
Improving Binary Code Similarity Transformer Models by
Semantics-driven Instruction Deemphasis

Xiangzhe Xu
Purdue University
West Lafayette, USA
xu1415@purdue.edu

Shiwei Feng
Purdue University
West Lafayette, USA
feng292@purdue.edu

Yapeng Ye
Purdue University
West Lafayette, USA
ye203@purdue.edu

Guangyu Shen
Purdue University
West Lafayette, USA
shen447@purdue.edu

Zian Su
Purdue University
West Lafayette, USA
su284@purdue.edu

Siyuan Cheng
Purdue University
West Lafayette, USA
cheng535@purdue.edu

Guanhong Tao
Purdue University
West Lafayette, USA
taog@purdue.edu

Qingkai Shi
Purdue University
West Lafayette, USA
shi553@purdue.edu

Zhuo Zhang
Purdue University
West Lafayette, USA
zhan3299@purdue.edu

Xiangyu Zhang
Purdue University
West Lafayette, USA

xyzhang@cs.purdue.edu

ABSTRACT
Given a function in the binary executable form, binary code similar-
ity analysis determines a set of similar functions from a large pool
of candidate functions. These similar functions are usually com-
piled from the same source code with different compilation setups.
Such analysis has a large number of applications, such as malware
detection, code clone detection, and automatic software patching.
The state-of-the art methods utilize complex Deep Learning models
such as Transformer models. We observe that these models suffer
from undesirable instruction distribution biases caused by specific
compiler conventions. We develop a novel technique to detect such
biases and repair them by removing the corresponding instructions
from the dataset and finetuning the models. This entails synergy
between Deep Learning model analysis and program analysis. Our
results show that we can substantially improve the state-of-the-art
models’ performance by up to 14.4% in the most challenging cases
where test data may be out of the distributions of training data.

CCS CONCEPTS
• Security and privacy → Software reverse engineering; •
Computing methodologies→Machine learning.

KEYWORDS
Binary Similarity Analysis, Transformer, Program Analysis
ACM Reference Format:
Xiangzhe Xu, Shiwei Feng, Yapeng Ye, Guangyu Shen, Zian Su, Siyuan
Cheng, Guanhong Tao, Qingkai Shi, Zhuo Zhang, and Xiangyu Zhang.
2023. Improving Binary Code Similarity Transformer Models by Semantics-
driven Instruction Deemphasis. In Proceedings of the 32nd ACM SIGSOFT

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ISSTA ’23, July 17–21, 2023, Seattle, WA, United States
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0221-1/23/07.
https://doi.org/10.1145/3597926.3598121

International Symposium on Software Testing and Analysis (ISSTA ’23), July
17–21, 2023, Seattle, WA, United States. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3597926.3598121

1 INTRODUCTION
Given a query function 𝑓 , code similarity analysis [1, 5, 16, 28, 29]
finds the functions from a pool 𝑃 that are similar to 𝑓 . Similar-
ity analysis has a wide range of applications in automatic soft-
ware patching [3, 36, 46, 55, 56, 68], software plagiarism detec-
tion [9, 33, 52, 60, 71], and 1-day vulnerability detection [15, 62].
For instance, a critical security vulnerability might be detected
in a library. It is essential to detect whether an existing project
contains the problematic function from that library. Binary simi-
larity analysis is a special kind of code similarity analysis. It han-
dles functions in the executable form, without source code or any
symbolic information. In the context of binary similarity analy-
sis, similar functions are usually compiled from the same source
code with different compilers or compilation options. It is partic-
ularly useful in reverse engineering [21, 22, 44, 62] and malware
analysis [6, 10, 18, 19, 24, 26, 70]. Traditionally, binary similarity
analysis is achieved using classic program analysis such as control-
flow differential analysis [7, 25], program dependence analysis [67],
symbolic execution [13, 33], and trace analysis [13, 17, 22, 40, 62].

Recent research has shown that Deep Learning models, such as
Transformer models, can achieve state-of-the-art results in binary
similarity analysis, outperforming classic methods [44, 61]. For
example, JTrans [61] uses Transformer models and achieves 62.5%
accuracy, 30.5% better than the prior work. In JTrans, the model
first encodes 𝑓 and every function in 𝑃 to embeddings. It then
computes the cosine similarity between the embedding of 𝑓 and
the embeddings of all functions in 𝑃 . A high cosine similarity value
between a pair of embeddings indicates that the model considers
the related two functions similar. Functions in 𝑃 are further ranked
by the similarity values and the top-𝑘 functions may be selected as
similar functions. The model is trained on a large set of function
pairs that are labeled as similar or dissimilar, using contrastive

https://doi.org/10.1145/3597926.3598121
https://doi.org/10.1145/3597926.3598121

ISSTA ’23, July 17–21, 2023, Seattle, WA, United States X. Xu, S. Feng, Y. Ye, G. Shen, Z. Su, S. Cheng, G. Tao, Q. Shi, Z. Zhang, and X. Zhang

learning. In total, there are over 3 million function pairs used in
training, much more than a few other similar methods [27, 37, 44].

However, as we will show in Section 2.2, the inherent compiler
conventions (e.g., generating specific instruction sequences at func-
tion prologues) introduce instruction distribution biases, some of
which are undesirably associated with specific similarity analysis
results. For example, a particular instruction appearing in the pro-
logue of a function but not in the other similar function may lead to
a misclassification of dissimilarity. However, we cannot simply re-
move instruction distribution biases because many of them are not
caused by compilers, but rather due to unique program semantics.
In other words, they may be important to correct classification.

In this paper, we aim to identify and suppress undesirable biases
to improve Transformer-based binary similarity analysis models. In
particular, we first determine a set of instructions that are important
to classification results (regarding all training samples). We then
use program analysis to determine if these instructions indeed
have semantics importance. If not, they are likely due to compiler
introduced biases.We further propose to preclude these instructions
by removing them from all the binary functions and finetuning the
model with the updated dataset.

Our contributions are summarized as follows.

• We propose a novel instruction deemphasis technique that
can effectively prevent a model from learning instruction
distribution biases introduced by compilers, and improve the
generalizability of models on out-of-distribution data.

• We devise a method to identify instructions from a binary
function that may significantly affect the classification re-
sults of a binary similarity analysis model.

• We propose a novel metric that can measure the importance
of a single instruction to the semantics of a binary function.

• We develop a prototype DiEmph. We conduct experiments
on 6 state-of-the-art models and evaluate the effectiveness
of DiEmph on 7 real-world projects widely-used for the bi-
nary similarity tasks. The results show that DiEmph im-
proves models’ performance on out-of-distribution data by
3.7–14.4%. In the most practical application scenario, namely,
using the most complex model trained on the largest dataset,
DiEmph achieves 14.4% accuracy improvement on out-of-
distribution data, from 37.2% to 51.6%.

2 MOTIVATION
In this section, we use an example to discuss the limitation of
existing methods and illustrate our method.

2.1 Motivating Example
The example is simplified from the function xrealloc() in Core-
utils [12]. It is shown in Fig. 1a. The function is used to change the
sizes of an allocated memory region. It takes as input two parame-
ters. The first one is a pointer to an allocated memory region, and
the second is a new size. In common cases, the function returns
a pointer with the new size (at line 13). If the second parameter
is zero, xrealloc will free the region and return a null pointer
(at line 9). The if-statement at line 12 handles exceptional cases:
if the function realloc returns a null pointer, a non-return error

processing function xrealloc_die will be invoked. The function
emits an error message and terminates the execution.

We compile the function with the GCC compiler and the option
-O3, and with the Clang compiler and the option -O0. The resulting
control flow graphs (CFGs) are shown in Fig. 1b and Fig. 1c, respec-
tively. We number the basic blocks and list the numbers in the red
circle at the upper left corner of each basic block. Note that we label
the corresponding basic blockswith the same numbers. At the begin-
ning of both CFGs, the two parameters p and n are stored in registers
rdi and rsi, respectively. The first basic blocks of both functions
contain the function prologue (e.g., saving registers and allocating
a stackframe). Basic blocks 2–3 contain the program logic for com-
mon cases: invoking realloc and returning its result. Basic blocks
4 (in both CFGs) free the pointer pwhen the new size n is zero. Basic
blocks 5 process exceptional cases as shown at line 12 of Fig. 1a.

2.2 Limitations in State-of-the-Art Models
The CFGs in Fig. 1b and Fig. 1c have similar control structures
and have many corresponding instructions. However, the state-
of-the-art Transformer-based method JTrans [61] produces a low
similarity score (0.3) to this pair of CFGs. The majority of similar
function pairs are expected to have a score larger than 0.5. Thus
the model mistakenly concludes these two CFGs are not similar.
We investigate the results and find that the model is undesirably
sensitive to some special patterns in the function prologue, namely,
these patterns are considered very important to classification results
by the model. Some of the misclassification-inducing patterns are
highlighted by the orange circles in Fig. 1b and Fig. 1c. Specifically,
in the optimized version (Fig. 1b), the GCC compiler inserts an
additional instruction endbr64 at the beginning. The instruction is
irrelevant to the program functionality. It is used to support control
flow integrity [54], a security feature on recent processors. However,
the model tends to consider a pair of functions likely dissimilar
when one has the instruction and the other does not. By manually
adding the endbr64 instruction to the un-optimized version, we
can increase the similarity score for this pair of binary functions
to 0.60. Even removing the instruction from the optimized version
allows us to improve it to 0.52.

We further investigate the training dataset and find that the
endbr64 instruction has an undesirable bias in distribution. The
training data of JTrans [61] contains over 3 million binary functions
with different functionalities. For each pair of binary functions in
the training dataset, there are two possible labels, i.e., similar and
dissimilar, whose ratio is 1:2. Following the same ratio, we randomly
select 0.9 million pairs of similar functions and 1.8 million pairs
of dissimilar functions and study the distribution of the endbr64
instruction in these two kinds of function pairs. The results are
shown in Fig. 2. Observe that when only one of the function has
the instruction, the numbers of similar and dissimilar function
pairs have the ratio of 1:27, substantially deviated from the 1:2 ratio.
Hence the trainedmodel undesirably associates the inconsistency of
endbr64’s presence with the conclusion of dissimilarity. Note that
not all distribution biases are problematic. It is quite common that
certain instructions (or sequences) are representative for specific
functionalities. Therefore, a simple idea of removing all biases can
hardly work.

