs to be machine readable, which 

in turn requires adherence to agreed community formats and metadata standards, preferably those developed and 

endorsed by international communities.  Kelbert (2020) observed that there is a long-standing need to modernise 

historical MT data formats to a common standard that is fully documented, platform-independent, extensible and 

accessible to the broader community of geoscientists.  Further, many standards and formats currently used in the 

geophysics community were developed when computational infrastructures were of limited capacity and were 

dominantly serial, as opposed to the extensive parallelisation that is ubiquitous today.  Ip et al., (2019) also noted that 

due to current format choices, large geophysical data has traditionally been difficult to manage in a consistent, open, 
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and efficient manner.  Ip et al. (2019) listed many imitations resulting from these current formats used in Australia 

including: 1) many working formats are closed and proprietary with potential vendor lock-in; 2) there is limited 

metadata support and metadata is typically available only as separate “sidecar” files (e.g., .des files for ASEG-GDF); 

3) inflexible/opaque binary formats; 4) downloading of the full dataset is typically required and there is no support for 

subsets via web services; 5) many are ASCII files (e.g., ASEG-GDF) which represents a lowest-common-denominator 

approach, providing interoperability at the cost of efficiency in both storage and access; and finally, 6) no intrinsic 

support for machine-to-machine interactions. 

 

For the 2030 project, we are trialling the conversion of The University of Adelaide/AuScope funded AusLAMP 

Musgraves Province survey time series dataset (https://dx.doi.org/10.25914/5eaa30d63bd17) into the new self-

describing MTH5 format (Peacock et al., 2022a) and MT_metadata standards of Peacock et al. (2021).  MTH5 is an 

HDF5 data container for magnetotelluric time series data that uses h5py (Collette et al., 2022) to interact with the HDF5 

file and Xarray to link to the time series data.  These trials have been tested on the NCI Gadi HPC system which is a 

highly parallel cluster comprising more than 200,000 processor cores on ten different types of compute nodes. 

 

At the same time, we are attempting to align the legacy AusLAMP Musgraves Province metadata with the international 

metadata standards for magnetotelluric time series data (Peacock et al., 2021).  The new MT_metadata standard is 

extremely comprehensive, containing attributes that relate to field acquisition through to metadata describing 

processing of time series data and transfer functions: it is also self describing meaning the metadata are included in the 

MTH5 file itself and can be parsed programmatically.  As noted by Kelbert (2020), historical formats (e.g., Wight, 

1988) no longer support the varieties and components of MT data and metadata collected today in modern geophysical 

surveys and thus, many attributes that were implicitly understood by a small collection of expert MT geophysicists are 

now explicitly expressed within the new MT_metadata standard. 

 

The AusLAMP Musgraves Province survey consists of 93 Earth Data Logger stations with each station recording one 

hour blocks of Long Period (LP) electric and magnetic field (EX, EY, BX, BY, BZ) ASCII time series, which meant 

that there were 120 separate electromagnetic time series ASCII files per recording day.  Each station was recording 

time series data at a frequency of 10 Hz and was left out in the field for anywhere between 5 and 67 days.  The station 

metadata for the Musgraves time series were presented in a separate Microsoft Excel spreadsheet, and each metadata 

component had to be adapted to comply with the international MT_metadata standard.  The ASCII time series were 

concatenated per run for each station and the total volume of time series data was 106 GB. 90 of the 93 stations were a 

single run - stations SA246, SA299 and SA324-2 had multiple runs. 

 

We developed code for the creation of: 

1. one mth5 file for all 93 Musgraves Province stations 

2. one mth5 file per station 

 

Generating one mth5 file for many stations can take a significant amount of time if no parallelism is introduced.  For 

the Musgraves example, if using the mth5 library (Peacock et al., 2022b) alone it would have taken approximately 14 

hours to generate our final mth5 file.  By utilising h5py’s Parallel HDF5 (Collette et al., 2022) and 2 nodes (96 CPUs) 

on Gadi, we were able to reduce this time to approximately 35 minutes.  For the one mth5 file per station model, we 

were able to create 93 MTH5 files in 3 minutes and 35 seconds using 2 nodes (96 CPUs) on Gadi.  Tutorials on both 

of these workflows were contributed to the mth5 github repository: 

https://github.com/kujaku11/mth5/blob/master/docs/examples/notebooks/mth5_in_parallel.ipynb  

https://github.com/kujaku11/mth5/blob/master/docs/examples/notebooks/mth5_in_parallel_one_file_per_station.ipyn

b 

 

The key conclusion from this work on preparing MT datasets for 2030 computation is that the speed at which the time 

series data can be processed means that the rawer time series forms of the data can now easily be processed in realistic 

timeframes by individual researchers to their target depth or specific processing requirements (Rees et al, in press).  

