
 
 

4th AEGC: Geoscience – Breaking New Ground – 13-18 March 2023, Brisbane, Australia   1 

 

Maximizing Value from available data via Advanced 

Geostatistical Inversion in the Growler Field 
 

Alessandro Mannini Diogo Soares Cunha Jimmy Ting 
Beach Energy Limited Beach Energy Limited GeoSoftware Sdn Bhd 

Alessandro.Mannini@beachenergy.com.au    Diogo.Cunha@beachenergy.com.au Jimmy.Ting@geosoftware.com 

 

 

SUMMARY 

 

The Growler field produces oil from the middle Birkhead formation. The main production area is a low relief four-way 

dip closure consisting of channel reservoir with thickness of ~15-20m that has been mapped from the 3D seismic 

amplitudes and confirmed by wells. Interpretation of the thin and lower quality oil reservoirs in the form of secondary 

channel and floodplain sandstone deposits from the seismic has not been successful. The inability to discriminate and 

delineate the geological and/or fluid facies is the main challenge to further explore and develop the field. The challenge 

is worsened by the uncertainty in the well logs and the poor-quality nature of land seismic data.  

 

An advanced pre-stack geostatistical inversion study has been carried out aiming to solve the observed key issues: i) 

discrimination of different reservoir facies from elastic properties derived from 3D seismic amplitudes; ii) enhancement 

of the quality of the seismic to resolve the inherent uncertainty associated with the AVO responses; iii) mitigation of 

the ambiguity of false AVO anomaly due to carbonaceous shale that had led to unsuccessful drilled well.  

 

The applied geostatistical inversion study workflow includes iterative seismic petrophysics and rock physics modeling 

to produce a good quality and consistent set of well logs; robust seismic data conditioning for removal of coherent and 

incoherent noises, and alignment of seismic events, with the resultant seismic AVO response calibrated with well data; 

deterministic inversion of conditioned multiple angle stacks and litho-facies estimation using Bayesian inference to 

provide understanding on the intricacies of the aforesaid challenges before application of geostatistical inversion. Joint 

facies and elastic properties inversion facilitated by Bayesian-based geostatistical inversion using Multigrid Markov 

Chain Monte Carlo algorithm has resulted in highly detailed subsurface facies models that show excellent match at 

most of the 14 blind wells not used in the study.   

 

Key words: Channel reservoir, floodplain sandstone, geostatistical inversion, AVO, iterative seismic petrophysics and 

rock physics modeling, Bayesian inference. 

 

INTRODUCTION 

  

The Growler field located in the Cooper–Eromanga Basin, South Australia, is an onshore field producing oil from the 

middle Birkhead formation of Jurassic age. Figure 1 shows the location of the Growler field and the stratigraphy and 

lithology of the Eromanga Basin. The main producing area under the current study is a low relief four-way dip closed 

structure consisting of a channel reservoir of 15-20m thickness that has been mapped from the 3D seismic amplitudes 

and confirmed by the drilled wells. Interpretation of 3D seismic data has revealed relatively lower quality oil reservoir 

in the form of minor sandstone channel, crevasse-splay, and floodplain deposits to the north of the main structure. To 

draw strategy for optimum development of this field as well to support further exploration campaign pre-stack seismic 

inversion has been carried out. 

 

The objective of the study is to derive a highly detailed subsurface facies models solving several challenging problems 

in this area. Some of the key issues to solve are: i) discrimination of different reservoir facies from elastic properties 

derived from deterministic inversion due to their substantial overlap, ii) inherent uncertainty associated with the AVO 

(Amplitude Versus Offset) responses due to poor quality of land seismic data requiring optimal preconditioning of the 

seismic gather data; and iii) mitigation of the ambiguity of false AVO anomaly due to carbonaceous shale that had led 

to unsuccessful drilled well. 

 

An innovative workflow comprising iterative seismic petrophysics and rock physics modeling, preconditioning of 

seismic data for removal of both coherent and incoherent noise and seismic event alignment was used to calibrate the 

seismic AVO response with well data. Deterministic inversion of multiple angle stacks was carried out and litho-facies 

estimated using Bayesian inference to understand the intricacies of the aforesaid challenges before application of 

geostatistical inversion to derive highly detailed subsurface model. Joint facies and elastic properties inversion 

facilitated by geostatistical inversion using Multigrid Markov Chain Monte Carlo method has resulted in good quality 

facies results that match wells at several blind locations and conform to the depositional setup of the area. 
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Figure 1. Left: The red box indicates the location of the Growler field; Right: The general stratigraphy and 

lithology of the Eromanga Basin highlighted with the Middle Jurassic Birkhead Formation containing known oil 

reservoirs.  

