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Abstract

The goal of this research is to improve and validate a Reynolds Averaged Navier-Stokes (RANS) turbulence

model to perform accurate Computational Fluid Dynamics (CFD) simulations of the urban wind flow.

The k-ω SST model is selected for calibration since its blended formulation holds remarkable optimization

potential and has increased relevancy in recent studies in the field. A simulation-based optimization

approach recalibrates the model closure constants by minimizing the prediction error of wind pressure

coefficients on an isolated cubical building because this scenario contains many salient features observed

in the flow in actual urban areas. The optimization procedure ensures both the coherence of calibrated

model constants involved in the wall function formulations and the relationship between them to satisfy

the flow horizontal homogeneity of the atmospheric boundary layer. The tuned closure coefficients increase

momentum diffusion in the wake, resulting in shorter and more accurate predictions of the reattachment

lengths. Validation case studies with wind tunnel measurement data from various urban scenarios were

addressed to comprehensively assess the adaptability of the optimal set of coefficients reached. The

results confirm that CFD predictions with the optimized model are consistently in closer agreement with

experimental data than the standard version of k-ωSST. The root mean square errors are reduced by

about 75% in pressure, 40% in velocity, and 20% in turbulent kinetic energy.

Keywords: Urban wind flow, RANS modeling, k-ω SST, Optimization, Turbulent flow, Wind pressure

coefficients

1. Introduction

The increasing population and urbanization conduce to the conformation of large cities with high-

density populated urban areas. The local atmospheric conditions impact the quality of life of urban

residents because they affect building energy performance, thermal comfort, and human morbidity and

mortality. Therefore, it is essential to investigate urban microclimates. Studies of the airflow field around
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buildings often use field measurements [1, 2] and reduced-scale wind tunnel experiments [3, 4]. As compu-

tational power becomes more cost-effective and available, computational fluid dynamics (CFD) simulations

are increasingly applied to solve urban wind engineering problems. At the urban microscale, this tech-

nique enables the study of wind loads on buildings for structural analysis and natural ventilation design,

pedestrian wind comfort, and air pollutant dispersion [5].

Given the complexity and the wide range of flow scales present in the turbulent atmospheric boundary

layer (ABL) flow, the direct numerical solution of the governing equations is not affordable. Among the

turbulence models employed, Large Eddy Simulation (LES) is intrinsically superior in terms of physical

modeling to Reynolds-Average Navier Stokes (RANS) approaches. However, for most focus areas in urban

physics, 3D steady RANS remains the primary CFD approach up to the present day [6, 7]. Many reasons

justify the selection, such as the computational expense or the increased model complexity of LES, and the

existence of best practice guidelines for RANS but not for LES [8–10]. Additionally, the use of hybrid LES

and unsteady RANS (URANS) approaches is still limited in building simulation. Despite the promised

balance of accuracy and computational cost, the border between the regions where URANS and LES

are applied in urban airflow is usually ill-defined. Again, the lack of guidelines attempts against reliable

predictions with this approach.

The time-averaged solutions yielded by RANS are valuable data for several practical ABL applications.

Mean pressure coefficients are critical data for modeling natural ventilation in buildings, a key passive

strategy for designing energy-efficient buildings, and improving indoor air quality [11]. The pedestrian

discomfort criterion is based on gust speed, which is usually estimated from the mean wind speed and

its standard deviation [12]. The transport of a passive or reactive scalar is usually incorporated to

model the near-field pollution dispersion [13]. Moreover, steady RANS solutions have attracted renewed

interest as an affordable data source for computationally expensive objectives, such as aerodynamic shape

optimization [14, 15] or the construction of pedestrian wind comfort maps of neighborhoods [16].

The efficacy of these applications is contingent upon the dependability of RANS solutions, which

are known to have issues in modeling flow around bluff bodies. On the CFD results of complex urban

environments, the turbulence models impact more than other modeling aspects, such as the imposed

roughness on the ground and walls [17]. The development of specific models improves the estimation of

turbulent kinetic energy (TKE) in the impinging region of building walls [18, 19], but their use is limited

because these enhancements were found to be less significant in other scenarios. The renormalization group

k-ϵ (RNG) and the k-ω with shear stress transport (k-ω SST) models alleviate the pressure overestimation

in the stagnation zone on the windward building surface. These models have shown satisfactory agreement

with experimental data and are currently recommended for ABL applications [20–22]. In this context, a

trend in the most recent literature suggests that the k-ω SST model is gaining relevance for the study

of urban wind flows [23–25]. Anyhow, the inaccurate prediction of flow separation and reattachment is

a recognized drawback of any steady RANS two-equation model. This issue leads to a poor estimation
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of the airflow in the wake region behind bodies and the subsequent inaccuracy of the predicted pressure

on lateral and leeward surfaces [11, 24, 26, 27]. These limitations of RANS models are highlighted in

sheltered conditions such as actual urban areas because buildings downstream from each other are the

norm [21, 28].

Predictions based on RANS turbulence modeling are hindered by structural and parametric uncertain-

ties. While the structural ones are related to the modeling hypothesis as the Boussinesq approximation,

the parametric ones arise from the semi-empirical closure coefficients embedded in the transport equa-

tions [29, 30]. These latter were primarily calibrated to match specific physical problems with experimental

data, such as homogeneous decaying turbulence, free shear flow, and fully developed channel flow, among

others. Such flows have limited similarities with the airflow characteristics around buildings in the ABL.

Even though the authors of the models provided standard values for the flows they investigated, CFD

practitioners use these standard coefficients regardless of whether they are fit to properly describe the

problem under analysis.

Because of the inherent uncertainties in the value of the closure coefficients of RANS turbulence models,

some research considered recalibrating them to represent specific flows of interest. The reattachment

point in the backward-facing step flow was the target to calibrate diverse RANS models using different

techniques, such as genetic algorithms (GA) [31] and genetic programming [32]. In Ref. [33], the calibration

of the closure coefficients of the Spalart–Allmaras turbulence model was carried out using machine learning

for a transonic wall-bounded flow around an airfoil. The uncertainty of closure coefficients and their

adjustment for transitional flows were studied in Ref. [34]. The k-ω SST model was calibrated for free

surface flows on slopes using machine learning techniques in Ref. [35]. Neural networks were employed to

improve the prediction of the k-ω model for the flow separation in a periodic hill in Ref. [36].

Regarding ABL applications, a Bayesian-based recalibration of the standard k-ϵ closure coefficients

was addressed for the particular case study of a flow over a street canyon using TKE measurements as

reference data [37]. Ref. [38] summarized several case studies where stochastic optimization was applied

to calibrate RANS models for different urban configurations. This study proved the need to find a set

of customized closure coefficients for RANS turbulence models suitable for a wide range of urban flow

problems. Ref. [39] introduced a simulation-based optimization method based on a dynamic coupling

of CFD simulations and GA. That approach improves the prediction of wind surface-averaged pressure

coefficients on a wide range of isolated low-rise buildings using RNG k-ϵ and Spalart-Allmaras models,

which reduced the root mean square error (RMSE) by 64% in unseen flow scenarios. In Ref. [40] several

k-ϵ based turbulence models were calibrated prioritizing the reproduction of the reattachment lengths

in a single-building model. The generalizability of these models calibrated with the single-building was

found to have limited performance for multi-building configurations. The calibrated models predicted with

acceptable agreement only the TKE at ground level but overestimated the TKE in the upper regions.

Although this study provided important advances, there is no mention of whether the coefficients involved
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in the wall functions models were also calibrated, which could explain these deviations. Overall, it is not

possible to guarantee that previous investigations simultaneously assure the coherence of calibrated model

constants involved in the wall function formulations and the relationship between these model constants

that satisfies the horizontal homogeneity of the ABL profile.

In the reviewed current literature, no study has consistently enhanced the performance of RANS

models, via its recalibration, to predict airflows around both isolated and urban buildings. This limitation

is probably because no research has considered the restriction for the horizontal homogeneity of the ABL,

which can impair the recalibration process by not guaranteeing that the modeled wind profile approaching

the buildings match the one measured in the wind tunnel experiments. The current literature also indicates

that the standard version of the k-ω SST model is the most suited RANS model for urban airflow modeling,

but no work has addressed its recalibration for this application. Therefore, this research aims to optimize

the constants of the k-ω SST turbulence model to enhance the prediction of urban wind flow while

satisfying the constraints in the numerical modeling of ABL. A bio-inspired simulation-based approach

fits the model constants by predicting the mean pressure field on an isolated cubical building. Various

urban case studies with experimental data are employed to comprehensively assess the generalizability

of the optimal set of coefficients obtained. The prediction accuracy of relevant features of the urban

flow is discussed through the analysis of mean pressure on building surfaces, and the mean velocities and

turbulent kinetic energy fields near the buildings.

