Crop Canopy Nitrogen Concentration Algorithm

By: ASU Carbon Mapper Land and Ocean Team
Version 1.0
1. Algorithm Description

The objective of the Crop Canopy Nitrogen Concentration (CCNC) algorithm is to retrieve
mass-based Nitrogen (N) concentration (in % by mass) of crop top canopy from Tanager
imaging spectroscopy data (Dai et al, to be submitted). Input data can be any
visible-to-shortwave infrared (VSWIR) imaging spectroscopy surface reflectance data
covering the 420-2440 nm wavelength range. This algorithm was designed to work with
spectral resolutions around 5 nm, but finer or coarser resolutions can be accommodated via
band resampling. Input data is expected to be integer-valued % reflectance scaled such that 0
and 100% are 0 and 10,000, respectively, though other data types and gains can be specified.

The algorithm applies an array of pre-calibrated and validated spectral coefficients to
input data and produces a single-band N concentration map. This N retrieval algorithm/model
is an empirical one, developed from linking laboratory-measured N concentration with
sensor-collected imaging spectroscopy data through partial least squares regression (PLSR).
The coefficients for this algorithm were developed using GAO data with 0.6 m spatial
resolution, but they were later tested with simulated 30 m resolution simulated Tanager data.

The algorithm is designed to work on well-lit image pixels dominated by
photosynthetic vegetation, and two spectral filters to remove unfit pixels are applied to the
reflectance data during the each run of the algorithm: Input pixels should have Normalized
Difference Vegetation Index (NDVI) values no lower than 0.7 and reflectance value higher
than 25% at the band representing 1070 nm. Under these conditions, the averaged validation
R? of model fit was 0.71 and RMSE was 0.56 % N, which easily met the minimal
performance target of RMSE <= 1% N and nearly met the nominal target of RMSE <= 0.5%
N.

2. Benchmark Data

Input data include VSWIR imaging spectroscopy data collected by Global Airborne
Observatory (GAO) during a suite of campaigns in 2022. As reference data, we collected leaf
samples in the field and subsequently processed these in a laboratory to derive N
concentrations of the crop foliage at known locations as within a few days of the airborne
data collection.

Acquisition details

To obtain crop foliage samples, we visited both research and commercial farms in four of the
five major U.S. farming regions (USDA 2022), including the South, the Midwest, the Plains,
and the West (Figure 1). Overall samples were collected across eight sites located in six states



(Table 1).

Figure 1. Geographical locations of study sites in the contiguous United States, with relative field
sampling dates and crop species labeled. All fieldwork was conducted in the year 2022.

Table 1. Sampling sites, field and image data collection dates. See Section 3.2 for more details.

Site  Farm Name Latitude Longitude Field Dates GAO Dates
FL  Rouge River Farm 26.69 -81.17 03/28 — 04/03 03/28-04/10
CO  NEON STER Site 40.48 -103.01 07/02 - 07/03 07/02
IA  Iowa State University Farm 42.00 -93.70 07/05 07/09
KS  Kansas State University Farm 39.21 -96.59 07/08 — 07/09 07/10
MO  University of Missouri Farm 36.41 -89.42 07/07 - 07/09 07/10
CAl  Chico State University Farm 39.68 -121.82 09/06 — 09/09 09/04
CA2  Cal Poly San Luis Obispo Farm 35.30 -120.67 09/12 — 09/13 09/03
CA3 Cal Poly Pomona Farm 34.04 -117.82 09/15 09/06

Sampled species included staple crops such as corn and soybean as well as cash crops
such as Miscanthus and orchard fruits. A complete list of species collected at each site and
their relative sample sizes can be found in Table 2. The complete dataset included 471
individual foliage samples, representing 24 species collected from the eight sites



Table 2. Sample size of each species at all sites.

Crop Site  Sample Count
Sugarcane FL 24
Sweet corn FL 15
Green bean FL 16
CO 20

Grain corn 1A .
KS 15

MO 50

CcO 20

Sorghum IA 20
KS 20

Cotton MO 20
Rice MO 20%*
Peanut MO 15
IA 20

Soybean XS 20
Miscanthus 1A 20
Alfalfa CAl 15
Peach CAl 15
Almond CAl 15
Pecan CAl 15
Walnut CAl 15
Olive CA2 15
Pomegranate CA2 15
Clementine CA2 5
Mandarin CA2 15
Avocado CA2 15
Orange CA2 8
CA3 7

Pumpkin CA3 5
Broccoli CA3 5
Melon CA3 5

*Only one sample location was covered by
GAO imagery.