This also enables greater exploration of parameter space and multiple values for the same inputs to be trialled.  As 

multiple products can now be rapidly produced from each time series dataset, each derived product will be uniquely 

identified using Datacite Digital Object Identifiers (DOIs) and time stamped.  This will enable provenance tracking 

from any raw data acquisition to multiple derivative products and will enable ‘vertical’ integration between repositories 

that have higher level products, but still reference the rawer data at NCI.  All datasets will be discoverable in the NCI 

online catalogue (https://geonetwork.nci.org.au/geonetwork/srv/eng/catalog.search#/home) and in Research Data 

Australia (https://researchdata.edu.au/). 

 

COMPUTATIONAL AND SOFTWARE ENVIRONMENTS ON NCI 
 

Geophysical researchers have various options for running their computational workflows at NCI including:  

1. Gadi which is Australia’s peak research supercomputer, a highly parallel cluster comprising over 200,000 cores 

including 160 GPU compute nodes that provide 640 NVIDIA V100 GPUs. To run geophysical compute tasks 

https://dx.doi.org/10.25914/5eaa30d63bd17
https://github.com/kujaku11/mth5/blob/master/docs/examples/notebooks/mth5_in_parallel.ipynb
https://github.com/kujaku11/mth5/blob/master/docs/examples/notebooks/mth5_in_parallel_one_file_per_station.ipynb
https://github.com/kujaku11/mth5/blob/master/docs/examples/notebooks/mth5_in_parallel_one_file_per_station.ipynb
https://geonetwork.nci.org.au/geonetwork/srv/eng/catalog.search#/home
https://researchdata.edu.au/
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such as time series processing or inversions on Gadi, users are required to submit jobs to queues and Gadi utilises 

PBSPro to schedule all submitted jobs. 

2. The Australian Research Environment (ARE) which is a web-based graphical interface for performing 

computational research. ARE provides access to NCI’s Gadi supercomputer and multi-petabyte data collections 

and supports applications such as JupyterLab and Virtual Desktops. 

 

Many modern geophysical workflows utilise open source libraries and tools that are based on the classic core Project 

Jupyter (Perez & Granger, 2015; Granger and Pérez, 2021) programming languages: Julia, Python and R.  To allow for 

a more fluid experience for geophysical data analysis and processing, the NCI-geophysics module 

(https://opus.nci.org.au/x/1wG7CQ) has been developed which integrates Python, Julia and R environments together 

with thousands of pre-built libraries.  NCI users can access these libraries directly and use them within their own 

workflows without having to spend significant time building their own software environments.  One advantage of 

having a shared, quality controlled, community driven, regularly updated geophysical software environment module is 

that scientific workflows can easily be shared and reproduced without geophysical researchers having to grapple with 

software engineering principles such as containerisation, package dependencies, package managers (e.g., PIP, Conda, 

CRAN), compiling for HPC architectures, debugging, PATH variables, etc.  With the NCI-geophysics module, it is as 

simple as running: 

  $ module use /g/data/up99/modulefiles 

  $ module load NCI-geophys 

 

and any user has access to over 1500 Python/Julia/R libraries that can be used either on Gadi or via a JupyterLab or 

Virtual Environment on the ARE.  

 

The NCI-geophysics module has combined and compiled various open source Python/Julia/R geophysical software 

packages including ObsPy (Beyreuther et al., 2010), Pyrocko (Heimann et al., 2017), SimPEG (Cockett et al., 2015), 

MTpy (Krieger and Peacock, 2014; Kirkby et al., 2019), MTH5/MT_metadata (Peacock et al., 2022), HiQGA (Ray et 

al., 2022), JUDI (Witte et al., 2019), JuliaGeo (Barth et al., 2022) and many others with common data science, data 

format, HPC scaling and visualisation packages including Dask (Rocklin, 2015), Xarray (Hoyer and Hamman, 2017), 

Open MPI (Gabriel et al., 2004), mpi4py (Dalcin and Fang, 2021), h5py (Collette et al., 2022), Zarr (Miles et al., 2022), 

TileDB (Papadopoulos et al., 2016), netCDF4-python (Whitaker et al., 2020), GDAL (Rouault et al., 2022), GeoPandas 

(Jordahl et al., 2021), Bokeh (Collins et al., 2020), seaborn (Waskom, 2021), Plotly (Plotly Technologies Inc, 2015), 

JuliaParallel MPI.jl (Byrne et al., 2021), Mackie.jl (Danisch & Krumbiegel, 2021), ggplot2 (Wickham, 2016), dplyr 

(Wickham et al., 2022), tidyr (Wickham and Girlich, 2022) and many others.  