Improving Binary Code Similarity Transformer Models by Semantics-driven Instruction Deemphasis ISSTA ’23, July 17–21, 2023, Seattle, WA, United States

1 void x a l l o c _ d i e () {
2 . . .
3 e x i t (−1) ;
4 }
5 void ∗ x r e a l l o c (void ∗ p ,
6 s i z e _ t n) {
7 i f (! n && p) {
8 f r e e (p) ;
9 return NULL ;
10 }
11 p = r e a l l o c (p , n) ;
12 i f (! p && n)

x a l l o c _ d i e () ;
13 return p ;
14 }

(a) Source Code

; p stores in rdi
; n stores in rsi
1:endbr64
2:push rbx
; also store n in rbx
3:mov rbx, rsi
4:if (rdi==0 && rsi!=0)

; realloc(p, n)
5:mov rsi, rbx
; return value is in rax
6:call realloc
7:if (rax==0 && rbx!=0)

; free(p)
10:call free
11:xor rax, rax
12:ret

13:call xalloc_die
14:xchg ax, ax8:pop rbx

9:ret

1

2

3

4

5

(b) CFG (GCC -O3)

; p stores in rdi
; n stores in rsi
1:push rbp
2:mov rbp, rsp
...
; store parameters
3:mov [rbp-0x10], rdi
4:mov [rbp-0x18], rsi
5:if ([rbp-0x18]==0 && p)

...
6:call realloc
7:mov [rbp-0x8], rax
8:if([rbp-0x8]==0 && n)

12:mov rdi, [rbp-0x10]
13:call free
; return value
; stores in [rbp-0x8]
14:mov [rbp-0x8], 0

15:call xalloc_die 9:mov rax, [rbp-0x8]
10:pop rbp
11:ret

1

2

5

4

3

(c) CFG (Clang -O0)

Figure 1: Motivating example. The two control flow graphs (CFGs) are the compilation results of Fig. 1a. Green and red edges in
the CFGs denote the control flow that the related branch is taken, or not taken, respectively. Red edges also denote the default
control flow. We number the basic blocks and show the numbers in red circles.

Dissimilar Function Pairs
with endbr64 in one of the functions

Dissimilar Function Pairs
with endbr64 in both/neither of the functions

Similar Function Pairs
with endbr64 in one of the functions

Similar Function Pairs
with endbr64 in both/neither of the functions

1.42M

0.75M
493k

18k

Figure 2: Undesirable bias in the distribution of training
dataset. We divide samples in the training dataset of JTrans
into four categories. The pie chart depicts the number of
samples in each category.

2.3 Our Technique
Existing techniques suffer from biased distributions of certain in-
structions. These biases are caused by compilers whose inherent
behaviors may not strictly follow a normal distribution due to their
deterministic nature. The overarching idea of our technique is to
deemphasize instructions that do not denote essential program se-
mantics, such as the aforementioned endbr64 instruction added to
support control-flow-integrity.

We determine instructions that are important to classification
results over the entire training set. The importance of an instruction
𝑖 is determined by embedding changes of all functions involving 𝑖
when we remove 𝑖 from the function (Section 3.1). It is also called
the classification importance. For an instruction 𝑖 of top-𝑘 classifica-
tion importance, we use program analysis to determine 𝑖’s semantics
importance. Specifically, given a function, if 𝑖 is in the backward
slice of any stable variable, (e.g., a heap variable, or a return vari-
able) in the function, 𝑖 is considered semantically important to the
function. A variable is unstable if it is likely changed by compiler
optimization. A local variable of a primitive type (e.g., int) is un-
stable because it may be placed on stack in one version and in a
register in another (optimized) version. Stable variables tend to
have consistent representations in similar functions. Intuitively,
an instruction is considered important if it directly or transitively

contributes to the computation of some stable variables. We say
𝑖 is semantically important regarding a dataset if it is important
for at least a certain number of functions in the dataset. Additional
challenges need to be addressed in the backward slicing as certain
dependences need to be precluded (Section 3.2). If an instruction
has top classification importance but not semantics importance,
it is removed from all the functions in the training dataset. We
then finetune the model using the reduced dataset to repair the
undesirable biases.

In our example, the endbr64 at the beginning of Fig. 1b has a rel-
atively high classification importance of 0.1, while the instruction
call realloc has an importance of only 0.05. That is, the model
considers endbr64 even more important than the call instruction.
Although endbr64 has classification importance, it is not semanti-
cally important. In particular, we identify all the stable variables
in the function and then determine the important instructions. For
instance, the ret instruction (at line 9 in block 3) implicitly returns
the value in rax to the caller1. Thus rax@9 (meaning rax at line
9) is a stable variable. We highlight all the instructions that affect
rax@9 with blue shadow (i.e., its backward slice). The blue dashed
arrows denote the dependences. First, rax@9 is (implicitly) defined
by the function call realloc at line 6 through its return. And the
result of the function call is affected by its parameters. The first
parameter (rdi) is defined at the function entry, and the second
one (rsi) is defined at line 5. The instruction mov rsi, rbxmeans
that copying the value in register rbx to rsi. The variable rsi@5
hence depends on rbx@5, which is defined at line 3. The variable
rbx@3 is in turn defined by rsi from the function entry. Thus our
analysis identifies that instructions at lines 3, 5, 6 affect the variable
rax@9 and consider them important. The endbr64 instruction is
considered semantically unimportant.

Removing endbr64 and a fewmore instructions of similar nature
from all functions in the dataset and fine-tuning the model allows
us to improve JTrans’s accuracy from 34% to 51%.

1At the binary level, function return value is in rax by default.

ISSTA ’23, July 17–21, 2023, Seattle, WA, United States X. Xu, S. Feng, Y. Ye, G. Shen, Z. Su, S. Cheng, G. Tao, Q. Shi, Z. Zhang, and X. Zhang

3 DESIGN
The overall workflow of DiEmph is shown in Fig. 3. At the top we
show a typical training pipeline of Transformer model. The model is
first pretrained. The pretraining usually consumes tremendous time
and computing resources. Thus developers for downstream tasks
do not need to repeat the pretraining process. Instead, they directly
finetune a pretrained model on a domain-specific dataset (e.g., a
binary similarity dataset in our scenario), which takes significantly
less effort.

DiEmph takes as input a finetuned binary similarity model and
the dataset for finetune. It aims to produce a new model with better
performance via removing certain instructions from the dataset and
rerunning the finetune process. Specifically, the technique samples
𝑁 functions from the training dataset, and analyzes classification
importance for all instructions in these 𝑁 functions (Step 1). After
that, it selects the instructions with exceptionally large classifica-
tion importance (Step 2) and uses program analysis to determine
whether these instructions are semantically important (Step 3). For
instructions that have high classification importance but are not
semantically important, we remove them from the training dataset
(Step 4) and rerun the finetune process (Step 5). Finally, these prob-
lematic instructions will also be removed from the model input at
inference time (Step 6) to ensure input space consistency in finetune
and testing.

This section is organized as follows. In Section 3.1, we introduce
how classification importance of an instruction is computed. In
Section 3.2, we illustrate the challenges and our solutions when
analyzing the semantics importance of an instruction.

3.1 Classification Importance Analysis
In the first step, we determine a set of instructions that are important
to model classification results. As mentioned before, this is achieved
by sampling 𝑁 functions from the training dataset and studying
function embedding changes caused by removing individual instruc-
tions. There are other alternatives to infer input importance in the
literature of Deep Learning, e.g., by analyzing gradients [4, 47, 53]
and attentions [11, 31, 59]. However, Transformer models have a
discrete tokenization step which makes back-propagating gradi-
ents to the input space challenging. In addition, there are usually
many attention heads, each yielding different importance results.
We hence consider the model as a black box and observe how em-
beddings are changed by instruction removal. Note that if after
removing an instruction, function embeddings drastically change,
similarity query results likely have significant changes as well. The
removed instruction is hence important to the classification results.

Formally, given an instruction 𝑖 in a function 𝑓 , the classification
importance of 𝑖 regarding the function, noted as I𝑐 , is defined as
follows.

I𝑐 = 1 − 𝑐𝑜𝑠
(
emb(𝑓), emb(𝑓 \{𝑖})

)
(1)

In the above equation, 𝑐𝑜𝑠 denotes the cosine similarity between
two embeddings. emb(𝑓) and emb(𝑓 \{𝑖}) denote the embedding
for 𝑓 and the embedding for the resulting function after removing
𝑖 from 𝑓 , respectively.

The overall classification importance is then derived from the
𝑁 sampled functions leveraging the above per-function classifi-
cation importance equation. The process is formally described by

Pretrained
Model

Training
Dataset

Finetuned
Model

Test
Dataset

Finetune Test

Classification
Importance
Analysis

Semantics
Importance
AnalysisSelect Outlier Instructions

Training Dataset
w/ Instruction
Deemphasis

Finetuned
Model

Test Dataset
w/ Instruction
Deemphasis

+ Encode

-
Remove

Finetune

-
Remove

Test

Instruction Deemphasis

1 2 3

4
5

6

Pretrained
Model

Figure 3: Workflow of DiEmph. At the top is a typical training
pipeline of Transformer model. Our technique is shown in
the light green box. Major steps are marked in orange circles.

Algorithm. 1. The algorithm takes as input a model and 𝑁 func-
tions sampled from the training dataset, and produces a list of
instructions of top-𝑘 classification importance regarding the whole
dataset. It first selects the most important instructions in each func-
tion (lines 3–10). The variable importantInstr defined at line 2 is
a counter. It counts how many times an instruction is selected as
one of the most important instructions (regarding a function) in
lines 8–10. This is achieved by an outlier analysis explained later.
Then the counter is sorted, and the most frequent 𝐾 instructions
are returned (line 11). Empirically, we use 𝑁 = 200 and 𝐾 = 4.
Our ablation study in Section 4.6 shows that the performance of
DiEmph is consistent across different values of 𝑁 and 𝐾 .

To select in a function the instructions with an exceptionally
large classification importance, the algorithm uses the Kernel Den-
sity Estimation (KDE) (line 8) that finds outliers from a distribution.
KDE fits a continuous probabilistic distribution given a list of dis-
crete data points. Then it detects outliers by computing the probabil-
ities that the corresponding importance values appear. Specifically,
given an instruction 𝑖 , it computes P(𝑋 < I𝑐 (𝑖)), where 𝑋 is a
random variable following the fitted distribution, and P denotes
probability that 𝑋 is less than the classification importance of 𝑖 . If
P(𝑋 < I𝑐 (𝑖)) is close to 1, it means that the classification impor-
tance of 𝑖 is significantly larger than other instructions.

3.2 Semantics Importance Analysis
After deciding a set of instructions that have classification impor-
tance, the next step is to identify their semantics importance. This
is achieved by identifying the stable variables in the 𝑁 sampled
functions, computing the backward program slices of these vari-
ables through a specially designed algorithm, and calculating the
frequencies of instructions in the slices. That is, if an instruction
frequently occurs in the backward slices of stable variables, it is
considered to have semantics importance (regarding the whole
dataset).