Sampling and collection methods

While in the field we endeavored to cover wide N concentration ranges within each crop
species when collecting foliage samples. We did so by identifying crops in varied growing
stages and conditions, either by consulting with local farmers and researchers or through
visual interpretation. For herbaceous species, we searched for sample locations where crop
conditions looked homogenous. For trees, we identified individual plants to sample from. We
randomly clipped four to twenty fully grown leaves, depending on leaf size, from sunlit tops
of plant crowns. Clipped foliage was immediately sealed in polyethylene bags and stored on
ice in coolers to preserve moisture. GPS readings were recorded at the sample locations using



Arrow Gold RTK Global Navigation Satellite Systems receiver with estimated horizontal
positioning precision <= lcm RMSE. At each site and for each species, we normally
collected 15 samples from a single field, or 20 samples in total from multiple fields if
available, except for grain corn at site MO, where N experiments were being conducted and
we gathered 50 samples. The complete dataset included 471 individual foliage samples,
representing 24 species collected from eight sites in six states (see Section 3.2 for more
details).

Physical sample processing methods

Foliage samples were processed right after we finished the entire field collection of the day.
The general procedures were as follows: We first carefully wiped off dust, water or any other
non-plant particles, and removed petioles from each leaf. Next, we placed foliage in open
paper bags, dried them at 65 °C for at least 48 hours, so that they would not mold during
transportation. After that, all samples were mailed to our lab in Tempe, AZ and stored in the
drying oven at 65 °C for at least another 72 hours. Then the dried foliage was ground using a
20 mesh Wiley mill and powdered to finer particles with a high throughput homogenizer
(Troemner Inc., Thorofare, NJ, USA). Sample N concentration (%) was determined by flash
combustion in a conventional elemental analyzer (PE 2400; PerkinElmer Inc., Waltham, MA,
USA).

Airborne data processing

GAO data collected for this study contained 428 channels of spectral information covering
the wavelength range between 345 nm and 2488 nm, with a spectral resolution of 5 nm.
Flight elevation was around 600 m above the ground, which resulted in a ground sampling
distance of 60 cm. Light detection and ranging (LiDAR) data that were simultaneously
collected with the imaging spectroscopy data were processed in canopy surface elevation
maps. These surface maps were used along with precise position and orientation data from
the flight were used to ortho-georeference the images with 60cm spatial resolution.

The GAO data were initially processed to calibrated radiance, which was run through
the ACORN v6.0 (Atmospheric CORrection Now; AIG LLC; Boulder, CO) atmospheric
correction software to retrieve surface reflectance. We trimmed the wavelengths at far ends of
detection and removed regions with high levels of atmospheric absorption, resulting in 320
bands of data spanning the wavelengths 420-1330, 1500-1775, and 2030-2440 nm.

3. Algorithm Development

Spectral filters

To minimize spectral variations caused by plant biophysical conditions (Asner 1998), as well
as contributions from non-photosynthetic vegetation (NPV) and substrate materials (Dashti et
al. 2019), we filtered the surface reflectance data with a narrow band Normalized Difference



Vegetation Index (NDVI; near-infrared: 858 nm; red: 648 nm) mask. All pixels with NDVI
value no lower than 0.7 were included in further analyzes (Fig. 2). To mitigate potential
artifacts introduced by sun-sensor-canopy geometry (i.e., shade), we applied a minimum
brightness threshold where pixels should have a reflectance value greater than 25% at 1072
nm wavelength (Asner et al., 2018). We used GPS records to extract VSWIR spectra
corresponding to plant locations and applied brightness-normalization for the candidate
spectra before further statistical analysis (Feilhauer et al., 2010). These filtered N-spectrum
pairs (n = 307) were the data input for the following statistical analyzes.
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Figure 2. Mean crop spectra of original (top) and brightness normalized (bottom) pixels used for
analysis following NDVI and brightness filtering.