 

STUDY WORKFLOW 

 
Different elements of the workflow used in the present study comprises i) seismic data conditioning, ii) integrated and 

iterative well log conditioning, seismic petrophysical evaluation and rock physics modeling, iii) deterministic inversion 

and iv) geostatistical inversion. The work elements have been used iteratively rather than in sequential fashion to 

achieve the objectives of this study. 

 

Seismic Data Conditioning and Enhancement 

 

The seismic data used in the study is of reasonable quality for the time window of interest. The Birkhead formation has 

relatively weaker seismic amplitude and lower signal-to-noise compared with the overburden. Class III type AVO 

response expected in the oil-bearing zone is quite subtle in the current seismic data. Besides, anomalously strong 

amplitudes in angle stacks up to 15 degrees has apparently distorted the AVO gradient. Seismic conditioning workflow 

has been designed to remove remnant multiples, random and coherent noise to improve the AVO information. One 

pass of radon-demultiple and three passes of random de-noise processes were applied starting from the gather data 

which has NMO (Normal Moveout) with Eta (η) correction and trim statics already applied. Figure 2 shows the 

comparison of the seismic data before and after conditioning. As it could be seen, the anomalously high amplitude of 

the near stack has been attenuated while the far stack shows improved seismic continuity and details after conditioning. 

The effect of seismic data conditioning was assessed at selected well locations using seismic-well ties as well as a first 

pass deterministic AVA (Amplitude Versus Angle) simultaneous inversion to ascertain if the desired level of noise 

removal was achieved without deteriorating the seismic signal. A section of inverted P-Impedance and Vp/Vs (Figure 

3) clearly shows that conditioned data yields more consistent and reasonable elastic properties variation for the 

Birkhead formation, apart from the improved match at the well locations. The shale with high Vp/Vs at GC40 as well 

as GC34 sand packages have been resolved much better compared with the inverted results derived from the angle 

stacks before seismic data conditioning. 
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Figure 2. Near and far angle stacks before (left) and after (right) seismic data conditioning. The adjoining maps 

show corresponding root mean squares attributes. The conditioning process has attenuated the strong amplitude 

of the near stack while the far stack shows improved seismic continuity after conditioning. 

 

 
Figure 3. Deterministic inversion using seismic data before (left) and after conditioning (right) exhibits 

significant improvement of match at the well locations. Besides, inversion of conditioned seismic data results in 

more consistent and reasonable elastic properties variation in the Birkhead formation. The inset shows the 

Birkhead horizon with outline of the seismic section. 

 

Well Log Conditioning, Seismic Petrophysics, Rock Physics Modeling and Validation with Seismic 

 

Integrated and iterative well log conditioning, seismic petrophysical evaluation, rock physics modeling workflow 

validated through well to seismic tie and AVO/AVA modeling (Talib et al., 2020) as shown in Figure 4 has been 

adopted to produce a consistent set of petrophysical and elastic property curves that facilitates a full understanding on 

the relationship between geology (Facies), petrophysical properties (Volume of Clay, Porosity, and Saturation), elastic 

properties (P-velocity, S-velocity, and Density), seismic amplitudes, and AVO. 

 

 
Figure 4. Integrated and iterative well log conditioning, seismic petrophysical evaluation, rock physics modeling 

workflow validated through well to seismic tie and AVO/AVA modeling (Talib et al., 2020). 

 

Figure 5 shows the crossplot of P-impedance versus Vp/Vs color-coded by Facies, comparing the measured data versus 

the final rock physics modeled data. The final rock physics modeled logs show consistent trend of elastic properties 

and significant improvement in facies classification and discrimination. These results have been further validated with 

seismic data via deterministic inversion as shown earlier in Figure 3. 



Maximizing Value via Advanced Geostatistical Inversion                                                          Mannini, Cunha, Ting 

4th AEGC: Geoscience – Breaking New Ground – 13-18 March 2023, Brisbane, Australia   4 

 

 
Figure 5. P-impedance versus Vp/Vs crossplots showing significantly improved consistency of elastic property 

data with the facies in the final rock physics modeled logs (Right) compared to the measured logs (Left). 