 

As geophysical datasets are ever increasing in volume and complexity, automating the processing, modelling and 

interpretations of these datasets with Artificial Intelligence (AI) and Machine Learning (ML) tools is becoming more 

commonplace (e.g., Puzyrev, 2019; Wrona et al., 2021; Yu and Ma, 2021).  To simplify the use of AI/ML tools on 

HPC, NCI have developed and manage an AI/ML environment (https://opus.nci.org.au/x/c4IYCg) that allows 

researchers to more easily run their AI/ML workflows using multiple GPU nodes on Gadi.  This module has bundled 

together many of the major data science and machine learning packages including Tensorflow (Abadi et al., 2016), 

Pytorch (Paszke et al., 2019), Scikit-learn (Pedregosa et al., 2011), Horovod (Sergeev and Del Balso, 2018), Xarray 

(Hoyer and Hamman, 2017), Dask (Rocklin, 2015) and Ray (Moritz et al., 2018).   

 

In addition to the NCI geophysics and AI/ML modules, standalone open source geophysics related applications that 

support parallel computation are progressively being added to Gadi including OpenQuake (Pagani et al., 2014), 

ModEM (Kelbert et al., 2014), esys-escript (Gross et al., 2007; Schaa et al., 2016), Mare2DEM (Key, 2016), Firedrake 

(Rathgeber et al., 2016), FEMTIC (Usui, 2015) and BIRRP (Chave and Thomson, 2003).  

 

By 2030, the use of well managed and FAIR software environments that integrate a plethora of different complex and 

intricate open source codes/libraries in multiple languages on HPC will become routine.  Many researchers typically 

just want software environments to “work” on HPC, and do not have the skills or time to manage thousands of software 

libraries and/or compile/adapt source code for HPC resources.  Global and interdisciplinary research teams of the future 

will become more reliant on software engineers to develop community driven software environments that aid and 

enhance the transparency and reproducibility of their scientific workflows. 

  

CONCLUSIONS 

 

The ARDC/AuScope/NCI/TERN funded 2030 Geophysics Collection is an exploratory project that is progressively 

making accessible online a selection of rawer, high-resolution versions of geophysical datasets that comply with the 

FAIR principles and are suitable for programmatic access in future 2030 next-generation scalable, data-intensive 

computation.  

 

https://opus.nci.org.au/x/1wG7CQ
https://opus.nci.org.au/x/c4IYCg
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Whilst there are still many unknowns about geophysical processing in 2030, we know that geophysicists will be able 

to work on less processed data levels and then transparently develop their own derivative products that are more tuned 

to the parameters of their particular use case, and they will be capable of more precise solutions that can be undertaken 

at regional to national scale.  

 

In exascale environments, research teams will be able to analyse larger volumes of these high-resolution datasets, and 

they will be able to see the quality of their algorithms or workflows quickly and within realistic time frames.  The NCI 

geophysics and AI/ML modules have been set up as a first try at integrating thousands of Python/Julia/R libraries and 

packages related to the geosciences, data science, HPC scaling and visualisation.  These modules aim to be community 

driven, regularly updated and will hopefully ease the burden of researchers having to spend an inordinate amount of 

time on software engineering.  Additionally, the NCI HPC software library of standalone geophysical codes that support 

parallel computation are being expanded and made available to the community.  

 

As noted by Rees et al. (in press), HPC computation is not widely used by the minerals exploration industry in Australia. 

In contrast, the petroleum industry has embraced HPC for processing of geophysics data over the past two decades. If 

we can enable explorationists to analyse their datasets at higher resolution, using flexible software environments that 

can be more precisely targeted at local conditions, will discovery rates increase? 
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Figure 1.  Types of geophysical data collected in Australia, the physical property measured and the depth of the 

crust that is sampled: also shown is the depth of current mining. Figure modified from original of Richard 

Chopping (GSWA). 
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