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SUMMARY 
 

In recent years, the pace of technological development has accelerated along with the demand for minerals critical to 

sectors like defence, aerospace, automotive, renewable energy, and telecommunications.  Countries increasingly seek 

access to reliable, secure, and resilient supplies of critical minerals, while global supply is uncertain due to market, 

technical, and commercial risks of exploration projects.  This has made exploration geologists apply new 

technologies like artificial intelligence (AI) to increase the success rate of exploration projects.  Recently, machine 

learning as a subset of AI has been successfully applied in different fields, such as spatial data analysis, to address 

different problems.  This study proposes a machine learning-based framework for generating prospectivity maps of 

critical minerals focusing on the Gawler Craton in South Australia.  This framework benefits from different novel 

machine learning methods for various purposes, including an improved generative adversarial network to overcome 

the class imbalance problem of the training dataset and the combination of positive and unlabelled learning and 

random forest as the main classifier for predicting mineralisation in the target area.  We evaluated the efficiency of 

our proposed framework by creating prospectivity maps of mafic-ultramafic intrusion-hosted cobalt, chromium, and 

nickel mineralisation in the Gawler Craton.  Various exploration datasets are used to generate input features, 

including publicly available geological, geophysical, and remote sensing datasets.  We use known mineral 

occurrences as positive samples and randomly created a number of samples throughout the study area as unlabelled 

samples.  Based on our results and different evaluation metrics, the model’s performance is stable, and its accuracy is 

significantly higher than the model generated by a conventional approach using a standard random forest classifier.  

Our prospectivity maps show a strong spatial correlation between high probability values and known mineral 

occurrences and predicts several potential greenfield regions for future exploration. 
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INTRODUCTION 
 

The need for various Earth resources, from critical minerals to aggregates, is rising due to global issues, technological 

development, population growth, and rising wealth.  These resources are required to fill supply gaps in the energy, 

industrial, and defence sectors.  Our data-driven society depends on Earth science to provide applicable answers to 

various questions and issues at different scales.  While some of the information required to answer these questions and 

problems must be newly discovered knowledge, the solutions frequently rely, at least in part, on data from already-

existing databases (e.g., federal and state survey databases).  We are able to gain new insights from the data by 

automating data extraction from numerous databases using cutting-edge analytical techniques such as machine 

learning and significantly improve our predictions for new mineral deposits.  Machine learning is the use of computer 

algorithms that improve automatically through experience and using data.  These techniques for classification and 

prediction have recently seen successful applications in Earth science, including the use of random forest, deep 

forests, gradient boosting machines, self-organising maps, and other mineral prospectivity mapping techniques (e.g., 

Xiong et al., 2018; Occhipinti et al., 2020; Zuo, 2020).  These models, which can be used at various scales, typically 

integrate geological, geochemical, geophysical, remote sensing, and drilling data.  Data-driven mineral prospectivity 

mapping techniques have been developed in response to the development of machine learning techniques and the 

accessibility of open exploration data to provide a reliable and affordable method for discovering new ore bodies 

(Merdith et al., 2015). 

 

Over the past few decades, a variety of machine learning techniques have been used to process and combine various 

data types in order to locate rare phenomena like economic mineralisation.  However, due to a number of technical 

difficulties, including the dearth of known mineral occurrences (positive samples) and the selection of negative 

samples in barren regions, there is a lack of a practical machine learning-based framework for mapping prospective 
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zones of critical minerals.  This study addresses these issues by introducing a novel machine learning-based 

framework for creating prospectivity maps of important minerals.  The efficiency of the framework is assessed by 

developing prospectivity maps of mafic-ultramafic intrusion-hosted mineralisation for three different commodities, 

including cobalt (Co), chromium (Cr), and nickel (Ni), which are essential for electric vehicles and battery metals, in 

the Gawler Craton, South Australia.  The Gawler Craton exploration datasets have some limitations, such as the dearth 

of important basement outcrops, the majority of which are covered by thick layers of Proterozoic to Phanerozoic 

sedimentary layers (Daly, 1998).  This may make it more difficult to comprehend the geological conditions that result 

in massive mineralisation events.  However, using other data types in conjunction with geophysical data, such as 

magnetic, gravity, and electrical resistivity, can help in imaging crustal structures deep within the Earth’s surface, 

beneath a thick sedimentary cover (Mclean and Betts, 2003, Drummond et al., 2006, Motta et al., 2019). 