 

Well Feasibility 

 

At the resolution of seismic data (or deterministic inversion), only three facies, viz. Non-Reservoir, Reservoir, and 

Carbonaceous Shale could be defined over the zone of interest. The point bar pay sands that accumulated at the core of 

the Growler field can just be partially separated at seismic resolution based on the well log data (Left crossplot in Figure 

6). In the presence of noise in seismic data, if not properly eliminated/attenuated, it might even be difficult to 

discriminate the point bar pay sands from other facies using deterministically inverted elastic properties as illustrated 

in the right crossplot of Figure 6. 

 

 
Figure 6. P-impedance versus Vp/Vs crossplots at seismic resolution. Left: Based on the well log data at seismic 

resolution, Oil sand can just be partially separated; Right: Oil sand might become non discriminable in the 

inverted pseudo logs extracted from the deterministic inversion probably due to presence of noise in the seismic 

data. 

 

In order to improve the discrimination and prediction of Facies from the seismic data and exploit the high-resolution 

capabilities of geostatistical inversion, the Facies logs from the right crossplot of Figure 5 were redefined and classified 

into 2 levels: Level 1 Facies consisting of Shale, Sand and Carbonaceous Shale; Level 2 Facies consisting of Shale, 

Cemented Sand, Low Porosity Sand, Medium Porosity Sand, High Porosity Sand and Carbonaceous Shale, as shown 

in Figure 7. At the geostatistical inversion resolution and with the use of multi-level facies in the geostatistical inversion 

process, more detailed classification of geologically meaningful facies can be potentially predicted from the seismic 

data. 
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Figure 7. The Facies logs from the right crossplot of Figure 5 are redefined and classified into 2 levels to exploit 

the high-resolution capabilities of geostatistical inversion: Left: Level 1 Facies consisting of Shale, Sand and 

Carbonaceous Shale; Right: Level 2 Facies consisting of Shale, Cemented Sand, Low Porosity Sand, Medium 

Porosity Sand, High Porosity Sand and Carbonaceous Shale. 

 

Deterministic AVA Simultaneous Inversion 

 

Five angle stacks created from the conditioned gather data with angle ranges 0 – 50 degrees have been simultaneous 

inverted for P-impedance and Vp/Vs. Constrained Sparse Spike Inversion (CSSI) was used in this study (Debeye and 

van Riel, 1990). In CSSI, the subsurface is represented by minimum number of reflectors and is constrained by the 

geology of the area to capture vertical trend and lateral continuity of reflections (Contreras et al., 2006). The inversion 

process is controlled by a set of constraints based on a priori information from the known geology or from well curves. 

These constraints effectively limit the range of potential solutions to those having geophysical and geological 

significance. Transformation of seismic reflection traces into acoustic/elastic impedance layer facilitates the recovery 

of the geologic information contained in the seismic data. Lateral variations in the low frequencies, missing from 

seismic data, are incorporated via the use of model file derived from final well log data as the trend. 

 

The results of deterministic inversion are interpreted using the principle of Bayesian inferences. The most likely facies 

and the probability of the reservoir facies are shown in Figure 8. The reservoir is then delineated using geobody 

checking process based on the reservoir probability of >50% as the cutoff value, as shown in Figure 9. The point bar 

sand in the producing area is well captured with this method. 

 

 
Figure 8. Most probable facies and reservoir probability volumes interpreted from deterministic inversion 

results using Bayesian inference for three facies, viz. Non-Reservoir, Reservoir, and Carbonaceous Shale. Right 

top panel shows the 2D probability density functions of P-impedance and Vp/Vs per facies. 
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Figure 9. Point bar sand at the core of the Growler field delineated using geobody checking process based on the 

reservoir probability volume from deterministic inversion with cutoff value above 50%. 

 

Advanced AVA Geostatistical Inversion 

 

Analysis of deterministic inversion results provided with, much deeper insight into the challenges posed by data quality 

and data inadequacy issues while integrating multidisciplinary data, e.g., well logs, seismic partial angle stacks, 

structural interpretations, etc. in the previous stages. All these issues are addressed in geostatistical inversion where 

multiple realizations of litho-facies and elastic properties have been derived jointly to cover various possible scenarios 

of the subsurface. The results of geostatistical inversion provide with higher level of details beyond resolution of 

seismic data and deterministic inversion.  