In the remainder of this paper, Section 2 describes the methodology to optimize the turbulence model

and the comprehensive set of case studies selected to validate it. Section 3 presents the results of the

optimization process and the exhaustive assessment of its accuracy in the computational study of wind flow

in urban environments. Section 4 discusses the achievements and poses suggestions for future research.

Finally, Section 5 concludes the work.

2. Methodology

This section introduces the methods used to develop and validate an optimized k-ω SST turbulence

model suitable for the accurate computational study of wind flow in urban environments. Figure 1

presents the workflow where two main stages are devised. First, a bio-inspired optimization process based

on genetic algorithms coupled with CFD simulations calibrates the closure constants of the standard k-ω

SST model to enhance the prediction of pressure coefficients on building surfaces for a given training case.

Second, the performance of the optimized model is validated in urban environments for three case studies

selected from the bibliography. In this sense, the CFD results are compared with measurements from

wind tunnel experiments considering not only pressure coefficients on target buildings but also specific

features of the urban boundary layer as the turbulent flow at the pedestrian level.

The following subsections present the mathematical formulation, specifications of the methods used,

selected case studies, and metrics for quantifying the deviations between numerical predictions and ex-
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Optimization process

Recalibration of k-ω SST model closure coefficients 
using wind-tunnel measured data.

Validation process

Assessment of the k-ω SST standard and optimized models
by comparison with wind-tunnel measured data.

Optimized set of
closure coefficients

RANS CFD  simulations

- Training case: isolated building.

- Wind pressure coefficients.

RANS CFD simulations

- Urban buildings.

- Evaluated flow fields:

   > Pressure coefficients.

   > Velocity.

   > Turbulence.

- Three wind-tunnel databases (Validation cases I, II, III) varying: 

   > Wind incidence angles.

   > Urban density.

   > Height ratio target/neighbor buildings.
Genetic algorithms

wind

wind

Prediction errorPotential set of

closure coefficients

Figure 1: Scheme of the proposed methodology.

perimental results.

2.1. RANS equations and turbulence modeling

Incompressible homogeneous viscous fluid flow with constant density ρ and kinematic viscosity ν is

considered. Decomposing the unknowns of the Navier-Stokes equations, velocity ui and pressure p, into

the sum of the mean value (time-averaged or ensemble-averaged) and fluctuating parts as ui = Ui + u′i

and p = P + p′, and averaging, leads to the Reynolds Averaged Navier-Stokes (RANS) equations, which

are described as:

∂Ui

∂xi
= 0, (1)

∂Ui

∂t
+ Uj

∂Ui

∂xj
= −1

ρ
∇P +

∂

∂xj
τij −

∂

∂xj

(
u′iu

′
j

)
. (2)

where τij = ν

(
∂Ui

∂xj
+
∂Uj

∂xi

)
.

Most RANS models assume that the fluctuating part u′i obeys the Boussinesq hypothesis, such that,

− ∂

∂xj

(
u′iu

′
j

)
= νt

(
∂Ui

∂xj
+
∂Uj

∂xi

)
− 2

3
kδij , (3)

where νt is the kinematic eddy viscosity, and k = 1
2u

′
iu

′
i is the turbulent kinetic energy. The last term

in Equation (3) guarantees equality when both sides are contracted (the two sets of indices are set equal

and summed over). The RANS turbulence models can be grouped according to the number of additional

transport equations required to estimate νt. The two-equation models (k-ϵ and k-ω families) have become

industry standard and are commonly used for most types of engineering problems. The first variable, k,

determines the energy in the turbulence, whereas the second variable determines the scale of the turbulence

(length-scale ϵ or time-scale ω). In terms of modeling, probably the most flexible two-equation approach

is the baseline model (BSL) introduced by Menter [41]. In this model, the blended formulation alleviates

the near-wall dependency of k-ϵ models and the excessive sensitivity of the standard k-ω to the freestream
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values. The BSL formulation combines the standard k-ω equations multiplied by a blending function F1,

and the transformed k-ϵ equations multiplied by (1− F1) as:

∂k

∂t
+ Uj

∂k

∂xj
= P − β∗kω +

∂

∂xj

[
(ν + αkνt)

∂k

∂xj

]
, (4)

∂ω

∂t
+ Uj

∂ω

∂xj
=

γ

νt
P − βω2 +

∂

∂xj

[
(ν + αωνt)

∂ω

∂xj

]
+ 2(1− F1)αω2

1

ω

∂k

∂xi

∂ω

∂xi
. (5)

The k-ω SST model consists of adding to BSL formulation the additional capability to represent the

transport of the principal shear stress in adverse pressure gradient boundary layers. The effect in the

formulation is a modification of the value for some model closure coefficients, and the definition of the

eddy viscosity. Other minor variations have been developed to improve the prediction of specific flows.

According to the SST-2003m model [42], the production term is approximated by P = min
(
νtS

2, c1β
∗ωk

)
.

Thus, the eddy viscosity is defined as:

νt =
a1k

max(a1ω, b1SF2)
(6)

where S =
√
2SijSij is the strain invariant, with Sij =

1

2

(
∂Ui

∂xj
+
∂Uj

∂xi

)
.

Each of the constants is a blend of an inner (subindex 1) and outer (subindex 2) constant, which are

blended via:

ψ = F1ψ1 + (1− F1)ψ2. (7)

Additional functions are given by:

F1 = tanh(arg41); arg1 = min

[
max

( √
k

β∗ωy
,
500ν

y2ω

)
,

4σω2k

CDkωy2

]
(8a)

CDkω = max

(
2σω2

1

ω

∂k

∂xi

∂ω

∂xi
, 10−10

)
(8b)

F2 = tanh(arg22); arg2 = max

(
2

√
k

β∗ωy
,
500ν

y2ω

)
(8c)

where y is the distance from the cell center to the nearest wall, and Ω =
√
2WijWij is the vorticity

magnitude, with Wij =
1

2

(
∂Ui

∂xj
− ∂Uj

∂xi

)
The standard constants, presented in Table 1, were inherited from the original models. The key of

the formulation is the blending function F1. This gradually switches from the k-ω model in the sub- and

log-layer to the k-ϵ model in the wake region of the boundary layer and free shear layers. Although this

calibration has shown acceptable confidence in solving specific flows, the performance of the formulation

to model flow around bluff bodies is herein investigated, as this type of scenario was not considered in

the model’s adjustment. Apparently, the blended formulation holds remarkable optimization potential

by implicitly allowing calibration of the boundary between the inner and outer layers, and the sets of

coefficients to be used in each region.

The k-ω SST model is showing increased relevance in the study of urban wind flows in the latest years.

The current results indicate that the standard version of the k-ω SST model is the most suited RANS
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model for urban airflow modeling, but still leaves room for improvements. This trend also supports the

choice of the k-ω SST turbulence model for the optimization in this work.

Table 1: Closure coefficients in the k-ω SST model. Standard values and lower and upper limits for their calibration.

β∗ αk1
αk2

αω1
αω2

β1 β2 γ1 γ2 a1 b1 c1

standard 0.09 0.85 1.0 0.5 0.856 0.075 0.0828 5/9 0.44 0.31 1.0 10.0

lower limit 0.005 0.05 0.05 0.05 0.05 0.005 0.005 - - 0.005 0.005 0.1

upper limit 1.0 5.0 5.0 5.0 5.0 2.0 2.0 - - 2.0 2.0 20

2.2. Horizontally homogeneous atmospheric boundary layer flow

The lowest part of the atmospheric boundary layer can be considered fully aerodynamically rough,

relatively free from any pressure gradient and horizontally homogeneous (HHABL) [43]. This property,

which can only exist in regions remote from any obstructions, implies that the streamwise gradients of all

variables should be zero. Since the pressure is constant, the flow is driven by a shear stress at the upper

surface of the layer, and this is constant through the layer, equaling the shear stress at the wall.

The HHABL conditions are used to derive inlet profiles for the velocity and the turbulent variables

from the conservation and equilibrium equations associated with particular turbulence models. Solutions

of Equations (4) and (5) are essentially the same as presented in Ref. [44] for the k-ϵ model, and yield the

same profile for U , it is:

U =
u∗
κ

ln

(
z + z0
z0

)
, (9)

where u∗ is the friction velocity, κ = 0.4 is the von Karman’s constant, and z is the vertical coordinate

(m). Because HHABL is considered, the friction velocity is constant along the height z and it can be

calculated from a known velocity Uh at a reference height z = h as:

u∗ = κ
Uh

ln ((h+ z0)/z0)
. (10)

The value of the aerodynamic roughness height z0 (m) usually follows the roughness classification proposed

in Ref. [45]. The turbulent kinetic energy and specific dissipation rate (ω) inlet profiles are defined as:

k =
u2∗√
β∗ , ω =

u∗
κβ∗(z + z0)

. (11)

There is one constraint imposed in the solutions given by (9) and (11), namely, a unique relationship

exists between the implied value of Karman’s constant and the various closure coefficients. Specifically,

the following restrictions must hold [46]:

γ1 =
β1
β∗ − σω1κ

2

√
β∗ (12a)

7



γ2 =
β2
β∗ − σω2κ

2

√
β∗ . (12b)

The ABL inhomogeneity, which refers to an unintended mismatch between the inlet and incident ABL

profiles, can be a significant source of error and may compromise the reliability of flow predictions, e.g.,

pedestrian wind comfort [47] and wind loads [48]. Thus, preserving the wind profile is essential when wind

tunnel data is used for calibration and validation purposes to avoid uncertainties regarding mismatching

the incident profile.