Modeling

We used partial least-squares regression (PLSR) to link field-sampled, lab-measured N
records to airborne imaging spectroscopy data collected by GAO (Asner et al., 2015;
Chadwick & Asner, 2016; Martin et al., 2018). To avoid overfitting of PLSR results, we set
the number of latent orthogonal vectors as determined by minimizing the Prediction Residual
Error Sum of Squares (PRESS) statistics (Asner et al., 2015; Chen et al., 2004). We applied
two levels of iterations in the model procedures in the calibration-validation mode (Fig. 3). At
the basic level, for all N-spectrum pairs engaged in the regression analysis (i.e., original
dataset), we randomly set aside 25% as global holdout dataset (i.e., validation), which was
not included in model development. For each iteration of the fitting procedure, we randomly
selected 1/3 of the remaining records (i.e., calibration) as the testing dataset, and 2/3 as the
training dataset. Thus, the ratio of training/testing/validation data was roughly 0.5/0.25/0.25.

We repeated the model development procedures (i.e., splitting between training and
testing as well as PLSR fitting) 500 times. In each iteration, calibrated PLSR results (i.e.,
iteration model) were tested with the testing data, and performance statistics (i.e., coefficient
of determination, or R* and Root Mean Square Error, or RMSE, as well as the RMSE
normalized to the range of values reported, or nRMSE) were generated for both training and
testing datasets. After the 500 iterations were completed, training and testing performance
statistics were averaged. The models with better performance statistics during validation
(validation R? higher than the mean R? of the 500 iterations and validation RMSE lower than
the mean RMSE of the 500 iterations) were also averaged to produce the mean model
(Chadwick & Asner, 2016). Then the mean model was applied to the validation dataset to get
validation performance statistics.

Next, at the higher level, all procedures described in the basic level were iterated 50
times. The training, testing and validation performance statistics were averaged for each of
these 50 iterations, as were the PLSR results. In other words, final training and testing
performance statistics as well as PLSR results were first averaged from the 500 iterations at
the basic level, and then averaged from the 50 iterations at the higher level, whereas final
validation performance statistics were averaged solely from the 50 iterations at the higher
level. In total, we ran the PLSR-PRESS model 25000 (500*50) times.
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Figure 3. Two modes of model development: calibration-validation mode and jackknife mode.

To further test the robustness of the final model, we developed a jackknife model through
leave-one-out cross validation based on the original dataset (Fig. 3). The performance
statistics as well as the model results were averaged from these leave-one-out models. These
results were compared with those of the final model described above. We also calculated the
variable influence on projection (VIP) to explore the importance of specific wavelengths for
predicting N concentrations (Burnett et al., 2021; Wold et al., 2001).



Performance and validation results

The filtered and brightness normalized VSWIR data calibrated well against the N
concentration data observed in the laboratory, with averaged R? values of 0.81, 0.65, and 0.71
and RMSE of 0.47, 0.65, 0.56 % N, respectively for the training, testing and validation data
sets (Table 3). The normalized RMSE values (RMSE divided by the range of N concentrations)
were between 0.10 and 0.14. The standard deviations of the 50 iterations for the training and
testing R? and RMSE were all close to 0.02. Whereas for validation, the standard deviations
for the R? and RMSE were 0.05 and 0.04 % N, respectively. The leave-one-out Jackknife
model produced similar results, with R* and RMSE values of 0.78 and 0.49 % N respectively.
The spectral coefticients of jackknife PLSR, as well as the VIP were almost identical to those
of the averaged final model in the calibration-validation mode (Fig. 4).

Table 3. Average performance statistics (with standard deviation in parentheses) for the PLSR-PRESS
iterations. Normalized RMSE (nRMSE) is calculated as the RMSE divided by the range of N
concentrations. Training and testing statistics were first conditionally averaged from the 500 iterations
at the basic level, and then averaged from the 50 iterations at the higher level (Fig. 3). Validation
statistics were averaged from the 50 iterations at the higher level.

Stage R? RMSE (% N) nRMSE
Training 0.81(0.02) 0.47 (0.02) 0.10
Testing 0.65 (0.02) 0.65 (0.02) 0.14
Validation 0.71 (0.05) 0.56 (0.04) 0.12