 

Goodman and Sokal (1998) have given a detailed description of Multigrid Markov Chain Monte Carlo algorithm to 

sample the multi-dimensional and multi-modal posterior probability density function. In geostatistical inversion, the 

posterior probability density function is obtained by combining the prior knowledge of facies proportion with the 

likelihood of elastic properties, under Bayesian framework (Contreras et al., 2014). In essence, it is a paradigm of joint 

inversion where the models of the facies (discrete properties) and elastic properties (continuous properties) evolve 

simultaneously (Debeye, 2018 and 2019) during the inversion process. Seismic data helps to accept or reject proposals 

to update the evolving model. To keep the process unbiased, geostatistical inversion is run in two stages.  In the first 

stage, an unconstrained inversion is run where none of the well properties, whether discrete or continuous, are used as 

hard data. The premise is that the parameters of the geostatistical model selected during modeling should bring out the 

targeted fine details of the subsurface when seismic data is used along with the appropriate wavelets with seismic signal 

to noise ratio being a free parameter to vary. If required, geostatistical model is updated till the results of geostatistical 

inversion show reasonable match with the wells which are kept as blind to this process. Once satisfactory results are 

obtained, the wells properties, both facies and elastic, are set as constrained wells and inversion is run again - this stage 

being called the constrained inversion. It is imperative to note that all wells with good quality data, which provide 

valuable prior information for geostatistical inversion should be used as constraints. A total of 81 highly detailed 

realizations of equi-plausible reservoir descriptions were generated to derive statistically stable results and also capture 

the uncertainty due to bias comprising the uncertainties in facies proportions, vertical and lateral variogram ranges, 

seismic noise, etc.  

 

Figure 10 shows the comparison between the sand probabilities generated from deterministic inversion results and the 

sand frequency generated from the 81 realizations of geostatistical inversion results. Geostatistical inversion shows 

improved sand prediction with higher resolution yet honoring seismic amplitudes. Additional sands are predicted in the 

north-west and north-east side of the core of Growler field, which was not predicted by deterministic inversion. These 

sands are floodplain deposits with much lower Net-to-Gross ratio. 
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Figure 10. Better sand prediction with improved resolution attained with geostatistical inversion results (top) 

compared with deterministic inversion results (bottom). The black line in the cross-section indicates the 

stratigraphic slice position currently displayed in the maps. Note the additional sand prediction to the north of 

the main producing field from the geostatistical inversion, which is mostly related to the floodplain deposition. 

 

At the end of the geostatistical inversion process, drilling results at 14 blind wells (not used till now) were investigated 

to assess the accuracy of the study results. Thickness of sands in the reservoir interval was computed from the reservoir 

sand flags for each of the wells and compared with those derived from geostatistical inversion. Predicted sands 

thickness from the 81 realizations of geostatistical inversion results at each of the blind well location were calculated 

and ranked as cumulative normal distribution function (CDF) (Left picture in Figure 11). To assess the accuracy of 

prediction, the measured sand thickness at each of the 14 blind wells was used to find out the value on the CDF. 

Measured sand thickness falling within the range P30-P50 is considered good, within P10-P30 or P70-P90 is considered 

moderate and below P10 or above P90 is considered as a poor prediction. The results of this analysis as shown in the 

two tables on the right side of Figure 11, have shown that the actual reservoir sand thickness for all the wells except 

for one of the horizontal wells are well predicted within the P10 and P90 range; 57% of the wells show good match; 

and 36% of the wells show moderate match. 

 

 
Figure 11. Blind well analysis using quantitative approach via ranking: Reservoir sand thickness (vertical wells) 

or reservoir sand count (horizontal wells) are compared with the cumulative distribution function at the 

respective well location for the probability. Note that the blind wells sand thickness/count are well predicted 

within the P10 and P90 range. 

 

CONCLUSIONS 

 

A careful well data guided seismic conditioning, together with the seismically validated, integrated and iterative well 

log conditioning, seismic petrophysical evaluation and rock physics modeling approach was successfully used for 

detailed reservoir characterization study in the Growler field. Use of geostatistical inversion has tightly integrated the 

conditioned seismic data and rock physics modeled logs to extract highly detailed reservoir model from the seismic 

data. The accuracy of the results of this study have been assessed quantitatively by extensive blind well analysis. Sand 

encountered in most of the blind wells were found to lie between P10 to P90 giving rise to high level of confidence to 

use these results for future field optimization and development. 
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