To guarantee that the inflow ABL profile imposed preserves its shape throughout the upstream domain

despite the distance from the inlet to the building the flow must be driven by a shear stress at the top

boundary as τtop = ρu2∗. This condition must be employed along with a compatible wall function on the

ground [49].

Regarding building surfaces, these are considered smooth surfaces, and a non-slip condition for the

velocity is imposed on them. For turbulent variables, an automatic near-wall treatment shifts gradually

between the viscous and logarithmic sub-layer formulations, based on the mesh density [50]. The use of

such an approach alleviates the requirement of limiting the dimensionless wall distance (y+) value at the

first cell center from the wall in a pre-specified range, which is challenging to achieve with every cell on

the wall, especially when addressing complex geometries.

Note that the wall functions used on the building surfaces and ground depend on several of the model

closure coefficients, which are listed in Table 1. Thus, the calibration procedure herein proposed ensures

consistency in the specification of these constants; i.e., the same value of each coefficient is employed for

the transport equations of the turbulent variables, the definition of the ABL flow in the inlet, and the

ground and wall functions.

2.3. CFD simulations

In this study, the cloud-based platform CpSimulator [21] is selected as the CFD tool. The platform

comprises a set of tools to automate the entire workflow of ABL simulations and obtain detailed wind

flow data around buildings in urban scenarios. These implementations include the generation of the

computational domain, the meshing procedure, the solution stage, and the post-processing of the results.

The platform processes the geometric data of the scenario (the target building and its surrounding

environment, if any) and reconstructs this information in a computational domain. This latter is a regular

polygon whose dimensions met the ones advised by best practice guidelines [8] regarding the minimum

distances between the building or urban model and the boundaries of the domain and the maximum

allowed blockage ratio. Regarding discretization, the automatic evaluation of the reference cell size, DX,

according to the whole dimensions of the buildings and the detection of characteristic lengths of each

surface are key to guaranteeing a proper level of mesh refinement. A background mesh of cubical cells of

size DX is recursively refined to shape the input surfaces that define the buildings and the boundaries of
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the computational domain. Due to the recursive nature of the refinement process, i.e., splitting each cell

into eight of half-length, the refinement ratio is two between refinement regions. The process preserves

the aspect ratio, except near building surfaces, where prismatic layers are placed to guarantee that grid

lines are perpendicular to the walls. The mesh quality is controlled via the maximum skewness, maximum

non-orthogonality, and the number of undetermined cells, resulting in a proper discretization for the finite

volume method [51]. The mesher prioritizes the quality requirements over a strict conforming of any

detail of the geometry. The tool demonstrated great robustness due to, in most cases, and despite the

complexity of the analyzed case, the automatic procedure achieves meshes with a large percentage of

hexahedral cells, favoring the quality of the numerical solution obtained [21, 52].

The time-averaged RANS equations are solved using an implicit, segregated, three-dimensional finite

volume method (FVM). Pressure-velocity coupling is solved with the SIMPLE algorithm by using the

implementation available in the open-source software OpenFOAM. The running procedure starts the

simulation with velocity and turbulent fields initialized everywhere to the inlet conditions. The relaxation

used in initial iterations is gradually deactivated and discretization schemes are switched from first to

second-order. The iterative solving process continues until the normalized residuals for pressure, velocity

components, and turbulent fields have decreased by five orders of magnitude for each one. It should be

emphasized that the RANS equations yield time-averaged solutions. Pressure, velocity, and turbulent

kinetic energy will henceforth refer to these mean fields.

The requirements of the current study led to the development of new capabilities for the post-processing

module. These allow the automatic sampling of solution fields on a list of measurement points given as

input. Added functionalities enable the acquisition of pressure data on the surfaces, or velocity and

turbulent kinetic energy data on specific locations around buildings. In particular, the wind pressure

coefficient Cp at a point xi on the façade is defined as,

Cp(xi) =
P (xi)− P∞

1
2ρU

2
H

, (13)

where P (xi) is the static pressure at the given point and P∞ is the static reference pressure at far away

from any disturbance. Finally, the surface-averaged pressure coefficient on a given surface of the building

of area Ω is obtained as:

Cp =
1

Ω

∫
Ω

Cp dΩ. (14)

2.4. Optimization procedure

The calibration of the k-ω SST model can be addressed as an optimization problem which is defined

as the searching of a set of closure coefficients x = (x1, x2, . . . , xn) that minimize the prediction error of

CFD simulations regarding a given reference data, it is:

min f(x) subject to: xLi ≤ xi ≤ xUi , i = 1, . . . , n (15)
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where xLi and xUi are the lower and upper limits for the design variable xi. The objective function f is

defined as

f(x) =
RMSE(x)
RMSE(x0)

+R, (16)

where RMSE(·) is the root-mean-square error of the CFD simulations for the training case (see next

section), and x0 and x are the standard and the modified set of closure coefficients, respectively. The

second term (R), serves to penalize solutions conducting to not-converged simulations since it increases

the objective function proportionally to the unsatisfied residual convergence of the pressure equation.

Thus, the term R is defined as:

R = 0.1(log10(max(r∗, r(x)))− log10(r
∗))

2 (17)

where r(x) is the last residual for the pressure equation system in the steady simulation and r∗ = 10−4 is

the minimal convergence required for the residuals. Note that R = 0 for converged simulations.

As to the lower and upper limits of the variables xLi and xUi of the k-ω SST model, there are no

physical-based limits determined in the original work [41]. As described previously, the physical modeling

of turbulence generation or dissipation is performed by including production and destruction terms, whose

magnitudes are directly or indirectly modified through the closure coefficients. Therefore, the search range

is expanded as much as is computationally possible, while considering mathematical restrictions (some of

them cannot be zero) and their physical meaning (most of the coefficients must be positive). Moreover,

restrictions expressed in Equation (12), which define γ1 and γ2 in terms of the remaining constants,

are employed to guarantee the HHABL condition. Thus, these two coefficients are not included in the

calibration procedure. Table 1 shows the limits adopted for each optimization variable.

To solve the single-objective optimization problem (15), and in agreement with the previous work of

the authors [39], genetic algorithms (GA) are used. This bioinspired approach obtains better solutions

than traditional gradient-based methods of optimization when functions with multiple local optima are

evaluated. GA have low sensitivity to discontinuities in the objective function, and they are well-suited

for parallel computing.

The chromosome of each individual of the population consists of a sequence of real numbers coding

the modified constants of the k-ω SST model. The GA-based procedure comprises successive generations

evaluating the fitness of each individual, which starts with a random population. A CFD simulation

using the given set of coefficients is solved for the training case, and the Equation (16) determines a

unique qualification of the aptitude, i.e. the fitness, of the evaluated individual. Then, the population of

the following generation is getting using selection, crossover, and mutation operators that favor the fittest

individuals. Iteration continues until a maximum number of generations is satisfied or a specified minimum

fitness is reached. At this point, the fittest individual is considered the optimum. The description of the

implementation and execution of the optimization procedure does not substantially differ from what is

detailed in Ref. [39].
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Figure 2: Case study for training. (a) geometry, wind incidence angle reference, and labeling of the building surfaces. (b)

location of the measurement points.

2.5. Case study for training

In urban environments, the ABL wind-flow pattern is very complex. However, the flow around a

simple isolated cubic building model contains many of the salient features that are also present in urban

airflows [53]. The focus on this simple scenario has allowed researchers to clearly identify the main

limitation of standard RANS models, the inability to accurately reproduce the flow separations and

downstream flow field of the windward façade.

The potential room for improvement in this simple case is investigated through the recalibration of

the k-ω SST model, presuming that an enhancement in the prediction accuracy for this case study could

also improve the accuracy for multi-building configurations, such as urban environments. Under this

assumption, the training case for the optimization procedure is selected from the database for isolated low-

rise buildings of the Wind Engineering Information Center of the Tokyo Polytechnic University (TPU) [54].

In particular, the flat-roofed case with height-to-breadth (H/B) and depth-to-breadth (D/B) ratios of

H/B=D/B=1 is selected. The experimental scale of 1/100 leads to H=B=D=0.1 m. The geometry

configuration is displayed in Figure 2a.