3.2.1 Detection of Stable Variables. In our setting, stable variables
include global, heap, return variables, and variables passed as func-
tion actual arguments. Stable variables are not sensitive to compiler
and compilation option changes. For example, a heap variable tends

Improving Binary Code Similarity Transformer Models by Semantics-driven Instruction Deemphasis ISSTA ’23, July 17–21, 2023, Seattle, WA, United States

Algorithm 1: Selecting Instructions with High Classifica-
tion Importance
1 Function select(model, functions)

// importantInstr is a map from instructions to integers.
// It counts how may times an instruction is considered

important. Initially, all instructions are mapped to 0.
2 importantInstr = {}
3 for 𝑓 ∈functions do
4 allInstrs = []
5 for i ∈ 𝑓 do

// emb(𝑓) denotes using𝑚𝑜𝑑𝑒𝑙 to encode 𝑓
6 I𝑐 (𝑖) = cos

(
emb(𝑓), emb(𝑓 \{𝑖 })

)
7 allInstrs.append(𝑖 , I𝑐 (𝑖))
8 outliers = KDE(allInstrs)
9 for 𝑖, _ ∈ outliers do
10 importantInstr[𝑖] += 1

11 return largestK(importantInstr)

to stay as a heap variable with compilation changes. Since we di-
rectly deal with binary executables, variable symbolic information
is not available. We hence perform the following analysis to recog-
nize the stable variables.
Identifying Global and Heap Variables. Global and heap vari-
ables are recognized by identifying whether a memory access in-
struction accesses a global or heap address. This is achieved by
performing backward slicing on the address operand, typically a
register, and checking if it is based on a global address, which is
reflected by a constant address value in the global memory region,
or on the return value of a heap allocation function. For example,
in Fig. 4a, the register rdi at line 10 is used to compute a memory
address. By tracing back the data flow, DiEmph finds that rdi@10 is
defined at line 1. The lea instruction at line 1 copies the address of
a global variable (GLOBAL_VAR) to rdi@12, Similarly,DiEmph uses
the same backward slicing technique to identify accesses to heap
variables. Take Fig. 4b as an example. The memory address at line
10 is computed by rbp+0x10. Rbx@10 is defined at line 2 by rax@2.
Rax@2 is the return value of the call (at line 1) to function malloc,
which allocates a piece of heap memory. Thus rbx@10 denotes a
heap variable.
Identifying Function Return Variables. Return variables are
considered stable variables since they denote function outputs.
In x86 binary, an ret instruction does not have any operand. If
there is a return value, it is by default stored in register rax (by
instructions preceding the return instruction). The challenge lies
in that a function that does not have an explicit return variable
also uses ret to exit its execution. It is hence challenging to decide
if a function has any return variable. Note that a simple method
that searches for any write to rax before ret can hardly work as
rax is a commonly used register in regular computation. Thus,
when DiEmph analyzes an ret instruction in a function, it further
analyzes invocations to this function (in other functions) and checks
whether rax is being used right after the invocations. The intuition

2Here, GLOBAL_VAR is a token introduced by our preprocessor that considers any
constant value in address loading instructions like lea as a global variable.

1: lea rdi, GLOBAL_VAR
2: ...
10: mov [rdi], 0

1: call malloc
2: mov rbx, rax
...
10: mov [rbx+0x10], 0

(a) Write to a Global Variable (b) Write to a Heap Variable

1:ret
...
; call site
10:call f
11:mov rbx, rax
(c) Return a Variable to a Caller

1:mov rsi, rdx
2:mov rdi, rbx
3:call gee
; in gee
10:mov rcx, rdi
11:call foo
; in foo
20:mov rcx, rsi

(d) Pass a Variable to a Callee
Figure 4: Examples about how DiEmph identifies stable vari-
ables. Dashed blue lines indicate data flows in the code snip-
pets.

is that if the function has a return value, the value tends to be used
after the function call (e.g., assigning to some variable). Particularly,
for each invocation, if the register rax is used after the call without
a new definition, DiEmph marks that the (invoked) function has
a return value. For example, as shown in Fig. 4c, DiEmph tries
to analyze whether the return instruction at line 1 in function 𝑓
returns a value to the caller. Suppose it finds an invocation of 𝑓
at line 10. After the call to 𝑓 , at line 11, rax is used without re-
definition. This indicates the variable denoted by rax is returned
from the function 𝑓 . Note that if DiEmph cannot find an invocation
for the function, it conservatively assumes that the function has a
return variable.

Identifying Function Actual Arguments. If a variable is being
passed as an actual argument to some function, it is considered
stable. However, without symbolic information, function signature
is not available and variables passed as actual arguments are not
explicit.We leverage the compiler convention that the first six actual
arguments are passed from a caller to a callee using registers. This
convention is true for all mainstream compilers as far as we know.
As such, by checking data flow through registers across function call
boundary allows us to identify variables that are passed as function
arguments. For example, in Fig. 4d, the program calls to 𝑔𝑒𝑒 at line
3. DiEmph steps into the function 𝑔𝑒𝑒 , and finds that rdi@10 is
used before definition. That indicates rdi is a parameter of 𝑔𝑒𝑒 . As
such, rdi@2 is a stable variable. In some cases, the use of parameter-
passing registers may not always be directly visible in the callee. For
instance, in Fig. 4d, the register rsi is not used inside 𝑔𝑒𝑒 . However,
function𝑔𝑒𝑒 calls another function 𝑓 𝑜𝑜 (line 11), and the parameters
of 𝑓 𝑜𝑜 are the same with 𝑔𝑒𝑒 . In this case, the compiler does not
repeat the code for parameter passing. Instead, the variables in
rsi@10 and rdi@10 are implicitly passed to 𝑓 𝑜𝑜 . Note that at line
20, the register rsi is used before definition, indicating rsi@20 is
an argument. To handle such cases, DiEmph recursively traverses
the call graph of a binary project and detects direct and transitive
parameter passing.

3.2.2 Semantics Importance via Binary Slicing. After identifying
all stable variables, DiEmph measures the semantics importance of

ISSTA ’23, July 17–21, 2023, Seattle, WA, United States X. Xu, S. Feng, Y. Ye, G. Shen, Z. Su, S. Cheng, G. Tao, Q. Shi, Z. Zhang, and X. Zhang

1 in t g ;
2 in t foo () {
3 in t x ;
4 . . .
5 g = x ;
6 }

(a) Source Code of foo()

1:push rbp
2:push rbx
3:mov rbp, rsp
4:sub rsp, 0x20
...
9:mov [rbp-0x10], rcx
10:mov STABLE_VAR,[rbp-0x10]

(b) Optimized Version

1:push rbp
2:push rbx
3:mov rbp, rsp
4:sub rsp, 0x50
...
9:mov [rbp-0x20], rcx
10:mov STABLE_VAR,[rbp-0x20]

(c) Un-optimized Version

Figure 5: Example for stack variable accesses in binary programs. (a) shows a code snippet for function foo(). (b) and (c) are two
possible resulting binary programs after compilation. (b) is an optimized version with fewer variables on stack. The variable x
is located at [rbp-0x10]. (c) is an un-optimized version with more variables on stack, and x is located at [rbp-0x20].

Algorithm 2: Computing Semantics Importance
1 Function getSemanticsImportance(function, stableVars)

// instructionToCounter maps instructions to integers.
// It counts how many stable variables an instruction may

affect. Initially, all instructions are mapped to 0.
2 instructionToCounter = {}
3 for 𝑣 ∈ stableVars do
4 backSlice = backwardSlicing(function, v)
5 for 𝑖 ∈ function do
6 if 𝑖 ∈backSlice then
7 instructionToCounter[i] += 1

8 semanticsImportance = {}
9 for 𝑖 ∈ function do
10 semanticsImportance[i] = instructionToCounter[i] /

len(importantVars)
11 return semanticsImportance

each instruction based on the backward slices of these stable vari-
ables (within the 𝑁 sampled functions). The procedure is defined
in Algorithm 2. The algorithm takes as input a binary function
and a set of stable variables. It computes and returns the semantics
importance for each instruction. It maintains a counter (line 2) for
each instruction, and increases the counter by 1 every time the in-
struction is found in the slice of a stable variable (line 6). Finally, the
importance for each instruction is computed as the ratio between
the number of stable variables it may affect and the number of all
stable variables.

A prominent challenge in slicing a binary program is to handle
memory accesses. Different from source code, a binary program
accesses most variables by their addresses. Therefore, statically de-
termining if a memory read is dependent on a memory write entails
precisely determining the set of addresses these accesses may refer
to. This is a hard problem, especially at the binary level. Existing
methods such as value set analysis [2] and stochastic analysis [72]
are either imprecise or unsound. DiEmph resorts to a conservative
solution and considers that any read to a global or a heap region
is potentially dependent on any write to the same region, without
disambiguating the addresses within the region. In contrast, for
accesses to stack memory, which usually denote local variable or
function argument accesses, we precisely determine their symbolic
addresses and compute precise dependences. The rationale of hav-
ing an over-approximate solution for global and heap accesses is

that we are collecting the slices for all global and heap variables
anyway.

Precluding Stack Address Dependences. A special feature of
our slicing algorithm is that we preclude dependences induced by
address computation if the address is on stack. Note that although
local variables, usually allocated on stack, do not belong to stable
variables, their accesses may be involved in the slices of stable vari-
ables, e.g., when a local loop variable 𝑖 is used to index a global array
𝐴[𝑖]. In fact, the slice of a stable variable usually includes a larger
number of local variable accesses on stack. Although the inclusion
of these accesses in the slice is completely correct, the compilation
convention for such accesses may lead to substantial distribution
biases. For example, while a local variable read is as simple as the
presence of the variable in an expression, at the binary level, the
read is broken down into multiple instructions such as computing
the appropriate stack address and then performing the read. The
stack address computation itself may include multiple instructions.
Strictly following the standard slicing algorithm, these instructions
should all be included in the slice and hence have semantics impor-
tance. However, they are in fact semantically unimportant as they
are just stack access conventions. Depending on the stack memory
layout optimizations, the compiler may place a variable in different
stack locations and use different instruction patterns to compute
the address before any access. Such differences shall be neutralized.
Hence in DiEmph, we use data-flow analysis to determine if an
address involved in a memory access denotes a stack address. If so,
we preclude the dependence through the address operand from the
slice. In the following, we use an example to illustrate the problem
and then explain the data-flow analysis.