 

Using a sizable amount of publicly available exploration datasets and creating various features related to the target 

mineralisation system, this study has increased the efficiency of greenfield exploration of critical minerals across the 

Gawler Craton.  The Gawler Craton is known as a desirable tectonic setting for exploration geologists and is home to 

several world-class mineral systems (Reid et al., 2019).  The ore discoveries include a number of iron oxide copper 

gold deposits, including Olympic Dam, the world’s third and fifth largest gold and copper resource (Ehrig et al., 

2012).  The Gawler Craton is the oldest and largest geological province in South Australia and records a complex 

geological history spanning from the Archean to the Mesoproterozoic era.  In this study, a model of prospective zones 

is created using the values of each feature at known mineral occurrences throughout South Australia.  This model is 

then applied to the Gawler Craton to predict the presence of target mineralisation zones that are either exposed to the 

surface or buried beneath the cover.  The proposed framework enables an automated processing workflow, allowing 

exploration geologists to modify inputs as necessary.  Tectonic and geological processes combine in a highly 

complex way to create the majority of mineral systems.  In order to generate prospectivity maps of target minerals 

using a quantitative process that fully utilises all pertinent available data, the proposed framework captures the 

complexity, different features, and their interactions.  Additionally, this study makes it possible to use the same 

technologies in various applications that use the same data types. 

 

MATERIALS AND METHODS 
 

The proposed framework (Figure 1) makes use of a variety of cutting-edge machine learning techniques for different 

tasks, such as an improved generative adversarial network (GAN) (Sharma et al., 2022) to address the class 

imbalance issue of the training dataset and the combination of a positive and unlabelled learning method (Mordelet 

and Vert, 2014) and random forest (Breiman, 2001) as the primary classifier for predicting mineralisation zones.  

With the aid of these machine learning techniques, it is possible to better recognise hidden patterns in complex and 

non-linear exploration data.  To build a model, the majority of supervised machine learning algorithms require both 

positive and negative training samples (Singh et al., 2016).  Positive samples are known mineral occurrences, but 

critical mineral occurrences frequently lack adequate labels.  A significant challenge for classifiers is the class 

imbalance in an exploration dataset, leading to inaccurate mineralised zone predictions.  By combining the benefits of 

GAN and the synthetic minority over-sampling technique (SMOTE), the proposed method solves the class imbalance 

issue while increasing the accuracy of potential maps. 

 

There are several approaches to creating a set of negative samples (Qi et al., 2005; Zuo and Carranza, 2011; 

Butterworth et al., 2016), each with trade-offs for over-training/over-fitting, classification accuracy, but most 

importantly, for maximising the predictive power of the model.  Negative samples generated randomly run the risk of 

choosing regions that may hold unexplored economic resources.  This would train the model in an unhelpful way to 

learn incorrect parameters linked to what is referred to as a false negative.  Contrarily, over-fitting and decreased 

predictive value of the model can result from too strict proximity selection of the negative training set (Carranza and 

Laborte, 2016).  Recent developments in the field of positive and unlabelled learning (PUL), which calls for positive 

and unlabelled samples for model training, have produced a number of effective machine learning techniques 

(Mordelet and Vert, 2014).  A binary classification technique called PUL recovers labels from unidentified samples.  

It achieves this by picking up knowledge from successful samples and relabelling problematic samples.  The positive 

and unlabelled bagging (PUB) method, a parallelised bootstrap approach, is used in this study to label unknown 

samples.  The algorithm iteratively trains many binary classifiers to distinguish known positive examples from 

random subsamples of the unlabelled set and averages their predictions (Mordelet and Vert, 2014).  The total number 

of positive and unlabelled samples is known, and using that information, an equal number of random samples are 

generated across the region of interest for known mineral occurrences and synthetic positive samples.  The PUL 

methods produce reliable positive and negative samples and can be applied to any supervised machine learning 

algorithm as a wrapper.  The main classifier in this study is a random forest, and the outcomes are contrasted with 

those of a standard random forest. 
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Figure 1.  Proposed machine learning-based framework for mapping prospective zones of critical minerals. 

 

RESULTS AND DISCUSSION 
 

The prospectivity maps aim to demonstrate the adaptability of the proposed framework and confirm the robustness of 

prospective regions in light of the model input parameters.  Any machine learning algorithm used in the framework 

has infinite permutations and iterations, and the hyperparameters and input datasets are tuned for the best model 

performance.  As a result, ideal model performance is established to constrain the algorithm, and similar events in the 

target region are predicted using the exploration data layers.  Geological, structural, and geophysical data layers make 

up the majority of the data layers used.  The model is trained using all mineral occurrences, regardless of grade or 

quality, due to the low number of positive training samples.  The highly prospective areas overlap with most of the 

known mineral occurrences, as shown in Figure 2.  As a proxy for quantifying model accuracy, a randomly split 10-

fold cross-validation classification is performed on each of the models.  Moreover, ten sets of training and testing 

samples are used to create a prediction variance map for each commodity.  In this study, 30% of positive samples are 

hidden from the machine learning model, and the remaining positive samples, along with unlabelled samples, are 

used to train the model.  Regardless of whether they offer a straightforward validation test for the model, the 

performance metrics must be viewed in the context of what the model is attempting to accomplish in practice.  The 

models successfully locate regions with known mineral occurrences despite the absence of significant deposits there 

to train on, such as the centre of the Gawler Craton, which is encouraging.  This implies the best possible model 

performance, encourages further greenfield exploration in the areas the model has identified and calls for a review of 

previously known occurrences in the southwest.  The performance of the models for all commodities exhibits a 

consistent pattern, and they offer accuracy levels of more than 90%. 