A VIP value higher than 0.8 typically indicates wavelength of high importance to
model prediction (Wold et al., 2001). The plotted VIP indicated that all wavelength regions
were significant for the prediction of N concentration (Fig. 4). According to the threshold of
0.8, wavelengths of 550-900 nm, 1100-1350 nm, the whole SWIR I (1500-1800 nm), as well
as the beginning and end of SWIR II (around 2050 nm and 2400 nm) were important
contributors to our PLSR models. Specifically, the “red edge” region roughly between
700-750 nm appeared to be the most significant in our investigation (Smith et al., 2003). We
fitted the final model with all 307 N-spectrum pairs and compared its performance for
different crop species (Fig. 5). We found that the model tended to overestimate the N
concentration of sugarcane, melon and nearly all avocado samples, meanwhile
underestimating almost all sweet corn and peach ones.
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Figure 4. PLSR spectral coefficients and variance influences projection (VIP) of the 50 iterations and
their average (i.e., the final model) in the calibration-validation mode, as well as PLSR coefficients
generated in the Jackknife mode. Dashed line in the VIP figure indicates a suggested threshold value
of 0.8 (Wold et al., 2001). The spectral coefficients of the final model (i.e., averaged) were overlaid
onto those of the jackknife model and they were almost identical.

We applied the final model generated in the calibration-validation mode to the GAO
data and generated N concentration maps for selected crops (Fig. 6). Note that the maps in the
figure didn’t capture the full extent of the original VSWIR data. Instead, we mapped spatial
subsets where photosynthetic crops dominate the image area. Besides, NDVI and brightness
filtered pixels corresponding to non-plant objects and shadows were not mapped. Row crop
patterns can be detected for orchard trees, soybean and sweet corn, where white pixels
separate different rows in the maps.
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data) N concentrations, fitting with the final model in the calibration-validation mode. The dashed
gray line is 1:1.
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Figure 6. Sclected N concentration maps displayed with relative natural color three-band composite
GAO data (Red: 657 nm; Green: 567 nm; Blue: 487 nm). Maps were labeled with site ID (specified in
Fig.1) and crop species numbers. NDVI and brightness filtered pixels presented no data and were
displayed in white. Species list: (1) walnut; (2) pecan; (3) almond; (4) alfalfa; (5) grain corn; (6)
soybean; (7) Miscanthus; (8) orange; (9) pomegranate and (10) sweet corn.

The N concentrations of different species corresponded well with laboratory
measurements. N fixers (i.e., soybean and alfalfa) and herbaceous crops (i.e., sweet corn and
grain corn) showed higher N values than trees. Pomegranate presented the lowest N
concentrations in deep blue whereas at the opposite end of the display spectrum, soybean had



the highest N concentrations in brown. In addition, intra-species variations can be detected in
the grain corn field at site MO where N fertilization experiments were being conducted (Fig.
6). The blue vertical stripes in the figure correspond to where crops were under-fertilized
compared to the other areas showing in green.

Assumptions and limitations

As we mentioned above, we applied a NDVI filter to GAO data to minimize the influences of
substrate materials. We assumed that the correspondent spectral profiles of the filtered 164
samples in the field included significant contributions from either NPV or substrate soil. It
has been pointed out that empirical methods might lead to unreliable interpretations of N
concentration in arid ecosystems, especially when leaf area index (LAI) is low and bright
background soil contributes greatly to the total canopy radiation budget (Dashti et al., 2019).

To test the final model on NPV or soil dominated pixels, we divided the 164
N-spectrum pairs into five categories based on NDVI values: [0.1, 0.3), [0.3, 0.4), [0.4, 0.5),
[0.5, 0.6) and [0.6, 0.7), with 43, 17, 33, 33, 38 samples in these categories, respectively.
Then we applied the spectral coefficients of the final model to the samples in these categories
to get performance statistics (Fig. 8). In category [0.6, 0.7), although R*was still close to that
of category [0.7, 1], RMSE almost doubled, indicating less satisfactory prediction accuracy.
As NDVI decreased, the coefficient of correlation (i.e., precision) was still statistically
significant but much weaker, and prediction accuracies were far from applicable. We thus
don’t recommend applying the spectral coefficients in the final model to NPV or soil
dominated image pixels.
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Figure 8. Performance statistics when applying the PLSR coefficients calibrated from green
vegetation dominated pixels (i.e., category [0.7, 1]) to pixels in other NDVI categories.



The NDVI and brightness filters efficiently excluded NPV and soil, as well as shadow
areas in the image. During field sampling, we also intentionally looked for homogeneous
canopies for each specific sample plot and avoided locations that had photosynthetic
vegetation other than the target crop. However, the filters applied in our research are not
likely to exclude potential contributions from other green vegetation, which can also present
high NDVI values in the image. For example, understory grasses and shrubs may be detected
if the top canopy of the trees is not dense enough, or in other words, the effective photon
penetration depth (EPPD) of the canopy is sufficiently deep to capture understory vegetation
(Asner 2008). This might be a larger problem for organic farms, where herbicides are
prohibited and weeds tend to coexist with crops. In this case, if the target crop is about the
same height with the weeds, neither NDVI, brightness or canopy height filter is likely to
exclude weed spectra from the crop spectra, and these contaminated spectra may not
correspond well with the model developed here.