Example. Fig. 5 shows a function foo() in 5a and two versions of
its compiled code in 5b and 5c. In 5a, the program declares a local
integer variable 𝑥 . It also has a global variable 𝑔, which is a stable
variable according to our definition. The local variable is used in
the computation of 𝑔 (line 5) and hence included in the slice of 𝑔.
Lines 1–4 in 5b and 5c show a typical function prologue. At first, the
current values of the stack base register rbp and a general register
rbx are stored on the stack (lines 1–2). In x86, there are two stack
registers: the stack base pointer rbp pointing to the start of the
previous stack frame (the stack frame of the caller function) and
the stack pointer rsp denoting the end of the stack frame. Hence
the region between rbp and rsp denotes the whole stack frame.
Note that stack allocation is from high address to low address such
that the value of rsp is smaller than that of rbp. A push instruction
saves a value of a register to the memory location pointed to by the

Improving Binary Code Similarity Transformer Models by Semantics-driven Instruction Deemphasis ISSTA ’23, July 17–21, 2023, Seattle, WA, United States

stack pointer rsp and automatically reduces rsp by 8 (assuming a
64bit machine). The saved values will be restored before returning
from foo() such that the caller’s stack frame can be re-activated.
After saving, the registers can be safely updated inside foo().

Take 5b as an example. Lines 3–4 set up a new stack frame for
foo(). In particular, the base pointer is set to the end of the previous
stack frame (line 3) and the end of the new stack frame is set to an
address that is 32 smaller. As such, a 32-byte stack region delimited
by the new rbp and rsp values is allocated. In lines 9 and 10, a
stack address falling into the frame rbp-0x10 is accessed in the
computation of 𝑔, which is normalized to a symbol STABLE_VAR
by our preprocessor. Observe that due to different stack layout
strategies (for optimization purposes), the stack addresses of 𝑥 are
different in 5b and 5c, and the instruction encodings of the accesses
are hence also different.

The arrows in 5b and 5c denote the program dependences. Blue
arrows denote the dependences between two variables in the source
code, and orange ones denotes the address dependences (induced by
rbp). Note that there is dependence between instructions on line 2
and line 3 because line 2 implicitly subtracts rsp. If we included the
orange dependences, lines 1–3 (those in the orange shade) would
be included in the slice of 𝑔. In fact, all the stack accesses in foo()
are transitively dependent on lines 1–3, leading to a conclusion that
these were semantically very important instructions. However, they
are just low-level artifacts that do not correspond to source-level
semantics. Therefore, DiEmph precludes all dependences through
stack address operands. Our ablation study in Section 4.6 demon-
strates the importance of such strategy. □

The technical challenge lies in recognizing all operands denoting
stack addresses. We achieve this by a data-flow analysis. A naive
algorithm that simply finds all uses of rbp and rsp and rules out
their dependences does not generalize well. For example, in the
newer versions of GCC, the register rbp might be used as a normal
register [20]. In this case, removing all dependencies with rbp may
skip important dependencies. On the other hand, a compiler may
copy stack pointers to other locations [63, 64].

We thus use Algorithm 3 to prune the stack address dependences.
The algorithm performs a conservative data flow analysis to decide
whether a variable contains a stack address of the stack. To sim-
plify the discussion, we assume the binary program is lifted to an
SSA form [51] so that we can directly deal with variables instead
of registers or addresses. Intuitively, for a variable 𝑣 at a program
point 𝑝 , the algorithm considers 𝑣 contains a stack address if and
only if 𝑣 contains a stack address in all paths to 𝑝 . The algorithm
(line 14) takes a function as the input, and outputs variables that
contain stack addresses at each instruction. Lines 15–19 initialize
the data structures used in the analysis. The loop at line 20 iter-
atively propagates the analysis results, and terminates when the
results converge. Line 15 defines two maps from instruction to set
of variables: stackAddrIn[i] and stackAddrOut[i] record the set of
variables containing a stack address at the program points before
and after i, respectively. Initially, stackAddrIn maps all instructions
to the empty set, and stackAddrOut maps all instructions to the
universal set (to handle loops). At the entry point, only rsp stores
an address to the stack.

For the program point before each instruction 𝑖 , the algorithm
intersects the analysis results from all the predecessors of 𝑖 (line 2).

Algorithm 3: Pruning Stack Address Dependences
1 Function merge(i)
2 stackAddrIn[i] =

⋂
𝑝∈𝑝𝑟𝑒𝑑 (𝑖) stackAddrOut[p]

3 Function propagate(i)
4 stackAddrOut[i] = stackAddrIn[i]
5 definedVar = def(i)
6 if 𝑖 defines an address then
7 for var ∈ uses(i) do
8 if var ∈ stackAddrIn[i] then
9 stackAddrOut[i].add(definedVar)

10 return

11 if definedVar ∈ stackAddrIn[i] then
12 stackAddrOut[i].remove(definedVar)

13 return

14 Function analyze(f)
15 stackAddrIn, stackAddrOut = {}, {}
16 for i ∈ f do
17 stackAddrIn[i] = ∅
18 stackAddrOut[i] = ⊤
19 stackAddrIn[f.entry] = {rsp}
20 while True do
21 prevStackAddrOut = stackAddrOut
22 for i ∈ f do
23 merge(i)
24 propagate(i)

25 if prevStackAddrOut == stackAddrOut then
26 break

27 return stackAddrIn

Our analysis assumes only arithmetic instructions and copy instruc-
tions between variables can be used to calculate a stack address.
For an instruction that may define a stack address (line 2), if at least
one of the used variables contains a stack address, the analysis con-
siders this instruction defines a variable containing stack address
(line 9). Otherwise, the variable defined by this instruction kills the
previous definitions that are in the set stackAddrOut (line 11).

4 EVALUATION
DiEmph is implemented on IDA Pro [23] and PyTorch [48]. We
evaluate our technique via the following research questions (RQs):
RQ1: Can DiEmph help binary similarity models achieve better
performance when the compiler configurations of the test dataset
are different from the training dataset? We say that the test data
are out-of-distribution. It denotes a realistic and challenging use
scenario for binary analysis tools.
RQ2: Is DiEmph effective with different pool sizes of the candidate
functions?
RQ3: How does DiEmph affect performance of models when the
compiler configurations of the test dataset align with those of the
training dataset? In this case, we say the test data are in-distribution.
RQ4: How much time does DiEmph take to analyze functions in
training datasets?
RQ5:Howdoes each component ofDiEmph affect the performance?

ISSTA ’23, July 17–21, 2023, Seattle, WA, United States X. Xu, S. Feng, Y. Ye, G. Shen, Z. Su, S. Cheng, G. Tao, Q. Shi, Z. Zhang, and X. Zhang

We also conduct a case study to demonstrate the effectiveness of
DiEmph on out-of-distribution test data.

4.1 Experiment Setup
We conduct the experiments on a server with a 24-core Intel Xeon
4214R CPU at 2.40GHz, 188G memory, 8 Nvidia RTX A6000 GPUs,
and Ubuntu 18.04.
Baseline Models. We train two state-of-the-art Transformer sim-
ilarity analysis models, i.e., JTrans [61] and Trex [44] on three
well-known public datasets, resulting 6 baseline models in total.
Although there are other binary code similarity methods and some
are based on Deep Learning models as well, it was shown that the
Transformer based methods (i.e., our baselines) outperform these
techniques [44, 61]. For each model, we use the model pretrained by
its authors, and finetune the model on three different well-known
public datasets for the binary similarity task. The first dataset is
BinaryCorp-3M [61]. It contains around 3million binary functions
(which correspond to around 600 k functions in source code). The
dataset is compiled by GCC with 5 different optimization flags. The
second dataset is BinKit [27]. It contains 51 GNU projects compiled
with 9 different compilers × 4 different optimization flags. It has
around 4.5million binary functions (which correspond to around
126 k source code functions). The third dataset is HowSolve [35]. It
contains 7 projects compiled with 8 compilers× 5 optimization flags,
which correspond to around 4.4million binary functions (around
110 k source code functions). Note that for the later two datasets,
we only use the binary programs compiled for the x64 architecture.
For each model/dataset setting, we use the same set of hyper-
parameters to finetune both the original and the DiEmph-enhanced
models. For most hyper-parameters (e.g., learning rate), we use the
default values coming with the models. We tune the number of
epochs due to the significant difference in dataset sizes. Our training
scripts are publicly available at [65], and the key hyper-parameters
are listed in Section A of the supplementary material[66].
Test Datasets. We build two test datasets from the real-world
projects commonly-used in binary similarity analysis [15, 21, 27,
35, 44]. We first recognize projects that are used by at least two
of existing work [15, 21, 27, 35, 44], and then we filter out the
projects that contain less than 500 binary functions. Our datasets
hence consist of 7 real-world projects. They are Curl, Coreutils,
Binutils, ImageMagick, SQLite, OpenSSL and Putty. Dataset-I: Bi-
nary programs in the first dataset are compiled by GCC-7.5 with
-O0 and -O3 optimization flags. They are considered as test data
within the distribution of the training dataset because (1) all train-
ing datasets contain binary programs compiled with GCC (2) all
training datasets contain binary programs compiled by a compiler
newer than GCC-7.5. That indicates all the optimizations/conven-
tions by GCC-7.5 are very likely present in the training dataset. We
obtain the binaries from [44]. Dataset-II: Binary programs in the
second dataset are compiled by GCC-9.4 with -O3 flag and Clang-10
with -O0 flag. They are considered as test data with compiler config-
urations different to the training datasets because programs in the
training datasets are compiled with older versions of compilers. The
two new compilers introduce new optimizations and likely emit
instructions with new patterns [20, 32]. For simplicity, we refer to
Dataset-I as the In-Distribution dataset, and refer to Dataset-II as the

Out-of-Distribution dataset. We want to point out that we exclude
all projects in test datasets from the training datasets and make
sure there are no overlapping functions between the test datasets
and the training datasets.

Metrics. In this section, we use precision at 1 (PR@1) as our metrics.
Suppose that we iteratively query a set of binary functions from a
pool of candidate functions. PR@1 measures in how many queries,
the correct function (i.e., the function compiled from the same
source code as the query function) is returned as the most similar
function. Note that our experiments are conducted in a way that
each function has only one similar function (more details later in the
section). We also evaluate DiEmph in terms of PR@5, PR@10, and
Mean Reciprocal Rank (MRR). The results are shown in Section B
of the supplementary material[66] for brevity.

4.2 RQ1: Performance Improvement on the
Out-of-Distribution Dataset

In this section, we evaluate whether DiEmph can help models
achieve better performance on the out-of-distribution dataset. For
each baseline model, DiEmph takes as input the model and the
training dataset, and outputs a list of instructions need to be deem-
phasized. To obtain an improved model, we remove the top-four
most frequently occurring problematic instructions from the train-
ing dataset and rerun the finetune process. We then test the per-
formance for both the baseline model and the improved model on
the out-of-distribution dataset. For each binary program in our
dataset, we randomly sample 500 functions from the O0 binary, and
query them one by one in a pool consisting of the corresponding
500 functions from the O3 binary. In other words, there is only
one similar function in the pool for each query. Such a setup is
consistent with the literature [22, 35, 62]. During testing, we also
remove the deemphasized instructions from the test inputs to the
improved model for input space consistency.