A log-law profile adjusts the incident wind profile used in experiments with Uh = 7.95 m/s, h = 0.16

m, and z0 = 2 × 10−4 m. Although wind tunnel data for wind incidence angles from 0◦ to 90◦ in 15◦

increments are available, only the case with 0◦ wind is taken.

The experimental data consists of a time series of the sampling of pressure coefficients at different

locations on the roof and building surfaces, presented in Figure 2b. To be used as a reference solution

in the optimization procedure, the data is pre-processed. First, a time average of the signal from each

sensor is performed, obtaining a time-averaged value of the pressure coefficient at each measurement point.

When analyzing these data, unexpected characteristics are observed, such as the lack of symmetry with

respect to the axis of the selected wind incidence, marked by the dashed line in Figure 2b. One possible

reason for this deficiency is having averaged a scarce time-series signal. To reduce this uncertainty, we

have processed the data to impose proper symmetry conditions, resulting in the value of Cp at each

measurement point being the average between itself and its symmetric.

11



D

B

H H/6

(d)

B

D

d

b

(a) Case I.a

CA=0.1

(b) Case I.b

CA=0.2

(c) Case I.c

CA=0.4

Figure 3: Validation Case I. Urban area for (a) Case I.a, (b) Case I.b, and (c) Case I.c. In (d) the location of the measurement

points on the target building is presented.

2.6. Case studies for validation in urban environments

The use of the optimized model to predict flow in scenarios for which it was not trained must be

validated. In particular, we are interested in evaluating the adaptability of the model in urban case

studies. For this, three bibliographical references to wind tunnel tests for different geometries of urban

prototypes are selected. Measurements of flow characteristics, such as pressure, velocity, and turbulence

fields, provide an exhaustive data set to assess the model. These multi-building scenarios, which consider

regular building topologies and structured arrangements, examine various levels of clustering between

buildings and relative heights between the target building and its neighborhood.

Validation Case I. This multi-building case study and its experimental results are taken from the TPU

database [54]. The so-called target building is a flat-roofed building with ratios of D/B = 3/2 and H/B

= 1/2, see Figure 3(a). Real-scale sizes are B = 16 m, D = 24 m, and H = 12 m, with an experimental

scale of 1:100. To measure wind pressures, over 256 taps were placed uniformly over the surfaces of the

target building. The same geometry configuration is employed for the surrounding buildings, which are

in a regular arrangement with different levels of clustering; see Figures 3(a)-(c). The area density CA is

defined as:

CA =
area occupied by buildings

area of site
=

BD
bd

(18)

where b and d are the average distances between corresponding points on adjacent buildings in the two

coordinate directions, as shown in Figure 3(d). The experiments with CA=0.1, 0.2 and 0.4 are taken

for validation. This enables studying the sensitivity to the flow regime in the urban boundary layer [55].

The isolated roughness flow regime is analyzed with CA=0.4 (Case I.a), the wake interference flow with

CA=0.2 (Case I.b), and the skimming flow with CA=0.1 (Case I.c).

A log-law profile adjusts the incident wind profile used in experiments with Uh = 7.91 m/s, H = h =

0.12 m, and z0 = 1.5× 10−4 m. To compute Cp values an undisturbed pressure P=0 is considered. Wind

pressure time series for wind incidence angles from 0◦ to 90◦ in 22.5◦ increments are used. The locations

of the measurement points are shown in Figure 3(d). The time-averaged wind pressure coefficients are

computed and stored as reference data.

12



H

B

D

Ht

W

x

y

z

W

(a) Geometry Cases II and III

z=H/10

(c) Measurement points Case II (d) Measurement points Case III.a

y=0

(b) Configurations

y=0

(e) Measurement points Case III.b

labeling

61

120

19

32

45

114
101
88

33

76
89

102

115

II.a II.b II.c III.a III.b
B 0.2 m 0.1 m
D 0.2 m 0.1 m
H 0.2 m 0.1 m
Ht 0H 1H 2H 1H 3H
W 0.2 m 0.1 m
θ 0º, 22.5º, 45º 0º

Figure 4: Validation Cases II and III. (a) Urban area for both cases. (b) geometry configurations, (c),(d) and (e) location

of the measurement points, where empty-red and filled-blue markers represent pressure and velocity sensors, respectively.

Validation Case II. In this second validation case, the experimental results of the so-called case C from

the Architectural Institute of Japan (AIJ) are used [9]. The database provides data from 9 experiments,

0◦, 22.5◦, and 45◦ for three different geometries. The geometries represent a small block of buildings, where

there is no building at its center (Ht=0, Case II.a), a low-rise building at its center (Ht=H, Case II.b), and

a high-rise building at its center (Ht=2H, Case II.c), see Figure 4(a). The surrounding cubic buildings

are arranged in a regular form with a planar area density of CA=0.25. The configurations of the models

are presented in Figure 4(b). A log-law profile with UH = 3.75 m/s and z0 = 4.75 × 10−4 m fits the

approaching flow used in the wind tunnel experiments.

The wind tunnel experiment was thought to help validate the accuracy of CFD codes for pedestrian

wind comfort assessments. In this context, the data provided consists of a set of time-averaged velocities

on 120 measurement points located at a height of H/10, see Figure 4(c). We have labeled the sampling

points following an increasing order along the canyons between buildings, which simplifies the analysis.

Validation Case III. This case study is based on the wind tunnel results reported in Ref. [56] whose data

is made available in Ref. [57]. In that experiment, very close to test case C of the AIJ benchmark, a

regular arrangement of nine cubic generic buildings with a planar area density of 0.25 was used. The

height of the surrounding buildings was H = 0.1 m, whereas two different heights of 1 H and 3 H were

considered for the target building, here namely Case III.b and Case III.b, respectively.
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The case studied considers wind direction perpendicular to the building façades. Figures 4(a) and

4(b) introduces the scenario’s geometry and its configuration. The mean approach velocity used in the

experiments can be fitted to a log-law with a reference velocity UH = 3.02 m/s and an aerodynamic

roughness of z0 = 2×10−4. After statistical analysis, mean velocities and turbulent kinetic energy (TKE)

were reported on 90 and 95 measurement points over the central vertical plane in Cases III.a and III.b.

The pressure on the façades was measured along the centerline of the target building at 21 and 37 points

in Cases III.a and III.b, respectively. Their locations are shown in Figures 4(d) and 4(e). As mentioned by

the authors of these experiments, that study represents one of the few studies that measured the velocity

field and wind pressure coefficient around buildings in the same experiment.

2.7. Metrics

Let’s consider N sampling data points. Table 2 shows the metrics employed to quantify the agreement

between the predicted and measured results, where Oi and Pi are the measured (reference) and predicted

(computed) values for the sample i, respectively.

Table 2: Metrics to quantify the agreement between the predicted Pi and observed Oi results. The square brackets denote

the averaging of the entire dataset.

Metric Expression Perfect agreement

RMSE
√

1
N

∑N
i=1 (Pi −Oi)

2 0.0

NRMSE
RMSE√

1
N

∑N
i=1 (Oi − [O])

2
0.0

R2 1−
∑N

i=1(Oi − Pi)
2∑N

i=1(Oi − [O])2
= 1− NRMSE2 1.0

FB
[O]− [P ]

0.5([O] + [P ])
0.0

FAC2
1

N

∑N
i=1 li with li =

1 for 0.5 ≤ Pi

Oi
≤ 2

0 else,
1.0

r
∑N

i=1(Pi − [P ])(Oi − [O])√∑N
i=1 (Pi − [P ])

2
√∑N

i=1 (Oi − [O])
2

1.0

The residual methods, i.e. those which evaluate the difference between observed and predict data, are
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the most prevalent. The root mean square error (RMSE) prevents the negative-positive errors cancellation,

it is expressed in the same units as the original data, and it leads to smooth functions of the residuals,

a requirement for many optimization methods. Normalizing the RMSE is useful to compare predictions

for variables of different natures. In particular, the standard deviation-based normalization of the RMSE

(NRMSE) represents the ratio between the variation not explained by the predictive model and the overall

variation in observed data. Similarly, the coefficient of determination (R2) is the ratio of the explained

variation to the total variation. The fractional bias (FB) indicates systematic prediction errors which lead

to underestimating or overestimating the observed values. The fraction of the predictions within a factor

of two of the observations (FAC2) is a robust metric as is not influenced by high and low outliers and

highlighting deviations when the observed value is near zero. The Pearson correlation coefficient (r) reflects

the linear relationship between two variables but it is insensitive to either an additive or a multiplicative

factor. A perfect agreement is reflected by the metrics when R2, FAC2 and r are 1, and RMSE, NRMSE

and FB are 0. Finally, given a reference measured data set, the percentage of improvement of a predictive

model j regarding another model k is quantified as

Improvement =
NRMSE|k − NRMSE|j

NRMSE|k
× 100% (19)

where the subindex denotes the prediction set used to compute the NRMSE.