Algorithm scalability

We tested the scalability of the algorithm on simulated 30 m Carbon Mapper data. We first
resampled the GAO data (0.6 m resolution; Fig. 9 (1)) to 30 m (Fig. 9 (5)) and applied
spectral coefficients to the resampled data to get the N concentration map (Fig. 9 (4)). We
also resampled the original N map (0.6 m resolution; Fig. 9 (2)) to 30 m (Fig. 9 (3)). We
compared both 30 m resolution N maps through pairwise linear regression (Fig. 10). The R?
of 0.97 and RMSE of 0.20 indicate high similarities between both N maps. However, pixels
along crop field edges tend to produce higher discrepancies, as shown in the purple circles in
Fig. 10. These pixels captured sufficient photosynthetic vegetation signals to pass the NDVI
and brightness filter, but also significant fractions of non-green-vegetation objects that affect
the accuracy of the algorithm. Potential solutions are higher NDVI thresholds or more
elaborate spectral filtering to ensure that target pixels contain sufficient dominance of
photosynthetic vegetation.
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Figure 9. Five maps depicting the same spatial extent of site MO in Fig. 6: (1) natural-color
composite of GAO data at 0.6 m resolution; (2) N map at 0.6 m resolution; (3) 30 m resolution N map
resampled from 0.6 m resolution N map; (4) 30 m resolution N map by applying spectral coefficients
to the resampled GAO data; (5) natural-color composite of resampled 30 m resolution GAO data.
Algorithm scalability was tested by comparing maps (3) and (4). Purple circles indicate high
discrepancies at crop field edges.
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Figure 10. Comparing the similarities between 30 m resolution N map resampled from 0.6 m
resolution N maps (i.e., N then resample) and 30 m resolution N map derived from resampled GAO
data (i.e., resample then N). The dashed line is 1:1.

4. Codebase

Organization

Code can be found in the GitHub repository at:
https://github.com/CMLandOcean/NitrogenRetrieval

There are two subfolders, code and coefficients. The code folder contains two python scripts,
one to fit and rebuild PLSR coefficients (fit plsr coefficients.py) and one to apply
coefficients to a reflectance map (apply plsr coefficients.py). The coefficients
folder contains a CSV database of the coefficients from the fit of PLSR to GAO reflectance
data described in this report.

Usage

apply plsr coefficients.py




To use the apply script is fairly straightforward:

apply plsr coefficients.py [-h] [-bright min BRIGHT MIN] [-bright max
BRIGHT MAX] [-ndvi min NDVI MIN] [-nodata NODATA] [-format FORMAT] [-co CO]
[-rescale RESCALE] refl dat f output name chem eq f

The three required positional arguments are:

refl dat f ENVI-formatted reflectance map
output name Output file name, should match given -format
chem eq f CSV file containing fields for chem name, transform,

intercept, and 214 coefficients

Optional arguments are:

-h, --help Print help info
-bright min Thresholds on brightness (vector norm of bands with
-bright max non-zero PLSR coefficients) to remove input spectra from

consideration. Default 1.5 and 9.9, specify -1 to remove.

-rescale If input reflectance is not scaled 0-1, then default
brightness thresholds will not work. This value will be
multiplied by input reflectance values.

-ndvi min Threshold of NDVI to remove spectra from consideration -
default is 0.7, specify -1 to remove.

-nodata Output map will have this value representing “no data” -
defaults to -9999.

-format GDAL-recognizable shortname for output data format -
defaults to “GTiff”

-co GDAL-recognized creation options for the specified data
format

Note that a wavelength/fwhm database is included in the code folder and must be located in
the same folder as the apply plsr_coefficients.py script in order for the script to work.

fit plsr coefficients.py

To use the build script is much less straight-forward. This script implements a
resampling-based approach to fitting PLSR with minimal tuning. There are multiple ways of
dividing the supplied data into training, testing and validation sets. All settings are specified



with a JSON-formatted config file. An optional validation set (called global test set in the
script) can be specified (as a proportion using parameter test set holdout) that is never
included in the training of the data. Samples not in the validation set are iteratively divided
into a training and testing set for each of a specified number of iterations. Division at each
iteration can be in one of two modes:

Bootstrap mode The number of iterations is user-specified (using iterations
parameter) and for each iteration the samples are randomly selected
into the two sets with replacement with a proportion specified in
iteration holdout being placed into the testing set. If data are
clustered, a minimal number of samples per cluster in the training set
can be specified with config parameter samples per cluster.