The results are shown in Table 1. We can see that DiEmph im-
proves the PR@1 of models by 3.7-14.4%. Note that these improve-
ments are considered significant for the binary similarity task due
to its challenging nature. In the binary similarity literature, the
improvement to the baseline method is usually 3-8% [15, 62]. We
can observe that the improvement is most prominent on the JTrans
model trained with the BinaryCorp-3M dataset. DiEmph improves
it by 14.4%. The improved JTrans model trained with the deempha-
sized BinaryCorp-3M denotes the new state-of-the-art. The fact
that we are able to achieve substantial improvement on the most
complex model and the largest dataset indicates the value of in-
struction deemphasis in practice. The improvements are around 6%
and 4% for the models trained with the How-Solve dataset and the
BinKit dataset, respectively. The improvements on models trained
with the BinKit dataset are lower because BinKit contains only
around 126 k source code functions. Although each function is
compiled with many different configurations, the limited program
diversity leads to limited generalizability. The improvement on the
Trex model trained with the BinaryCorp-3M dataset is relatively
low (3.7%). That is because the BinaryCorp-3M dataset contains
many functions with relatively complex control-flow structures,
and Trex does not precisely encode control flow information such
that it may not learn control flow features well.

Improving Binary Code Similarity Transformer Models by Semantics-driven Instruction Deemphasis ISSTA ’23, July 17–21, 2023, Seattle, WA, United States

Table 1: Performance (PR@1) improvement on the out-of-distribution dataset. The first column lists the name of binary
programs. The model setups are listed in the first row. Each model is denoted with its architecture and the training dataset, in
the form of𝑀𝑜𝑑𝑒𝑙𝐴𝑟𝑐ℎ𝑑𝑎𝑡𝑎𝑠𝑒𝑡 . 𝐵𝐶, 𝐵𝐾 , and 𝐻𝑆 denote BinaryCorp-3M, Binkit, and How-solve, respectively. In the second row,
for each model, Ori. means the PR@1 for the original model, DiEmph means the PR@1 for the model improved by DiEmph, and
Impr. means the improvement achieved by applying DiEmph to the model.

Programs
𝐽𝑇𝑟𝑎𝑛𝑠𝐵𝐶 𝐽𝑇𝑟𝑎𝑛𝑠𝐵𝐾 𝐽𝑇𝑟𝑎𝑛𝑠𝐻𝑆 𝑇𝑟𝑒𝑥𝐵𝐶 𝑇𝑟𝑒𝑥𝐵𝐾 𝑇𝑟𝑒𝑥𝐻𝑆

Ori. DiEmph Impr. Ori. DiEmph Impr. Ori. DiEmph Impr. Ori. DiEmph Impr. Ori. DiEmph Impr. Ori. DiEmph Impr.

Curl 42.6 61.8 19.2 54.0 55.6 1.6 50.6 50.6 0.0 48.8 50.2 1.4 35.6 40.2 4.6 25.8 33.8 8.0
Binutils 37.6 53.2 15.6 49.8 54.4 4.6 36.4 40.4 4.0 37.6 44.0 6.4 33.8 34.8 1.0 21.4 27.0 5.6

Coreutils 31.4 42.6 11.2 37.4 41.8 4.4 32.6 34.0 1.4 33.4 40.2 6.8 28.0 31.6 3.6 22.4 28.2 5.8
ImageMagick 22.6 39.0 16.4 42.2 46.2 4.0 30.6 43.4 12.8 39.6 45.8 6.2 27.6 33.8 6.2 22.8 29.6 6.8

SQLite 42.8 60.0 17.2 51.4 56.8 5.4 42.4 56.0 13.6 65.6 66.8 1.2 44.0 48.2 4.2 32.6 40.2 7.6
OpenSSL 47.6 53.8 6.2 46.2 52.0 5.8 54.8 61.0 6.2 46.2 50.2 4.0 32.8 38.4 5.6 28.4 33.0 4.6

Putty 35.8 50.6 14.8 36.8 39.2 2.4 42.0 45.4 3.4 39.2 38.6 -0.6 34.4 37.2 2.8 27.0 33.8 6.8

Average 37.2 51.6 14.4 45.4 49.4 4.0 41.3 47.3 6.0 44.3 48.0 3.7 33.7 37.7 4.0 25.7 32.2 6.5

(#Model × #Program)0

20

40

60

PR
@

1 43.14
43.79

37.29

Original-In-Distribution
DiEmph-Out-of-Distribution
Original-Out-of-Distribution

Figure 6: DiEmph helps models alleviate performance degra-
dation. Each bar in the figure shows the performance of one
model on one test program. The 𝑦 axis denotes PR@1. The
dashed lines show the average performance.

To normalize the effectiveness of DiEmph w.r.t. the differences
introduced by model architectures and training datasets, we ad-
ditionally run the baseline models on the in-distribution dataset.
This allows us to assess the extent to which DiEmph can mitigate
the performance degradation caused by the distribution shift be-
tween the test and training data (specifically, different compiler
configurations). The results are visualized in Fig. 6. On average,
we can see that the performance of the original models degrades
by 5.9% due to distribution shift. With the enhancement provided
DiEmph, models’ performance becomes comparable to the original
models’ performance on the in-distribution dataset. That indicates
that DiEmph facilitates better generalization of these models, mit-
igating the performance degradation caused by the distribution
shift.

Note that the performance of the models discussed in this section
refers to the checkpoints that achieved the highest performance
during the training processes. Additionally, we further analyze the
performance of each model at each checkpoint and observe that
DiEmph consistently enhances the generalizability of the model
across all checkpoints. Details are shown in Fig. 10 of the supple-
mentary material[66].

4.3 RQ2: Effectiveness with Different Pool Sizes
The performance of a binary similarity model may vary when the
size of candidate function pool is different [61]. Thus we validate

0.00

0.25

0.50

0.75

1.00
Binutils Coreutils Curl

0 200 400
.

0.00

0.25

0.50

0.75

1.00

.

ImageMagick

0 200 400

SQLite

DiEmph Original

0 200 400

OpenSSL

Function Pool Sizes

PR
@

1

Figure 7: Effectiveness ofDiEmph (for 𝐽𝑇𝑟𝑎𝑛𝑠𝐵𝐶) with different
pool sizes. Each figure shows the performance of two models
on a program from the out-of-distribution dataset. The 𝑥-
axis denotes the sizes of candidate function pool. The 𝑦-axis
denotes PR@1.

whether DiEmph can effectively improve model performance (on
the out-of-distribution dataset) with different pool sizes. For each
model, we test its performance on 7 function pools with different
sizes from 16 to 500. We show in Fig. 7 the test results for the JTrans
model trained on BinaryCorp-3M. The results for other models are
shown in Fig. 11 of the supplementary material[66]. We can see that
DiEmph can effectively improve the original model’s performance
on all different pool sizes. The improvement is more significant
when the pool size is larger than 100. That is because the task of
finding similar functions becomes harder when there are more can-
didate functions. It requires the model to more precisely distinguish
functions based on instructions with important semantics. Note
that we run each test for 10 times, and Fig. 7 shows the average
results.

4.4 RQ3: Effects on In-Distribution Data
In this section, we study how DiEmph affects the performance on
the in-distribution dataset. Following the setup of RQ1, we run
both the original model and the model improved by DiEmph on the
in-distribution dataset. The results show that DiEmph is also able
to slightly improve models’ performance (by around 3% on average)
on the in-distribution dataset. That is because DiEmph removes
from the training datasets instructions with high classification im-
portance but low semantics importance. This helps the models

ISSTA ’23, July 17–21, 2023, Seattle, WA, United States X. Xu, S. Feng, Y. Ye, G. Shen, Z. Su, S. Cheng, G. Tao, Q. Shi, Z. Zhang, and X. Zhang

(a) Different algorithms

30.0

32.5

35.0

37.5

40.0
PR

@
1

(b) Different random seeds

101 102 103

(c) #Sampled functions
3 5 7

(d) #Removed instructions

DiEmph No-Stack No-Sem. No-Class. Ori DiEmph

Figure 8: How the performance of DiEmph changes across different configurations

learn to represent a program based on the semantically important
features. Compared with the improvement DiEmph achieves on
the out-of-distribution data, the improvement on in-distribution
data is smaller. That is because the distribution of the test dataset
is similar to the training dataset. A baseline model may already
achieve relatively good performance even if it represents programs
based on semantically unimportant instructions. Details are shown
in Section C of the supplementary material[66].

4.5 RQ4: Run Time Efficiency
We useDiEmph to analyze the six models and test whether it is time
efficient. Specifically, for each model, DiEmph randomly samples
200 functions from the training data, computes the classification
importance for each instruction, uses KDE to select outliers, and
validates whether instructions with high classification importance
are semantically important. The results show that it takes 29 min-
utes for DiEmph to analyze one model. Time time consumption of
DiEmph is acceptable since it is a one-time effort. Details are in
Section D of the supplementary material[66].

4.6 RQ5: Ablation Study
To analyze the impact of each component on the performance of
DiEmph, we conduct four ablation studies. These studies include
varying the algorithm of DiEmph by disabling each component
individually, testing DiEmph with different random seeds, altering
the number of sampled functions, and altering the number of re-
moved instructions. For each study, we run DiEmph (with different
configurations) on the Trex model trained with the BinKit dataset,
resulting a set of improved models. We then test these models on
the out-of-distribution dataset. The results are shown in Fig. 8. The
dashed yellow line in Fig. 8 represents for the performance of the
original model.
Effects of each component.We construct three variants ofDiEmph
by disabling each component individually. Their performance is
shown in Fig. 8a. No-Stack denotes the variant that does not trace
the stack pointers and does not prune the dependencies introduced
by stack operations. No-Sem. and No-Class. denotes the variants
that do not analyze the semantics importance and do not analyze
the classification importance, respectively.

We can see that the No-Stack variant is still able to improve the
original model’s performance, while the improvements are less
significant than DiEmph. That is because without pruning the stack
dependencies, the variant is more conservative when computing the
semantics importance of instructions. That is, fewer semantically
unimportant (but classification-wise important) instructions are

removed from the dataset. Although the removal helps the model
learn to encode programs based on semantically important instruc-
tions, the resulting model may still learn some undesirable bias in
the training data. Thus it has worse generalization when tested on
the out-of-distribution data.

The No-Sem. variant slightly improves the baseline model’s per-
formance as well. Although the No-Sem. variant does not analyze
semantic importance of instructions, we observe that the set of
removed instructions, selected based on high classification impor-
tance, includes instructions with low semantics importance. Remov-
ing these instructions helps the model generate better embeddings
based on semantically important instructions. However, since the
No-Sem. variant is unaware of the semantics importance of instruc-
tions, it also removes instructions that carry important semantics.
This introduces noise to the training process, resulting in a less
significant improvement compared to DiEmph.