3. Results

This section aims to present the closure coefficients obtained by optimization and the performance

of the recalibrated turbulence model on the training and validation cases. In the following, we refer

as Standard and Optimized for the k-ω SST models using the standard and optimized sets of closure

coefficients, respectively.

3.1. The optimal set of closure coefficients

To carry out the optimization process, it is mandatory to build a reliable computational mesh for

CFD simulations. Although an exhaustive study of the automatic mesher under similar conditions was

previously carried out [52], a sensitivity analysis to mesh refinement is performed for the training case

using Standard. Four hex-dominant volumetric meshes with approximately 300 K, 590 K, 1 M, and 2.8 M

polyhedral cells were generated as coarse, intermediate, fine, and finest mesh configurations. Figure 5(a)

presents snapshots of the meshes used. The refinement setting is equivalent for each mesh, but the cell sizes

are scaled according to the reference cell size, DX. The table in Figure 5(b) shows the main characteristics

of each mesh. The reference, maximum, and minimum cell sizes, DX, hmax and hmin, respectively, are

reported with normalized values regarding the building height.

Using the Cp on sampling points with the finest mesh as the reference solution, the successive re-

finements yielded R2 values of 0.9953, 0.9976, and 0.9987. for the coarse, medium, and fine solutions,
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# cells DX/H

Coarse 300 K 1.20 6.00E-01 4.69E-03 0.9953
Intermediate 590 K 0.95 4.75E-01 3.71E-03 0.9976

Fine 1.0 M 0.70 3.50E-01 2.73E-03 0.9987
Finest 2.8 M 0.45 2.25E-01 1.76E-03 1.0000

h
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/H h
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(a)
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Fine Finest

Figure 5: Sensitivity analysis to mesh refinement. Training case solved with the standard k-ω SST model. (a) snapshots

of the meshes used, (b) summary of mesh configurations and fit, (c), (d), and (e) scatter of pressure coefficients computed

with different mesh settings. The results with Finest mesh are taken as the reference.

as shown in Figure 5. These results, which reflect the consistency of the model, indicate that 99.5% of

the variations, i.e. the spread, of the Cp values are determined, i.e. explained, by the location of the

measurement point. In other words, less than 0.5% of the variation could be attributed to the mesh

refinement. We consider this uncertainty low enough for any case, so the intermediate mesh configuration

is selected to not outweigh the computational cost of the optimization procedure. Finally, the reference

root-mean-square error, RMSE(x0), is computed by comparing Standard predictions and experimental
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β*
standard 0.090 0.850 1.000 0.500 0.856 0.075
optimized 0.997 3.746 0.782 2.951 4.945 0.848
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Figure 6: Insight into the optimization procedure. (a) the standard and the optimal sets of closure coefficients for the k-ω

SST model. (b) evolution of the global objective function along the generations. (c) and (d) scatter of the aptitude of each

individual regarding the γ1 and γ2 constants respectively, where dashed lines are their standard and optimized values.

data at sampling points, yielding a value of 0.305.

Once selected the computational mesh, the GA optimization with 80 initial individuals evolved through

45 generations is performed. The computational effort was dominated by the 7200 CFD simulations run,

which took 150 hours on 80 cores, slightly more than 3 hours per generation. It is also worth noting that

each CFD simulation performed preserves the HHABL condition throughout the fetch. The difference

between the inlet (imposed) and the incident wind profile (evaluated 2H upstream of the building) is

negligible. The optimized set of closure coefficients obtained is presented in Figure 6(a), where the

standard coefficients are re-displayed to facilitate comparison. A general insight into the convergence

of the procedure is presented in Figure 6(b). The evolution of the global objective function f for the

best individual and the mean of f for all the individuals of the population from generation to generation

is shown. It can be seen that f was reduced (i.e., the performance was improved) to 0.5, near the

final minimum, after a few generations. After that, the convergence was slower until attaining the best

value f(xopt) = 0.458 at the 45th generation. This individual leads a converged simulation (R=0) with

RMSE(xopt)=0.139. The sufficiency of the number of generations is guaranteed because of the negligible

difference between the average and minimum f at the end of the procedure. Figures 6(c) and 6(d) show

the relationship between the constants γ1 and γ2 computed for each individual of each generation with

the Equation (12) and the objective function. On the one hand, the effect of penalizing individuals who

do not satisfy γi > 0 is observed. This penalty guarantees not to alter the physical meaning of these

constants, which intervene as a multiplicative factor in the production term of ω, see Equation (5). On

the other hand, despite being a non-linear combination of the other constants and that these assume

values other than the standard ones, the value of each γi ends up near the standard value.
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 (b) Wind tunnel data (c) Optimized k-ω SST (a) Standard k-ω SST 

-1.5 -1.0 0.5 0.0 0.5 1
Cp

(e) Optimized k-ω SST (d) Standard k-ω SST

R2: 0.809 R2: 0.974

Figure 7: Comparison of wind tunnel data with Standard and Optimized results on the training case study. Wind pressure

coefficients contours on building surfaces (a-c), fit of the numerical predictions against experimental data (d-e).

3.2. Performance of the optimized model

This section aims to explain the rationale behind Optimized outperforming the accuracy of Standard.

Figures 7(a-c) display the pressure coefficients on each surface for the Standard and Optimized results

and the reference data from the wind tunnel. A first observation is that the higher accuracy of Optimized

compared to Standard is due to a better prediction of the negative pressures on the side surfaces and the

roof of the building. The distribution of pressures measured in the experiment presents minima towards

the corners of the leading edge of the roof. This feature is not perceptible in the results with Standard,

which also overpredicts the pressure in that region. For its part, Optimized substantially improves the

prediction of Cp in these regions. It captures the depression towards the corners of the building and the

pressure recovery towards the leeward region.

Figures 7(d-e) present the fit at each measurement point via a scatter diagram. The metrics shown
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(a) Standard k-ω SST (b) Optimized k-ω SST

Xf: 0.88H

Xr: 0.84H

Xb: 1.19H

Xb: 2.31H

Xr: 0.87H
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Eddy viscosity ratio

Xf: 1.19H

Figure 8: Training Case. Top: Eddy viscosity ratio fields on slice at 5H/12. Bottom: Shear velocity and reattachment

lengths in front Xf , roof Xr, and back Xb. Wind tunnel reference are Xr=0.7H and Xb=1.2H [58].

quantify the fit by comparing the solutions to the Standard and Optimized models and experimental data.

A significant gain in prediction is observed primarily for Cp < −0.5 samples. The overall improvement

computed with Equation (19) is 63%. Each metric evaluated leads to similar conclusions. It is noteworthy

that the FAC2 takes the optimal value in the calibrated case. At the same time, a slight deterioration in

the prediction of positive pressures on the windward surface can be observed.

Although the objective is to adjust the pressure coefficients on the building, this calibration impacts

the prediction of the flow around the building. In Figure 8, the computed shear velocity on the surfaces

of the cube and the ground is presented via the line integral convolution (LIC) representation technique.

In turn, the reattachment lengths in front (Xf ), on the roof (Xr,) and behind the building (Xb) are

presented.

The observed flow patterns, see Figure 8, show that both the flow over the roof and around the sides

detach at the windward edge but do reattach. The streamlines near the ground upstream of the cube

show reversed flow, while the separation bubble behind the building is reflected through two symmetric

vortex patterns on the floor and finally reattaches at Xb from the rear surface.

The Reynolds number, ReH = 8.8× 104, is calculated using the building’s height, H, and the velocity

at this height. Among the diverse literature available with experimental data on reattachment lengths for

flows around a cube [59], the simulated conditions in our study are similar to those of Murakami [58]’s

wind tunnel test. That work reports Xr=0.7 H and Xb=1.2 H. The results obtained with Optimized,

Xr=0.84 H and Xb=1.19 H, fit the experimental data much better than the standard case (0.87H and 2.31
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H, respectively), mainly for the reattachment length on the ground behind the building. It is important

to note that the flow characteristic fit was not explicitly calibrated; however, the improvement in its

prediction is an added benefit of the optimization. This fact confirms the proper selection of the objective

function and the enhanced ability of the optimized model for the prediction of the flow around a bluff

body.

The turbulent eddy viscosity to laminar kinematic viscosity ratio (νt/ν) is the eddy viscosity ratio.

The top of Figure 8 shows the contour maps of the eddy viscosity ratio on a slice at height 5H/12 for

the Standard and Optimized solutions. It can be seen that the recalibrated turbulence model increases

momentum diffusion in the wake region by up to three times. A higher eddy viscosity means a higher

turbulent transfer of energy as a result of moving eddies, which causes a stronger dissipation of flow

inertia in these regions. These differences help to explain the optimized model’s improved prediction of

reattachment length and negative pressures.