Jackknife mode The number of iterations is computed based on available sample size
and number of samples (or clusters of samples) per iteration defined as
a negative integer in config parameter iteration holdout. All
samples (or clusters) are divided into n groups, and each group acts as
the test set for one iteration. Thus, each group is tested once and only
once against a model built from the other groups.

The user specified a maximum number of components (as max components - akin to

principal components analysis) to consider in the PLSRegression model fit in each

iteration. Within an iteration, and for each number of components from 1 to max
components, the PLSR model is fit using a 10-fold cross validation approach, allowing
the computation of the PRESS statistic. The optimal number of components is selected using
the number associated with the maximum value of the PRESS statistic. The model is fit again
to the full training set using the optimal number of components, and the coefficients from this
model are retained and applied to the iteration test set to get an RMSE. After all iterations, a
across-iteration median RMSE is computed, and the coefficients for all iterations that had
RMSE > RMSE,,q are averaged by band to get a global coefficient set. These coefficients are
applied to the global test / validation set if there is one to get a validation RMSE and R*.

The command line call looks like this:

fit plsr coefficients.py [-h] settings file output dir

Which will apply the settings in a JSON-formatted settings file and write all results to
the specified output directory (output dir). The settings file has the following entries:

csv file CSV file with all data - should have a row for each input spectra.
Spectra can be grouped into clusters if there is a column identifying
cluster ID. The spectral data should be column-wise with a column


https://scikit-learn.org/stable/modules/generated/sklearn.cross_decomposition.PLSRegression.html

for each band in sequential order. Columns names can have a
preface, e.g. B0O01, B002 ..., which can be removed to get a band
index as an integer.

band preface What precedes numbers in the band columns - usually "B"
chems List of chems to fit, e.g. ["LMA"]
chem transforms Matching list of transforms "log", "sqrt", "square", "inverse" or

"none" - like ["none"]

cluster col Field that contains cluster id (assuming multiple pixels in each
cluster). If not cluster-based, use "none"

bad bands List of (1-based) band numbers removed before normalization e.g.
[1,2,3,4,211,212,213,214]

ignore columns List of quoted column names that should be ignored in the analysis,
e.g ["ID","SomeStat"]

brightness normalize true/false - do brightness normalization (Suggested)

ndvi minimum Minimum NDVI value, -1 for no limit

ndvi maximum Minimum NDVI value, -1 for no limit

ndvi red band Band representing red for NDVI computation, e.g. 34

ndvi nir band Band representing red for NDVI computation, e.g. 46
brightness maximum Maximum NDVI value, -1 for no limit

brightness minimum Minimum NDVI value, -1 for no limit

iterations Number of iterations of the algorithm - for each iteration, the

fraction of clusters specified in "iteration holdout" will be
used to make a test set and the model will be fit on the rest of the
data (except that specified in "test set holdout"). Use -1 to use
jackknife mode, i.e. if negative value in "iteration holdout"

iteration holdout Fraction of data used for validation at each iteration - can be 0 for
no validation set, use negative values (i.e. -n) to use jackknife
mode, where n clusters are held out each time, and each iteration is

mutually exclusive.

test set holdout Fraction of data used for global holdout test set - can be 0 for no

global holdout set, ignored in jackknife mode.

samples per cluster Specify a minimum number of samples per cluster for training data



using bootstrap mode, use -1 for no limit
max components Maximum number of components checked with PRESS stat

use degen removal true/false - use procedure to find and remove degenerate (less
significant) input features. Similar to the A4 function in autopls.
(*Untested and unused for this analysis)

scale features true/false - fit scaler to input features (Not suggested, as the
scaler would need to be saved to be used for applying fitted
coefficients at a later point)

n jobs Number of parallel jobs run by sklearn functions

random seed Seed value for random number generator for reproducible results
(-1 for random seed)

Example configuration files for the bootstrap and jackknife modes used in the fitting of
coefficients in this report can be found in the config folder in the repository.
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