The No-Class. variant shows almost no improvement over the
original model. That is because the removed instructions, which
generally have low classification importance, do not significantly
affect the embeddings generated by the original model. Removing
these instructions thus will not significantly impact the behavior
of the original model.

Effects of random seeds.We run the sampling process in DiEmph
with 10 different random seeds. The results are shown in Fig. 8b. We
can see that DiEmph can consistently improve the baseline model
across different random seeds.

Effects of the number of sampled functions. We change the
number of functions sampled byDiEmph from 5 to 1000. The results
are shown in Fig. 8c. We can see that the effectiveness of DiEmph
is stable when the sample size is larger than 50. Thus the sample
size of 200 used in our system can be considered as sufficient.

Effects of the number of removed instructions. Note that after
finding the problematic instructions, DiEmph removes the top-𝐾
most frequently occurring problematic instructions. In this study,
we alter 𝐾 from 1 to 8. The results are shown in Fig. 8d. We can see
that DiEmph is most effective when 𝐾 is no larger than 6. That is
because removing too many instructions may result in extremely
short functions that do not contain enough semantics for the model
to encode. We thus use 𝐾 = 4 in our system, which effectively
improves models’ performance and meanwhile does not shorten
functions too much.

Improving Binary Code Similarity Transformer Models by Semantics-driven Instruction Deemphasis ISSTA ’23, July 17–21, 2023, Seattle, WA, United States

4.7 Case Study
We conduct a case study with the JTrans model trained on the
BinaryCorp-3M dataset to demonstrate how DiEmph improves the
performance of the model on the out-of-distribution dataset.

By analyzing the model and the training dataset, DiEmph finds
that an instruction “or [rsp], 0” has exceptionally high classifica-
tion importance but low semantics importance in many functions.
This instruction performs a bitwise-or operation between the vari-
able stored in [rsp] and 0, and hence it does not modify the value of
the variable. The instruction is inserted by an optimizing compiler
to improve cache performance in modern processors.

We show in Fig. 9 an example in the test dataset that contains
this instruction. The instruction is highlighted with the blue shade
in Fig. 9b. In Fig. 9b, note that the variable stored in rsp at line
2 is not initialized (because the value of rsp is updated at line 1).
And the inserted instruction does not modify the variable either.
Thus the following instructions in the function are not likely to use
the definition [rsp]@2. That is, the instruction is not semantically
important in this function. Also note that this instruction is not in
the function compiled (from the same source code) with Clang -O0,
shown in Fig. 9a.

The original JTrans model generates a similarity score as low
as 0.45 for this pair of functions due to the difference of the high-
lighted instruction. After we remove it from the optimized function
(Fig. 9b), the similarity score increases to 0.52. On the other hand,
the JTrans model improved by DiEmph generates a similarity score
as high as 0.69 for this pair of functions. That indicates DiEmph
indeed helps the model better represent a program based on seman-
tically important instructions.

5 RELATEDWORK
Binary Similarity Analysis. Binary similarity analysis has critical
security applications. Thus the community has made significant
efforts in this area [17, 45, 62], leveraging both the dynamic fea-
tures [17, 22, 62] and the static features [45] of programs. More-
over, recent advances in Deep Learning techniques have led to
unprecedented capabilities in many areas, including binary simi-
larity [14, 15, 27, 30, 35, 37, 38, 67]. Among them, two Transformer-
basedmethods [44, 61] have been proposed, demonstrating superior
performance compared to previous work, leveraging the recent suc-
cess of Transformers [8, 49, 50, 58] in the NLP domain. These tech-
niques represent notable advances in binary similarity analysis and
have the potential to aid in the identification and mitigation of secu-
rity threats. Our work is an enhancement to these approaches, aim-
ing to improve the generalizability of Transformer-based models.

Model Debugging. Although deep learning models achieve sig-
nificant success in various domains, their opaque nature poses
challenges in understanding the root cause of unexpected behav-
iors (e.g., low accuracy). As a result, many researchers focus on the
area of model debugging, which treat deep learning models as tradi-
tional software and develop approaches to analyzing and debugging
deep learning models [34, 41, 57]. However, these methods do not
address the challenges in improving Transformer models for binary
code analysis due to the complexity of the Transformer models and
the domain-specific constraints of binary programs. Our approach
focuses on such complex binary code models, leveraging domain

...
1:mov rbp, rsp
2:sub rsp, 0x20e0
...
(a) Instrs. Compiled with Clang O0

...
1:sub rsp, 0x1000
2:or [rsp], 0x0
...
(b) Instrs. Compiled with GCC O3

Figure 9: Instructions in head_lines() of Coreutils. The two
snippets of instructions are generated by Clang -O0 and GCC
-O3, respectively. The instruction highlighted in the blue box
is inserted by GCC. It is used to optimize the cache perfor-
mance in modern processors.

knowledge about binary similarity analysis and binary program
slicing. Our method can pinpoint the code patterns introducing
biases to models and help models focus on semantically important
instructions.

6 THREATS TO VALIDITY
Our prototype DiEmph focuses on Transformer-based models and
hence the reported results may not hold on other types of mod-
els such as GNN-based models. However, we believe our idea of
semantic-driven instruction deemphasis has the potential to gener-
alize to other model architectures. We leave the exploration as our
future work.

DiEmph relies on disassembling tools (IDA-Pro) to analyze binary
programs. The quality of disassembled code may affect DiEmph’s
performance, though SOTA disassembler achieves more than 95%
accuracy[39, 42, 43, 69] in most cases. The reported results are
achieved with the selected hyper-parameters, e.g., random selection
of 200 functions. We have conducted a substantial ablation study
to validate the stability of our results.

7 CONCLUSION
We develop a novel technique to improve the performance of Trans-
former based binary code similarity analysis models. The technique
detects instructions that have undesirably biased distributions in
the training dataset because of compiler conventions. It features
a (Deep Learning) model classification importance analysis that
determines if an instruction is important for model output and a
program analysis based semantics importance analysis that deter-
mines if an instruction denotes part of essential program semantics.
Instructions that have classification importance but not semantics
importance are removed from the dataset. Finetuning the model on
the updated dataset yields substantially better performance than
the original models.

8 DATA AVAILABILITY
Our experimental data and the source code are available at [65].

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their valuable comments
and suggestions. This research was supported, in part by DARPA
VSPELLS - HR001120S0058, IARPA TrojAI W911NF-19-S-0012, NSF
1901242 and 1910300, ONR N000141712045, N000141410468 and
N000141712947. Any opinions, findings, and conclusions in this
paper are those of the authors only and do not necessarily reflect
the views of our sponsors.

ISSTA ’23, July 17–21, 2023, Seattle, WA, United States X. Xu, S. Feng, Y. Ye, G. Shen, Z. Su, S. Cheng, G. Tao, Q. Shi, Z. Zhang, and X. Zhang

REFERENCES
[1] Qurat Ul Ain, Wasi Haider Butt, Muhammad Waseem Anwar, Farooque Azam,

and Bilal Maqbool. 2019. A Systematic Review on Code Clone Detection. IEEE
Access 7 (2019), 86121–86144. https://doi.org/10.1109/ACCESS.2019.2918202

[2] Gogul Balakrishnan and Thomas Reps. 2004. Analyzing Memory Accesses in x86
Executables. In Compiler Construction, Evelyn Duesterwald (Ed.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 5–23.

[3] Tiffany Bao, Jonathan Burket, Maverick Woo, Rafael Turner, and David Brumley.
2014. BYTEWEIGHT: Learning to recognize functions in binary code. In 23rd
USENIX Security Symposium (USENIX Security 14). 845–860.

[4] Oren Barkan, EdanHauon, Avi Caciularu, Ori Katz, ItzikMalkiel, Omri Armstrong,
and Noam Koenigstein. 2021. Grad-sam: Explaining transformers via gradient
self-attention maps. In Proceedings of the 30th ACM International Conference on
Information & Knowledge Management. 2882–2887.

[5] I.D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier. 1998. Clone detection
using abstract syntax trees. In Proceedings. International Conference on Software
Maintenance (Cat. No. 98CB36272). 368–377. https://doi.org/10.1109/ICSM.1998.
738528

[6] Leyla Bilge, Davide Balzarotti, William Robertson, Engin Kirda, and Christopher
Kruegel. 2012. Disclosure: detecting botnet command and control servers through
large-scale netflow analysis. In Proceedings of the 28th Annual Computer Security
Applications Conference. ACM.

[7] BinDiff 2022. zynamics BinDiff. https://www.zynamics.com/bindiff.html
[8] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,

Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877–1901.

[9] Dong-Kyu Chae, Jiwoon Ha, Sang-Wook Kim, BooJoong Kang, and Eul Gyu Im.
2013. Software plagiarism detection: a graph-based approach. In Proceedings of
the 22nd ACM international conference on Information & Knowledge Management.
1577–1580.

[10] Mahinthan Chandramohan, Yinxing Xue, Zhengzi Xu, Yang Liu, Chia Yuan Cho,
and Hee Beng Kuan Tan. 2016. BinGo: Cross-Architecture Cross-OS Binary
Search (FSE 2016). Association for Computing Machinery, New York, NY, USA,
678–689. https://doi.org/10.1145/2950290.2950350

[11] Hila Chefer, Shir Gur, and Lior Wolf. 2021. Transformer interpretability beyond
attention visualization. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 782–791.

[12] Coreutils 2022. Coreutils - GNU core utilities. https://www.gnu.org/software/
coreutils/

[13] Yaniv David, Nimrod Partush, and Eran Yahav. 2016. Statistical Similarity
of Binaries. In Proceedings of the 37th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (Santa Barbara, CA, USA) (PLDI
’16). Association for Computing Machinery, New York, NY, USA, 266–280.
https://doi.org/10.1145/2908080.2908126

[14] Steven H. H. Ding, Benjamin C. M. Fung, and Philippe Charland. 2019. Asm2Vec:
Boosting Static Representation Robustness for Binary Clone Search against Code
Obfuscation and Compiler Optimization. In 2019 IEEE Symposium on Security
and Privacy (SP). 472–489. https://doi.org/10.1109/SP.2019.00003

[15] Yue Duan, Xuezixiang Li, Jinghan Wang, and Heng Yin. 2020. DeepBinDiff:
Learning Program-Wide Code Representations for Binary Diffing. https://doi.
org/10.14722/ndss.2020.24311

[16] S. Ducasse, M. Rieger, and S. Demeyer. 1999. A language independent approach
for detecting duplicated code. In Proceedings IEEE International Conference on
SoftwareMaintenance - 1999 (ICSM’99). ’SoftwareMaintenance for Business Change’
(Cat. No.99CB36360). 109–118. https://doi.org/10.1109/ICSM.1999.792593

[17] Manuel Egele, Maverick Woo, Peter Chapman, and David Brumley. 2014. Blanket
Execution: Dynamic Similarity Testing for Program Binaries and Components.
In Proceedings of the 23rd USENIX Conference on Security Symposium (San Diego,
CA) (SEC’14). USENIX Association, USA, 303–317.