3.3. Validation Case I

To assess the generalizability of the optimized model in non-isolated environments with different levels

of clustering, simulations of the validation Case I were conducted using Standard and Optimized.

Computational meshes of Cases I.a, I.b, and I.c were generated considering a reference cell size DX

equivalent to the one selected in the training case. Details of the meshes are shown in Figure 9 where the

target (central) building is colored. The number of cells is 1.64 M, 1.58 M, and 2.39 M for Cases I.a, I.b,

and I.c respectively, with more than 95% of hexahedra each. More features of the meshes are given in

Figure 9(d).

Figure 10 reports the prediction accuracy of both models for the pressure coefficients at the mea-

surement points on the target building’s surfaces. Every metric evaluated shows a better agreement of

Optimized with the reference data than Standard. The Improvement summarizes the enhancement ob-

tained with Optimized for each case study, which is between 25 and 30%. It can be seen that, for both

models, the fit decreases when the area density CA increases.

Figures 10(b-d) depict the scattered data for each case study that was solved using both models. It

is observed that Optimized has a lower dispersion around the ideal fit. These graphs also demonstrate

the Cp ranges’ sensitivity to area density. The range (-1.5 to 0.8) for CA=0.1, is narrowed up to (-

0.65,0.2) for CA=0.4. The standard model is not able to accurately predict the proper range of pressures,

particularly in the skimming flow case. Lower predictability (R2=0.309) is mainly due to obtaining an

excessively homogeneous pressure field around the target building. These deficiencies are ameliorated by

Optimized. The level of predictability of the models also varies with the wind incidence angle, as can be

seen in the table in Figure 10(a). The results keep the advantages of the optimized model in terms of

accuracy. The standard model fails more on the computation of pressure coefficients for wind angles with

a perpendicular approach to the building (0◦ and 90◦) than for oblique angles. In fact, for Case I.c and

0◦, Standard is not predictive at all, as the R2 is negative. A graphical analysis of the results varying
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(c)
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(d)

Wind

Wind

Wind

Case #cells Domain (m) cell size (m) Skew Non-ortho
Width Height Max Min Max Max Avg

I.a 1.64 M 6.49 0.72 0.11 0.0011 2.33 68.4 2.51
I.b 1.58 M 4.73 0.72 0.11 0.0012 2.33 68.4 2.38
I.c 2.39 M 5.22 0.72 0.11 0.0013 1.70 57.9 1.88

y+

Figure 9: Validation Case I. Urban area of the computational meshes for Cases I.a, I.b, and I.c (a-c). Their characteristics

as the number of cells, dimensions of the cylindrical computational domain, maximum (Max) and minimum (Min) cell sizes,

skewness (Skew), non-orthogonality (Non-ortho) and averaged y+ on building surfaces are summarized in (d).

the wind incidence angle is found in Figure 11. There, the Standard and Optimized predictions of the

surface-averaged pressure coefficient on selected surfaces for each case study and wind incidence angle are

presented and compared with the wind tunnel measurements. In the case of the windward surface, the

predictions with the Optimized are closer to the experimental reference. In each case study, Standard

underpredicts the pressure on Surf-1, which is related to the overestimation of the reattachment length

observed in the isolated building. For any wind incidence angle, the target is behind a neighbor building,

therefore the ability of the optimized model to estimate shorter reattachment lengths allows for predicting

a higher pressure recovery, improving the accuracy of the results.

Figure 12 displays the pressure coefficients on the surfaces of the target building for a wind incidence

angle of 22.5◦. As the urban density increases, the pressure field is more homogeneous. This leads to
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(c) (d)(b)

Standard Optimized

(a)

Case k-ω SST
0º 22.5º 45º 67.5º 90º

I.a
Standard 0.528 0.804 0.696 0.841 0.714

Optimized 0.806 0.926 0.861 0.938 0.652

I.b
Standard 0.202 0.728 0.741 0.399 0.181

Optimized 0.767 0.818 0.803 0.607 0.478

I.c
Standard -0.218 0.296 0.590 0.239 0.470

Optimized 0.568 0.704 0.677 0.693 0.598

R2 for wind incidence angle Total
FB FAC2 r NRMSE Improvement [%]

0.729 0.285 0.786 0.886 0.520 -
0.857 0.280 0.868 0.960 0.378 27.3%
0.551 0.325 0.619 0.808 0.670 -
0.748 0.330 0.834 0.930 0.502 25.1%
0.323 -0.015 0.881 0.570 0.823 -
0.667 -0.004 0.906 0.884 0.577 29.9%

R2

Figure 10: Validation Case I. Statistics of the pressure coefficients prediction with Standard and Optimized (a). Scattered

data of each measurement point for both models in Cases I.a, I.b, and I.c respectively (b-d).

smaller pressure differences between windward and leeward surfaces. The pressures on the roof and the

cavity region, i.e. the surfaces in the wake, are well captured by the optimized model. The prediction of

positive pressures on windward surface agrees well with the wind tunnel data, with larger discrepancies in

Case I.c. On the other hand, the location of the minimum pressure is accurately placed by the Optimized

on the roof, but its absolute value (-1.7, -1.4, and -0.7) is slightly underpredicted (-1.5, -0.9, and -0.4) for

the three case studies. In this regard, the situation with Standard is worsen as the minimum pressures

are (-1.2, -0.9, and -0.3) respectively.
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k-ω SST optimized
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Wind incidence angle (º) Wind incidence angle (º) Wind incidence angle (º)
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Figure 11: Validation Case I. Surface-averaged pressure coefficients on target building’s surfaces 1 and 4 for different wind

incidence angles. Comparison between wind tunnel measurements and predictions with Standard and Optimized. Cases (a)

I.a, (b) I.b and (c) I.c.
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(g) CA=0.1. Optimized kω-SST (h) CA=0.2. Optimized kω-SST (i) CA=0.4. Optimized kω-SST 

wind wind wind

(d) CA=0.1. Wind tunnel data (e) CA=0.2. Wind tunnel data (f) CA=0.4. Wind tunnel data

(a) CA=0.1. Standard kω-SST (b) CA=0.2. Standard kω-SST (c) CA=0.4. Standard kω-SST 

wind wind wind

wind wind wind

Figure 12: Validation Case I. Contours of surface pressure coefficients on target building for a wind incidence angle 22.5º.

Experimental data are shown in the center, subfigures (d), (e) and (f). Predictions with Standard are shown above (a), (b)

and (c), and with Optimized are displayed below in (g), (h) and (i).
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3.4. Validation Case II

Computational meshes were generated considering reference cell size DX=H similar to the one selected

in the training case. The number of cells is 2.07 M, 2.22 M, and 1.54 M for Cases II.a, II.b, and II.c

respectively, with more than 96% of hexahedra each. Details of the meshes are presented in Figure 13.

It should be noted that the mesher used incorporates prismatic layers both on the buildings and on the

ground of the urban scene. This last characteristic is necessary for the studies of the flow at the pedestrian

level that are carried out in this subsection. In particular, the meshes obtained have on the ground an

average y+ of 1.5 and a maximum of 50, being reasonable for the use of an automatic near-wall treatment

approach.

(d)

(a)

Wind

(b)

Wind

(c)

Wind

Case #cells Domain (m) cell size (m) Skew Non-ortho
Width Height Max Min Max Max Avg

II.a 2.07 M 3.47 1.20 0.08 0.0009 3.36 77.8 0.77
II.b 2.21 M 3.47 1.20 0.08 0.0009 2.77 77.8 0.75
II.c 1.54 M 6.40 2.40 0.18 0.0015 1.67 57.5 0.94

y+

Figure 13: Validation Case II. Urban area of the computational meshes for Cases II.a, II.b, and II.c (a-c). Their characteristics

as the number of cells, dimensions of the cylindrical computational domain, maximum (Max) and minimum (Min) cell sizes,

skewness (Skew), non-orthogonality (Non-ortho) and averaged y+ on building surfaces are summarized in (d).

25



(c) (d)(b)

(a)

Standard Optimized

P
re

di
ct

ed
 (

k-
ω

 S
S

T
)

P
re

di
ct

ed
 (

k-
ω

 S
S

T
)

P
re

di
ct

ed
 (

k-
ω

 S
S

T
)

Case k-ω SST
0º 22.5º 45º FB

II.a
Standard -1.278 0.066 -0.423 -0.445 -0.061

Optimized -0.878 0.414 0.573 0.147 0.212

II.b
Standard -1.444 -0.941 -0.232 -0.637 -0.147

Optimized 0.041 0.268 0.387 0.315 0.121

II.c
Standard -0.573 0.242 0.341 0.223 0.085

Optimized -0.369 0.387 0.494 0.364 0.209

R2 for wind incidence angle
R2

Total
FAC2 r NRMSE Improvement [%]
0.853 0.662 1.202 -
0.819 0.835 0.924 23.1%
0.903 0.747 1.279 -
0.892 0.866 0.827 35.3%
0.872 0.834 0.882 -
0.911 0.911 0.798 9.5%

Figure 14: Validation Case II. Statistics of the prediction of velocity magnitude with Standard and Optimized (a). Scattered

data of each measurement point for both models in Cases II.a (no central building), II.b (central building with 1H), and II.c

(central building with 2H) respectively (b-d).