 

The model disclaims any geological knowledge and bases its classification solely on the data.  As a check against the 

model’s realistic response, highly ranked features can be compared to preconceived geological domain knowledge.  

In addition to advancing our understanding of mineral systems and formation processes, important features identified 

by the random forest classifier can also direct future exploration data collection requirements.  With additional 

restrictions on the quantity and quality of mineral occurrences, known equivalent formation mechanisms, and 

additional parameters, input data can be selected through a number of iterations.  The workflow can easily 

incorporate new data as it becomes available and incorporate any domain-expertise decisions an operator may make 

because it is highly adaptable, automatic, and reproducible.  Electrical resistivity, magnetic intensity, and Archaean-

Early Mesoproterozoic units are found to be the most significant data layers among the various data layers used in 

this study, and their corresponding features received the highest scores. 
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Figure 2.  Prospectivity map and prediction variance of a, b) Cr, c, d) Co, and e, f) Ni mineralisation hosted by 

mafic-ultramafic intrusions in the Gawler Craton overlaid the geological provinces. 

 

The models are stable, and the accuracy is significantly higher than the maps produced by the conventional approach 

using a standard random forest classifier, according to the results and various performance metrics.  The prospectivity 

maps identify several potential greenfield regions and demonstrate a strong spatial correlation between high 

probability values and known mineral occurrences.  In order to process multi-dimensional exploration data effectively 

and locate anomalies linked to important minerals in the Gawler Craton, a number of experiments are conducted.  

The proposed framework can identify internal relationships and characteristics between multivariate exploration data 

while minimising the impact of noise on predictions.  The extracted anomaly zones show how effectively delineating 

potentially mineralised zones in geologically complex areas can be accomplished using applied methods.  The 

preferred models are superimposed over the basement units of the Gawler Craton, and prospective zones are 

investigated based on our prior understanding of the metallogenic characteristics to verify the results.  Known 

mineralised provinces and prospective zones generally agree because they better restrict targeting within these 

regions.  The Cr model highlights a number of prospective regions, particularly in the centre of the Gawler Craton.  

These regions replicate Cr mineral occurrences and imply fair agreement with the geological setting and potential for 

Cr mineralisation.  A number of relatively prospective regions have also been discovered throughout the region.  The 

significance of these regions is based on the assumption that they represent genuine greenfield exploration targets that 

are not constrained by important locations.  Second, these regions consistently replicate with each model iteration, 
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regardless of the training points and parameter controls applied.  Some of the Cr prospective regions also consistently 

predict the mineralisation of Co and Ni.  These regions are suggested as potential locations for additional data 

gathering and exploration. 

 

Compared to concentrated Cr prospective regions, Co and Ni models exhibit a lower number of highly prospective 

regions dispersed throughout the Gawler Craton.  The distinctive differences in geological settings must be 

considered when interpreting the prospective regions for the major mineral occurrences in the Gawler Craton.  This 

complex mix of mineralisation-related geological environments suggests how challenging it is to predict potential 

greenfield exploration targets.  However, in this instance, both expected sites and some intriguing potential new 

locations are produced by the prospectivity models within the bounds of geological reason.  The Archaean to Early 

Mesoproterozoic paragneiss, granitic orthogneiss, iron formation, and mafic granulite are well correlated with the Co 

and Ni mineralisation.  The Co and Ni models accurately reproduce nearly all known significant mineralisation sites 

within the craton.  Across the western portion of the study area, it has been observed that highly prospective zones are 

concentrated close to the known significant mineralisation occurrences.  Both the Co and Ni models predict an 

intriguing region towards the northern and central portions of the region in the context of mineralisation regions with 

medium prospectivity.  The Co and Ni prospective regions are extremely repeatable with or without control points in 

every model iteration, similar to the localised Cr prospective zones mentioned above.  The sparse prospective regions 

in the southeast of the Ni map, which can be considered a potential area for greenfield exploration, are the primary 

distinction between the Co and Ni models. 

 

Regionally, the models indicate a trend towards highly prospective mineralisation throughout the central and western 

Gawler regions and a comparable concentration of prospective regions concentrated along the southwestern margins.  

This demonstrates the framework’s ability to derive a set of criteria that can independently predict the significant 

compositional variations in the underlying regional geology that account for the variations in mineralisation patterns 

between the economically important metallogenic provinces of the Gawler Craton (Hand et al., 2007).  The ideal 

locations for important exploration targets are suggested to be the localised areas with high prospectivity.  These 

targets are frequently located close to well-known mineral occurrences used to train the model.  The highly 

reproducible and relatively prospective regions for all commodities in the central and southwestern areas of the 

Gawler region are recommended as potential greenfield targets. 
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