[18] Yanick Fratantonio, Antonio Bianchi, William Robertson, Engin Kirda, Christo-
pher Kruegel, and Giovanni Vigna. 2016. Triggerscope: Towards detecting logic
bombs in android applications. In 2016 IEEE symposium on security and privacy
(SP). IEEE.

[19] Jian Gao, Xin Yang, Ying Fu, Yu Jiang, and Jiaguang Sun. 2018. VulSeeker: A
Semantic Learning Based Vulnerability Seeker for Cross-Platform Binary. As-
sociation for Computing Machinery, New York, NY, USA, 896–899. https:
//doi.org/10.1145/3238147.3240480

[20] GNU. 2022. gcc-9. Retrieved Feb 16, 2023 from https://gcc.gnu.org/gcc-9/
[21] Yikun Hu, Hui Wang, Yuanyuan Zhang, Bodong Li, and Dawu Gu. 2021. A

Semantics-Based Hybrid Approach on Binary Code Similarity Comparison. IEEE
Transactions on Software Engineering (TSE) 47, 6 (June 2021), 1241–1258. https:
//doi.org/10.1109/TSE.2019.2918326

[22] Y. Hu, Y. Zhang, J. Li, H. Wang, B. Li, and D. Gu. 2018. BinMatch: A Semantics-
BasedHybrid Approach on Binary Code CloneAnalysis. In 2018 IEEE International
Conference on Software Maintenance and Evolution (ICSME). IEEE Computer
Society, Los Alamitos, CA, USA, 104–114. https://doi.org/10.1109/ICSME.2018.

00019
[23] IDA Pro 2022. A powerful disassembler and a versatile debugger. https://hex-

rays.com/ida-pro/
[24] Alexandros Kapravelos, Chris Grier, Neha Chachra, Christopher Kruegel, Gio-

vanni Vigna, and Vern Paxson. 2014. Hulk: Elicitingmalicious behavior in browser
extensions. In 23rd USENIX Security Symposium (USENIX Security 14).

[25] Chariton Karamitas and Athanasios Kehagias. 2018. Efficient features for function
matching between binary executables. In 2018 IEEE 25th International Conference
on Software Analysis, Evolution and Reengineering (SANER). 335–345. https:
//doi.org/10.1109/SANER.2018.8330221

[26] Amin Kharraz, William Robertson, Davide Balzarotti, Leyla Bilge, and Engin
Kirda. 2015. Cutting the gordian knot: A look under the hood of ransomware
attacks. In International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment. Springer.

[27] Dongkwan Kim, Eunsoo Kim, Sang Kil Cha, Sooel Son, and Yongdae Kim. 2022.
Revisiting Binary Code Similarity Analysis using Interpretable Feature Engineer-
ing and Lessons Learned. IEEE Transactions on Software Engineering (2022), 1–23.
https://doi.org/10.1109/TSE.2022.3187689

[28] Raghavan Komondoor and Susan Horwitz. 2001. Using Slicing to Identify Dupli-
cation in Source Code. In Static Analysis, Patrick Cousot (Ed.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 40–56.

[29] J. Krinke. 2001. Identifying similar code with program dependence graphs. In
Proceedings Eighth Working Conference on Reverse Engineering. 301–309. https:
//doi.org/10.1109/WCRE.2001.957835

[30] Bingchang Liu, Wei Huo, Chao Zhang, Wenchao Li, Feng Li, Aihua Piao, and
Wei Zou. 2018. aDiff: Cross-Version Binary Code Similarity Detection with DNN.
Association for Computing Machinery, New York, NY, USA, 667–678. https:
//doi.org/10.1145/3238147.3238199

[31] Shengzhong Liu, Franck Le, Supriyo Chakraborty, and Tarek Abdelzaher. 2021.
On exploring attention-based explanation for transformer models in text clas-
sification. In 2021 IEEE International Conference on Big Data (Big Data). IEEE,
1193–1203.

[32] LLVM. 2020. clang-10. Retrieved Feb 16, 2023 from https://releases.llvm.org/10.0.
0/

[33] Lannan Luo, Jiang Ming, Dinghao Wu, Peng Liu, and Sencun Zhu. 2017.
Semantics-Based Obfuscation-Resilient Binary Code Similarity Comparison with
Applications to Software and Algorithm Plagiarism Detection. IEEE Transactions
on Software Engineering 43, 12 (2017), 1157–1177. https://doi.org/10.1109/TSE.
2017.2655046

[34] Shiqing Ma, Yingqi Liu, Wen-Chuan Lee, Xiangyu Zhang, and Ananth Grama.
2018. MODE: Automated Neural Network Model Debugging via State Differential
Analysis and Input Selection. In Proceedings of the 2018 26th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering (Lake Buena Vista, FL, USA) (ESEC/FSE 2018). Association
for Computing Machinery, New York, NY, USA, 175–186. https://doi.org/10.
1145/3236024.3236082

[35] Andrea Marcelli, Mariano Graziano, Xabier Ugarte-Pedrero, Yanick Fratantonio,
Mohamad Mansouri, and Davide Balzarotti. 2022. How machine learning is
solving the binary function similarity problem. In USENIX 2022, 31st USENIX
Security Symposium, 10-12 August 2022, Boston, MA, USA, Usenix (Ed.). Boston.

[36] Ehsan Mashhadi and Hadi Hemmati. 2021. Applying CodeBERT for Auto-
mated Program Repair of Java Simple Bugs. CoRR abs/2103.11626 (2021).
arXiv:2103.11626 https://arxiv.org/abs/2103.11626

[37] Luca Massarelli, Giuseppe Antonio Di Luna, Fabio Petroni, Leonardo Querzoni,
and Roberto Baldoni. 2018. SAFE: Self-Attentive Function Embeddings for Binary
Similarity. https://doi.org/10.48550/ARXIV.1811.05296

[38] Tomás Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013.
Distributed Representations of Words and Phrases and their Compositionality.
CoRR abs/1310.4546 (2013). arXiv:1310.4546 http://arxiv.org/abs/1310.4546

[39] Kenneth Miller, Yonghwi Kwon, Yi Sun, Zhuo Zhang, Xiangyu Zhang, and
Zhiqiang Lin. 2019. Probabilistic Disassembly. In 2019 IEEE/ACM 41st Inter-
national Conference on Software Engineering (ICSE). 1187–1198. https://doi.org/
10.1109/ICSE.2019.00121

[40] Jiang Ming, Dongpeng Xu, Yufei Jiang, and Dinghao Wu. 2017. BinSim: Trace-
based Semantic Binary Diffing via System Call Sliced Segment Equivalence
Checking. In 26th USENIX Security Symposium (USENIX Security 17). USENIX
Association, Vancouver, BC, 253–270. https://www.usenix.org/conference/
usenixsecurity17/technical-sessions/presentation/ming

[41] Augustus Odena, Catherine Olsson, David Andersen, and Ian Goodfellow. 2019.
TensorFuzz: Debugging Neural Networks with Coverage-Guided Fuzzing. In Pro-
ceedings of the 36th International Conference on Machine Learning (Proceedings of
Machine Learning Research, Vol. 97), Kamalika Chaudhuri and Ruslan Salakhutdi-
nov (Eds.). PMLR, 4901–4911. https://proceedings.mlr.press/v97/odena19a.html

[42] Chengbin Pang, Ruotong Yu, Yaohui Chen, Eric Koskinen, Georgios Portokalidis,
Bing Mao, and Jun Xu. 2021. Sok: All you ever wanted to know about x86/x64
binary disassembly but were afraid to ask. In SP. IEEE, 833–851.

[43] Kexin Pei, Jonas Guan, David Williams-King, Junfeng Yang, and Suman Jana.
2021. Xda: Accurate, robust disassembly with transfer learning. In NDSS. The

https://doi.org/10.1109/ACCESS.2019.2918202
https://doi.org/10.1109/ICSM.1998.738528
https://doi.org/10.1109/ICSM.1998.738528
https://www.zynamics.com/bindiff.html
https://doi.org/10.1145/2950290.2950350
https://www.gnu.org/software/coreutils/
https://www.gnu.org/software/coreutils/
https://doi.org/10.1145/2908080.2908126
https://doi.org/10.1109/SP.2019.00003
https://doi.org/10.14722/ndss.2020.24311
https://doi.org/10.14722/ndss.2020.24311
https://doi.org/10.1109/ICSM.1999.792593
https://doi.org/10.1145/3238147.3240480
https://doi.org/10.1145/3238147.3240480
https://gcc.gnu.org/gcc-9/
https://doi.org/10.1109/TSE.2019.2918326
https://doi.org/10.1109/TSE.2019.2918326
https://doi.org/10.1109/ICSME.2018.00019
https://doi.org/10.1109/ICSME.2018.00019
https://hex-rays.com/ida-pro/
https://hex-rays.com/ida-pro/
https://doi.org/10.1109/SANER.2018.8330221
https://doi.org/10.1109/SANER.2018.8330221
https://doi.org/10.1109/TSE.2022.3187689
https://doi.org/10.1109/WCRE.2001.957835
https://doi.org/10.1109/WCRE.2001.957835
https://doi.org/10.1145/3238147.3238199
https://doi.org/10.1145/3238147.3238199
https://releases.llvm.org/10.0.0/
https://releases.llvm.org/10.0.0/
https://doi.org/10.1109/TSE.2017.2655046
https://doi.org/10.1109/TSE.2017.2655046
https://doi.org/10.1145/3236024.3236082
https://doi.org/10.1145/3236024.3236082
https://arxiv.org/abs/2103.11626
https://arxiv.org/abs/2103.11626
https://doi.org/10.48550/ARXIV.1811.05296
https://arxiv.org/abs/1310.4546
http://arxiv.org/abs/1310.4546
https://doi.org/10.1109/ICSE.2019.00121
https://doi.org/10.1109/ICSE.2019.00121
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/ming
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/ming
https://proceedings.mlr.press/v97/odena19a.html

Improving Binary Code Similarity Transformer Models by Semantics-driven Instruction Deemphasis ISSTA ’23, July 17–21, 2023, Seattle, WA, United States

Internet Society.
[44] Kexin Pei, Zhou Xuan, Junfeng Yang, Suman Jana, and Baishakhi Ray. 2020.