To set the basis for the comparison, the velocity results that are obtained from the simulations at the

measurement points are normalized by the inlet velocity at the measurement height of 0.1H, |Uref |.

The results for the three analyzed wind directions and the three case studies are presented in Figure 14.

Figure 14(a) presents the quantitative analysis of the prediction errors with the Standard and Optimized

regarding the velocity magnitude measured experimentally. Figures 14(b-d) displays the scattered data

between the AIJ experiment (x-axis) and simulations (y-axis) for the cases considering no central building

(Case II.a), a central building with the same (Case II.b) or twice (Case II.c) the height of its neighbors.

As in the previous case, the optimization improves the prediction of the standard model in each

scenario. The maximum enhancement is achieved in Case II.b, where the agreement with the experimental

measurement is increased by 35.3%.

In any case, the predictions of flow at the pedestrian level with both k-ω SST models are reliable enough

under the perspective of the FAC2 metric, where the worst value of 0.819 is get. However, the deviations

measured in terms of the NRMSE are greater than those found in computing pressure coefficients. From

the results, a pronounced underprediction of the velocities can be observed. The largest mismatches can

be identified with the measurement points located in the canyons between buildings, mainly in Case II.a

when the central building is absent.

Standard obtains a negative total determination coefficient for Cases II.a and II.b, which is reflected
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Experiment k-ω SST standard k-ω SST optimized

Case II.a, wind incidence angle 0º

Case II.a, wind incidence angle 45º

Figure 15: Validation Case II.a. Velocity measurements ordered by label number. Comparison between the experimental

data set and predictions with Standard and Optimized for 0◦ and 45◦ wind and central building height 0H.

by a poor correlation coefficient and highlights the excessive dispersion of the predictions. Optimized

substantially improves the correlations with the experimental data but highlights the underprediction of

the velocities, which hurts the bias factors.

From the results, it can be observed that the presence, or not, of the central building and the variation

of its height affects the predictability of the evaluated models to a lesser extent. The opposite is observed

when analyzing the sensitivity to the wind angle of incidence. Although Optimized improves the Standard

predictions, significant deviations are still observed when the flow is aligned with the canyons between

buildings (0◦).

Figure 15 presents comparisons between the wind tunnel measurements and CFD predictions for the

velocity magnitude. The data is ordered following probe numbers, see the labeling in Figure 4(c). Two

wind incidence angles, 0◦ and 45◦, of the scenario without a central building (Case II.a) were selected.

When the wind is aligned with the buildings, the experimental measurement describes an acceleration

associated with the wind entering between the three upwind buildings. The velocity slows down when

reaches the cavity region behind them, see sequences 20-32 and 89-101 for example. While Standard

overpredicts velocities in these regions, Optimized mainly underpredicts them in sensor sequences 7-19

and 102-114. The optimized model substantially improves the fit in the wake regions, see probes 46-75,

favored by a good prediction of the velocities in sequences 33-45 and 76-88. When the wind is oblique to

the urban center, no noticeable flow channeling is found. This increases the reliability of the Optimized,

as observed in the comparison of the case at 45◦ which is quantified with R2 = 0.573. Standard is still
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(c)

(b)

(a)

Wind

Wind

Case #cells Domain (m) cell size (m) Skew Non-ortho
Radius Height Max Min Max Max Avg

III.a 2.22 M 1.73 0.60 0.04 0.0005 3.01 77.9 0.24
III.b 1.04 M 4.71 1.80 0.12 0.0009 1.48 57.4 0.49

y+

Figure 16: Validation Case III. Urban area of the computational meshes for Cases III.a, and III.b (a-b). Their characteristics

as the number of cells, dimensions of the cylindrical computational domain, maximum (Max) and minimum (Min) cell sizes,

skewness (Skew), non-orthogonality (Non-ortho) and averaged y+ on building surfaces are summarized in (d).

erratic, with sparse predictions obtaining a negative coefficient of determination of R2 = −0.423. The

above also applies to the scenarios with the central building (Cases II.b and II.c), where the improvement

achieved by Optimized can be explained under a similar analysis, but is not shown for conciseness.

3.5. Validation Case III

Computational meshes were generated considering a similar setting to the one used previously. Cases

II.b and III.a have geometries that differ by a scale factor of 2. The automatic mesher then leads to a mesh

of 2.22 M cells for Case III.a. For Case III.b the target building height is 3 H, then the computational

domain is increased to preserve the blockage ratio. Consequently, the reference cell size DX is redefined,

which leads to a discretization of 1.04 M cells. Snapshots and details of the characteristics of the meshes

are presented in Figure 16. The measurements are normalized to set the basis for the comparison. For

that, velocity, pressure, and turbulent kinetic energy at the sampling points are normalized using the inlet

velocity at the height H, |UH |.

Figure 17 compares the velocity magnitude predictions over a vertical plane at y/H = 0 for the different

sets of coefficients when the central building has a height of 1 H (Case III.a). The quantitative analysis

in the table of Figure 17(a) reports that Optimized led to a substantial improvement regarding Standard,

i.e. over 40%. Figures 17(b-c) shows the velocity field in the upwind and downwind cavities. The
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 (d)(c)

(b)

(a)

|U|/|UH|

Standard
Optimized

P
re

di
ct

ed
 (

kω
-S

S
T

)

Case k-ω SST
FB FAC2 r NRMSE

III.a
Standard 0.797 0.168 0.800 0.913 0.450

Optimized 0.927 0.125 0.944 0.978 0.269

|U|/|U
H
| predictions

R2 Improvement [%]
-

40.2%

Experiment Standard
 Optimized

Figure 17: Validation Case III.a. Statistics of the prediction of velocity magnitude with Standard and Optimized (a).

Comparison of measured and predicted wind field around the target building (b-c). Scattered data of each measurement

point (d).

experimental measurement showed circulations near both façades of the target building. The downwind

circulation is reproduced by both models, but Standard fails to predict its location and intensity, which

is more accurately estimated by Optimized. This improvement achieved with Optimized is accentuated

when recirculation in the upwind cavity is analyzed, as this feature of the flow is not even reproduced by

Standard.

Figure 18 compares the velocity magnitude predictions over a vertical plane at y/H = 0 for Standard

and Optimized models when the central building has a height of 3 H (Case III.b). Figure 18(a) summarizes

the calculation results of the metrics using all measurement points over the vertical plane. Although in

this case study the fit obtained by Standard is reliable, the improvement achieved by Optimized is greater

than 40%. A comparison of the velocity in the upwind and downwind cavities is shown in Figures 18(b)

and 18(d). The strong reverse flow observed in the experimental results in the downwind cavity behind

the high-rise building is accurately reproduced by both models. Again, the largest differences can be

found in the upwind cavity, where Optimized corrects the underestimation of velocities by Standard.

Figures 19(b) and 19(d) compare the distributions of the wind pressure coefficient over the centerline

of the windward façade, roof, and leeward façade in Cases III.a and III.b respectively. On the windward

surface, experimental measurements of Cp in Case III.a are close to zero and the pressure difference between

the windward and leeward walls is slightly positive. This tendency is well predicted by Optimized, but

Standard fails due to underpredict the pressure in the upwind cavity. In Case III.b, large positive values of
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(b) (c) (d)

Standard

P
re

di
ct

ed
 (

kω
-S

S
T

)

Optimized

|U|/|UH|

(a)

Case k-ω SST
FB FAC2 r NRMSE

III.b
Standard 0.746 0.015 0.874 0.864 0.504

Optimized 0.912 0.064 0.947 0.962 0.296

|U|/|U
H
| predictions

R2 Improvement [%]
-

41.3%

Experiment Standard
 Optimized

Figure 18: Validation Case III.b. Statistics of the prediction of velocity magnitude with Standard and Optimized (a).

Comparison of measured and predicted wind field around the target building (b-c). Scattered data of each measurement

point (d).

Cp were measured on the windward façade. Larger negative values than in Case III.a are observed in the

downwind cavity due to the suction effect of the upwind flow in the wake region. The high-rise building

enlarges the pressure difference between the windward and leeward surfaces below the height of the

surrounding buildings. In this regard, Optimized is accurate about this behavior while Standard largely

overpredicts that Cp difference. For Cp values on the roof, a uniform distribution was experimentally

obtained in Case III.a. The negative values at approximately Cp=-0.1 are well predicted by both models.