Trex: Learning Execution Semantics from Micro-Traces for Binary Similarity.
https://doi.org/10.48550/ARXIV.2012.08680

[45] Jannik Pewny, Behrad Garmany, Robert Gawlik, Christian Rossow, and Thorsten
Holz. 2015. Cross-Architecture Bug Search in Binary Executables. In 2015 IEEE
Symposium on Security and Privacy. 709–724. https://doi.org/10.1109/SP.2015.49

[46] Jannik Pewny, Felix Schuster, Lukas Bernhard, Thorsten Holz, and Christian
Rossow. 2014. Leveraging Semantic Signatures for Bug Search in Binary Programs.
In Proceedings of the 30th Annual Computer Security Applications Conference (New
Orleans, Louisiana, USA) (ACSAC ’14). Association for Computing Machinery,
New York, NY, USA, 406–415. https://doi.org/10.1145/2664243.2664269

[47] Nina Poerner, Hinrich Schütze, and Benjamin Roth. 2018. Evaluating neural
network explanation methods using hybrid documents and morphosyntactic
agreement. In Proceedings of the 56th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers). 340–350.

[48] PyTorch 2023. An open source machine learning framework that accelerates the
path from research prototyping to production deployment. https://pytorch.org

[49] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. 2018.
Improving language understanding by generative pre-training. (2018).

[50] Alec Radford, JeffreyWu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever,
et al. 2019. Language models are unsupervised multitask learners. OpenAI blog
1, 8 (2019), 9.

[51] rev.ng. 2023. Rethink Binary Analysis. Retrieved Feb 16, 2023 from https://rev.ng
[52] Hitesh Sajnani, Vaibhav Saini, Jeffrey Svajlenko, Chanchal K. Roy, and Cristina V.

Lopes. 2016. SourcererCC: Scaling Code Clone Detection to Big-Code. In 2016
IEEE/ACM 38th International Conference on Software Engineering (ICSE). 1157–
1168. https://doi.org/10.1145/2884781.2884877

[53] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedan-
tam, Devi Parikh, and Dhruv Batra. 2017. Grad-cam: Visual explanations from
deep networks via gradient-based localization. In Proceedings of the IEEE interna-
tional conference on computer vision. 618–626.

[54] Vedvyas Shanbhogue, Deepak Gupta, and Ravi Sahita. 2019. Security Analysis
of Processor Instruction Set Architecture for Enforcing Control-Flow Integrity.
In Proceedings of the 8th International Workshop on Hardware and Architectural
Support for Security and Privacy (Phoenix, AZ, USA) (HASP ’19). Association
for Computing Machinery, New York, NY, USA, Article 8, 11 pages. https:
//doi.org/10.1145/3337167.3337175

[55] Ridwan Salihin Shariffdeen, Shin Hwei Tan, Mingyuan Gao, and Abhik Roy-
choudhury. 2021. Automated Patch Transplantation. ACM Trans. Softw. Eng.
Methodol. 30, 1, Article 6 (dec 2021), 36 pages. https://doi.org/10.1145/3412376

[56] Eui Chul Richard Shin, Dawn Song, and Reza Moazzezi. 2015. Recognizing
functions in binaries with neural networks. In 24th USENIX Security Symposium
(USENIX Security 15). 611–626.

[57] Guanhong Tao, Shiqing Ma, Yingqi Liu, Qiuling Xu, and Xiangyu Zhang. 2020.
TRADER: trace divergence analysis and embedding regulation for debugging
recurrent neural networks. In ICSE ’20: 42nd International Conference on Software
Engineering, Seoul, South Korea, 27 June - 19 July, 2020, Gregg Rothermel and
Doo-Hwan Bae (Eds.). ACM, 986–998. https://doi.org/10.1145/3377811.3380423

[58] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention Is All
You Need. CoRR abs/1706.03762 (2017). arXiv:1706.03762 http://arxiv.org/abs/
1706.03762

[59] Jesse Vig. 2019. AMultiscale Visualization of Attention in the Transformer Model.
In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics: System Demonstrations. 37–42.

[60] Andrew Walker, Tomas Cerny, and Eungee Song. 2020. Open-Source Tools and
Benchmarks for Code-Clone Detection: Past, Present, and Future Trends. SIGAPP
Appl. Comput. Rev. 19, 4 (jan 2020), 28–39. https://doi.org/10.1145/3381307.
3381310

[61] Hao Wang, Wenjie Qu, Gilad Katz, Wenyu Zhu, Zeyu Gao, Han Qiu, Jianwei
Zhuge, and Chao Zhang. 2022. JTrans: Jump-Aware Transformer for Binary
Code Similarity Detection. In Proceedings of the 31st ACM SIGSOFT International
Symposium on Software Testing and Analysis (Virtual, South Korea) (ISSTA 2022).
Association for Computing Machinery, New York, NY, USA, 1–13. https://doi.
org/10.1145/3533767.3534367

[62] Shuai Wang and Dinghao Wu. 2017. In-Memory Fuzzing for Binary Code Simi-
larity Analysis. In Proceedings of the 32nd IEEE/ACM International Conference on
Automated Software Engineering (Urbana-Champaign, IL, USA) (ASE 2017). IEEE
Press, 319–330.

[63] Yuting Wang, Pierre Wilke, and Zhong Shao. 2019. An Abstract Stack Based
Approach to Verified Compositional Compilation to Machine Code. Proc. ACM
Program. Lang. 3, POPL, Article 62 (jan 2019), 30 pages. https://doi.org/10.1145/
3290375

[64] Yuting Wang, Xiangzhe Xu, Pierre Wilke, and Zhong Shao. 2020. CompCertELF:
Verified Separate Compilation of C Programs into ELF Object Files. Proc. ACM
Program. Lang. 4, OOPSLA, Article 197 (nov 2020), 28 pages. https://doi.org/10.
1145/3428265

[65] Xiangzhe Xu, Shiwei Feng, Yapeng Ye, Guangyu Shen, Zian Su, Siyuan Cheng,
Guanhong Tao, Qingkai Shi, Zhuo Zhang, and Xiangyu Zhang. 2023. Artifact for
DiEmph. https://doi.org/10.5281/zenodo.7978735

[66] Xiangzhe Xu, Shiwei Feng, Yapeng Ye, Guangyu Shen, Zian Su, Siyuan Cheng,
Guanhong Tao, Qingkai Shi, Zhuo Zhang, and Xiangyu Zhang. 2023. Sup-
plementary Material. Retrieved May 27, 2023 from https://github.com/XZ-
X/DiEmph/blob/master/suppl-material.pdf

[67] Xi Xu, Qinghua Zheng, Zheng Yan, Ming Fan, Ang Jia, and Ting Liu. 2021.
Interpretation-Enabled Software Reuse Detection Based on a Multi-level Birth-
mark Model. In 2021 IEEE/ACM 43rd International Conference on Software Engi-
neering (ICSE). 873–884. https://doi.org/10.1109/ICSE43902.2021.00084

[68] Zhengzi Xu, Bihuan Chen, Mahinthan Chandramohan, Yang Liu, and Fu Song.
2017. SPAIN: Security PatchAnalysis for Binaries towards Understanding the Pain
and Pills. In 2017 IEEE/ACM 39th International Conference on Software Engineering
(ICSE). 462–472. https://doi.org/10.1109/ICSE.2017.49

[69] Y. Ye, Z. Zhang, Q. Shi, Y. Aafer, and X. Zhang. 2023. D-ARM: Disassembling
ARM Binaries by Lightweight Superset Instruction Interpretation and Graph
Modeling. In 2023 2023 IEEE Symposium on Security and Privacy (SP) (SP). IEEE
Computer Society, Los Alamitos, CA, USA, 2391–2408. https://doi.org/10.1109/
SP46215.2023.00042

[70] Wei You, Zhuo Zhang, Yonghwi Kwon, Yousra Aafer, Fei Peng, Yu Shi, Carson
Harmon, and Xiangyu Zhang. 2020. PMP: Cost-effective Forced Execution with
Probabilistic Memory Pre-planning. In 2020 IEEE Symposium on Security and
Privacy (SP). 1121–1138. https://doi.org/10.1109/SP40000.2020.00035

[71] Zeping Yu, Rui Cao, Qiyi Tang, Sen Nie, Junzhou Huang, and Shi Wu. 2020. Order
Matters: Semantic-Aware Neural Networks for Binary Code Similarity Detection.
Proceedings of the AAAI Conference on Artificial Intelligence 34, 01 (Apr. 2020),
1145–1152. https://doi.org/10.1609/aaai.v34i01.5466

[72] Zhuo Zhang, Wei You, Guanhong Tao, Guannan Wei, Yonghwi Kwon, and Xi-
angyu Zhang. 2019. BDA: Practical Dependence Analysis for Binary Executables
by Unbiased Whole-Program Path Sampling and per-Path Abstract Interpreta-
tion. Proc. ACM Program. Lang. 3, OOPSLA, Article 137 (oct 2019), 31 pages.
https://doi.org/10.1145/3360563

Received 2023-02-16; accepted 2023-05-03

https://doi.org/10.48550/ARXIV.2012.08680
https://doi.org/10.1109/SP.2015.49
https://doi.org/10.1145/2664243.2664269
https://pytorch.org
https://rev.ng
https://doi.org/10.1145/2884781.2884877
https://doi.org/10.1145/3337167.3337175
https://doi.org/10.1145/3337167.3337175
https://doi.org/10.1145/3412376
https://doi.org/10.1145/3377811.3380423
https://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://doi.org/10.1145/3381307.3381310
https://doi.org/10.1145/3381307.3381310
https://doi.org/10.1145/3533767.3534367
https://doi.org/10.1145/3533767.3534367
https://doi.org/10.1145/3290375
https://doi.org/10.1145/3290375
https://doi.org/10.1145/3428265
https://doi.org/10.1145/3428265
https://doi.org/10.5281/zenodo.7978735
https://github.com/XZ-X/DiEmph/blob/master/suppl-material.pdf
https://github.com/XZ-X/DiEmph/blob/master/suppl-material.pdf
https://doi.org/10.1109/ICSE43902.2021.00084
https://doi.org/10.1109/ICSE.2017.49
https://doi.org/10.1109/SP46215.2023.00042
https://doi.org/10.1109/SP46215.2023.00042
https://doi.org/10.1109/SP40000.2020.00035
https://doi.org/10.1609/aaai.v34i01.5466
https://doi.org/10.1145/3360563

	Abstract
	1 Introduction
	2 Motivation
	2.1 Motivating Example
	2.2 Limitations in State-of-the-Art Models
	2.3 Our Technique

	3 Design
	3.1 Classification Importance Analysis
	3.2 Semantics Importance Analysis

	4 Evaluation
	4.1 Experiment Setup
	4.2 RQ1: Performance Improvement on the Out-of-Distribution Dataset
	4.3 RQ2: Effectiveness with Different Pool Sizes
	4.4 RQ3: Effects on In-Distribution Data
	4.5 RQ4: Run Time Efficiency
	4.6 RQ5: Ablation Study
	4.7 Case Study

	5 Related Work
	6 Threats to Validity
	7 Conclusion
	8 Data Availability
	Acknowledgments
	References