However, in Case III.b, Cp measured was very low due to the stronger separation at the roof corner, i.e.,

approximately Cp=-1.0 over half the length of the roof. As expected, Standard underpredicts the pressure,

while a slightly excessive correction is done by Optimized. As the pressure coefficients are close to zero in

Case III.a, any deviation has a noticeable impact on the fit metrics evaluated. For this reason, Optimized

improves the Standard predictions by approximately 76%. Likewise, in Case III.b the improvements

obtained with Optimized reach 23%. In both cases, the improvement in accuracy is dominated by fusing

a better prediction of the pressure differences between the windward and leeward façades.

Figures 19(c) and 19(e) shows the distribution of TKE over the vertical plane for cases III.a and III.b

respectively. Noticeable differences between the TKE numerical results using Standard and Optimized

with the experimental measurements are observed in both scenarios. The values are largely underestimated

by both methods behind the target building. These are better predicted in the upwind cavity by both
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(e)
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kω-SST optimized

(a)
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H
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H
2  

0    0.25

k/U
H

k/U
H
2  0     0.1

Case k-ω SST
NRMSE Improvement [%] NRMSE

III.a
Standard 2.660 - 1.635

Optimized 0.644 75.8% 1.333

III.b
Standard 0.271 - 1.360

Optimized 0.208 23.2% 1.092

C
p

predictions k/U
H
2 predictions

Improvement [%]
-

18.5%
-

19.7%

k/U
H
2 predictions

Figure 19: Validation Case III. Statistics of the prediction of pressure coefficients and normalized kinetic energy with

Standard and Optimized (a). Comparison of measured and predicted Cp and k/UH2 fields around the target building in

Case III.a (b-c). Comparison of measured and predicted Cp and k/UH2 fields around the target building in Case III.b (d-e).

models, worsening towards the windward façade in the low-rise building case. A slight enhancement of

the prediction accuracy of almost 20% is obtained using Optimized.

4. Discussion

The current industrial practice of CFD simulation to predict urban airflows employs almost exclusively

a RANS modeling approach. The time-averaged solutions give valuable data in a reasonable computing

time, but the effectiveness of its application depends on the reliability of RANS solutions.

Structural and parametric uncertainties hamper the predictions based on RANS turbulence modeling.

While the structural ones are related to the modeling hypothesis as the Boussinesq approximation, the

parametric ones arise from the values of closure coefficients. Both are epistemic and could be alleviated by
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leveraging additional knowledge of turbulent flow physics or by more abundant/accurate data becoming

available. This work addressed the second alternative exploiting current state-of-the-art computational

techniques, such as genetic algorithms and efficient CFD codes running in high-performance computing

facilities. A data-driven procedure replaces the required expertise in turbulent flow physics for fine-tuning

the closure coefficients. This approach solves the minimization problem in Equation (15). The product of

this study is an optimized k-ω SST turbulence model that consistently outperforms the accuracy of the

standard version to predict urban airflow. This validates the application of the set of optimized constants,

in replace of standard ones, to enhance the reliability of the solutions of the wind flow around isolated

and urban buildings.

The accuracy of the results reached in this research can be compared with similar studies in the

literature. The prediction of the standard k-ω SST model presents an acceptable agreement with wind

tunnel measured data. However, there is a noticeable tendency to overestimate the predicted velocities

in high-speed areas and insufficient negative pressures in the wake regions. This trend is because of

the underestimating momentum diffusion of RANS modeling, i.e., the mixing caused by large transient

fluctuations caused by building geometries [16, 26, 60]. The deficiency described may explain the decreased

performance of RANS models as area density increases in Case I. In the skimming flow regime, large-

scale flow structures are not dominant and deviations in the turbulence prediction have more impact.

Consequently, the accuracy is highly sensitive to the wind incidence angle under study. For instance,

the agreement with reference data is lower for cases with normal wind incident angles (i.e., 0◦ and 90◦);

see Tables in Figures 9(a) and 14(a). The lowest accuracy for the prediction of the velocity field in the

upstream and downstream cavities and underestimation of the momentum diffusion in these areas result

in low differences of wind surface pressure coefficient over the windward and leeward façades against

the normal wind angle. The deviations in pressure coefficients and velocity estimations are palliated

when oblique wind incidence angles are analyzed. The occurrence of this phenomenon in the structured

arrangement of buildings was also reported in Ref. [61], while in Ref. [62] a similar conclusion is reached

when the same validation (Case II) is analyzed.

In this investigation, the results proved that it is possible to increase momentum diffusion and shorten

the predicted wake length by tuning the closure coefficients of the turbulence model. Consequently,

thereby improving prediction accuracy in urban scenarios. The optimized model consistently outperforms

its standard version concerning the agreement with experimental data. Thus, the use of the new set of

coefficients in the k-ω SST model yields higher accuracy in all validation cases and for almost all the

metrics evaluated in this work. These findings allow us to strongly recommend to CFD practitioners

the use of the recalibrated k-ω SST model in their daily tasks for urban applications. It is also worth

noting that the optimized model inherits accuracy issues from its RANS formulation. The structural

uncertainty related to the Boussinesq hypothesis was not addressed in this paper and limits the generality

of the results since the real solution may lie outside the solution space of the formulation [7]. Moreover,
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some discrepancies, such as the significant deviations in the predictions of TKE in cavities could only be

corrected using more complex turbulence models [40, 63].

An impairment of the generality of the calibrated parameters could be related to the experimental data

because the optimization procedure does not consider observational uncertainties. Although the careful

selection of the most reliable databases, available sources are not free from measurement or processing

errors and biased data. This inconsistency of measured data reported from different wind tunnels has

been acknowledged as a long-standing issue by the wind engineering community [64]. Selecting training

and validation data required a thorough analysis of the experimental data. This process found various

inconsistencies. For example, in the training case (isolated cube, from TPU), the configurations at angles

of incidence 0º and 90º should be equivalent under certain symmetry. However, the published pressure

coefficients differ markedly. Moreover, the measurements in the case of 0◦ are not symmetric regarding

the wind incidence axis, which demanded the data curing mentioned in the corresponding section. In

addition, the available data from Case III (Ref. [56]) suffer from errors in the coordinates of the pressure

sampling points, which were corrected before their use in the validation. This curing process was as

exhaustive as possible but leaves room for an additional source of uncertainty. Lastly, TPU data provides

slightly larger negative pressure coefficients than other databases [65]. These deviations in the selected

training data are related, but not limited, to the different turbulent intensities of the inlet wind. This

fact could explain the overprediction of negative Cp when validating the optimized model in Case III.b.

Therefore, future work becomes challenging considering observational uncertainties in the optimization

process as a strategy to get unbiased models.

5. Summary and conclusions

An enhanced k-ω SST model for the accurate prediction of urban wind flow has been developed. To

do this, a non-linear optimization procedure that couples a genetic algorithm with computational fluid

dynamics (CFD) simulations was implemented. To determine the set of optimal closure coefficients,

the prediction error by CFD simulations regarding a set of wind tunnel measured pressure coefficients

was minimized. To validate the predictions of the enhanced k-ω SST model for wind flows in urban

environments, an exhaustive assessment was carried out over many case studies taken from three different

wind tunnel experiments. This validation carefully examined the predictions of mean pressure coefficients

on building surfaces, as well as the mean velocity and turbulent kinetic energy (TKE) fields in pedestrian

wind environments. Several metrics were employed to quantify the agreement between CFD results and

wind tunnel data.

In the training case, which comprises an isolated cubic building, the optimized model reduces the error

of the wind pressure prediction by 63% compared to the standard model. This improvement is due to a

more accurate estimation of the low pressures in the wake regions. Moreover, the enhanced turbulence

model also improves the prediction of other relevant flow features, such as reattachment lengths, which
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indicates that the new model better represents the whole flow physics. Regarding the validation results,

the reliability of the RANS models decreased when area density increased or high-speed regions between

buildings were studied. These facts are closely related to the significant deviations in the predictions of

TKE from the wind tunnel measurements, mainly for incident wind angles aligned with urban canyons.

Overall, the optimized k-ω SST model is consistently more accurate than the standard one, mainly because

of the increased momentum diffusion in wake regions. Thus, this feature enables the calibrated model

to estimate shorter reattachment lengths and predict a faster pressure recovery behind buildings. The

normalized root mean square error for a point-by-point prediction is reduced by above 75% in pressure,

40% in velocity, and 20% in turbulent kinetic energy.

Despite the inherited limitations from the standard turbulence model in predicting flow behavior

around bluff bodies and sheltered conditions, the optimized model achieves significant improvements in

CFD accuracy to predict urban wind flows. Therefore, the proven capacity for adaptation via recal-

ibration, as well as their low computational cost, reinvigorate RANS turbulence models as the most

convenient approach to calculating mean aerodynamic forces and mean flow fields, which are essential

data to investigate urban microclimates.
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