
Abstract—It is shown that the wings of bumblebees 

during flapping undergo pitching (feathering angle) 

rotation that can be characterized as a fluid-structure 

interaction problem. Measurements of shape, size and 

inertial properties of the wings of bumblebees Bombus 

ignitus are described that provide the necessary input 

data for numerical modelling. A computational fluid 

dynamics (CFD) solver is combined with a dynamical 

model that describes the time evolution of the feathering 

angle. An example result of the numerical simulation is 

shown. 

Index Terms—Flapping flight, insect, bumblebee, 

wing, moment of inertia, fluid-structure interaction. 

I. INTRODUCTION

Flapping wings of insects are designed such that they 

produce positive lift during both upstroke and 

downstroke. This is achieved by large pitching 

(feathering angle) rotations at the end of each half-cycle 

necessary for maintaining positive kinematic angle of 

attack.  Computations and experiments with robotic 

flappers (e.g., [1,2]) have demonstrated that similar 

kinematic patterns can be produced by a wing with only 

up- and downstroke motion being prescribed, and elastic 

hinge attachment permitting passive pitching rotation. 

By construction, this model mimics dipteran wings. 

However, it may be suitable for hymenopterans as well 

since their hindwings are connected to the forewings by 

hooks. To assess the accuracy of this hypothesis for 

bumblebees is the ultimate goal of our study. We use 

experiments and numerical simulations to achieve it, and 

one of the critical steps is to collect reliable input data 

for the numerical modelling. This paper aims to provide 

a detailed account of the procedure that we have 

followed to determine the geometrical and inertial 

properties of the bumblebee wings. Although there have 

been previous studies describing the wing mass 
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distribution in flies [3], dragonflies [4] and beetles [5], to 

the best of our knowledge, there have been no such 

measurement reported for bumblebees. The novelty of 

our work resides not only in the choice of the target 

species, but also in the measurement method that 

differentiates between the vein mass and the membrane 

mass. Finally, the paper provides an outlook on the 

serviceableness of these measurements by showing an 

example numerical modelling result in comparison with 

flight experiment data.  

II. METHODS

A. Study Specimens

Bumblebees (Bombus ignitus) from a commercial 

breeder (Mini Polblack, Koppert, Arysta LifeScience 

Asia, Japan) were maintained in laboratory conditions. 

The hives were part of the flight experiment facility 

described in a greater detail in [6]. Individual bees were 

randomly selected for the measurements reported in the 

following sections.   

B. Numerical Bumblebee Model

We model the fluid-structure interaction of the 

flapping wings using FluSI, a pseudo-spectral Navier-

Stokes solver with volume penalization [7]. For the 

purposes of this study, the solver has been modified to 

include the wing motion model based on the time 

evolution of the feathering angle according to the 

following driven oscillator equation [1]: 

𝐽𝑥𝑥𝛼̈ = 𝑀𝑎𝑒𝑟𝑜 − 𝐾(𝛼 − 𝛼0) − 𝐶𝛼̇ +

𝐽𝑥𝑥 [
1

2
(𝜙2̇ cos2 𝜃 − 𝜃2̇) sin 2𝛼 − 𝜙̈ sin 𝜃 −

𝜙̇𝜃̇ cos 𝜃 (1 + cos 2𝛼)] + 𝐽𝑥𝑦 [𝜙̈ cos 𝜃 cos 𝛼 +

𝜃̈ sin 𝛼 +
1

2
𝜙2̇ sin 2𝜃 sin 𝛼 − 2𝜙̇𝜃̇ sin 𝜃 cos 𝛼], 
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where the wing positional angle ϕ and elevation angle θ 

are prescribed as time-periodic functions on the basis of 

the data collected in flight experiments [6], and the 

feathering angle α is calculated using numerical 

integration. 𝐽𝑥𝑥  is the moment of inertia with respect to 

the pitching (feathering) axis and 𝐽𝑥𝑦 is the only non-

zero off-diagonal term of the moment of inertia tensor of 

the wing, since it is modelled as a thin flat plate. The 

aerodynamic pitching moment 𝑀𝑎𝑒𝑟𝑜  is obtained by 

integrating the fluid forces acting on the wing. The 

shoulder hinge joint is modelled as a torsional spring 

with stiffness K, damping coefficient C and neutral angle 

𝛼0, which are a priori unknown. An optimization study 

to determine their possible values will be described in 

full length elsewhere [8]. Let us focus in the next 

sections of this paper on measuring the shape and the 

inertial properties of the wings. They constitute pre-

requisite input data for the numerical simulations. 

C. Wing Mass Measurement 

Statistical data of the bumblebee wing mass were 

collected for n=13 individuals. Workers and queens 

were used for this purpose, as they have similar wing 

structure but differ in size. The bees were cold-

anaesthetized in a refrigerator at 3ºC, the wings were cut 

off and immediately used for the mass measurements.  

Each set of two forewings and two hindwings was 

weighed three times on a microbalance (AUW220D, 

Shimadzu, Japan). The average of each three 

measurements, divided by two, was taken as the 

measured value of the wing mass mw, that we define as 

the mass of one forewing and one hindwing, 𝑚𝑤 =
𝑚𝑓 + 𝑚ℎ, assuming that the left and the right wings are 

of the same mass. The wing length R was measured with 

a digital caliper. Since all wings were cut at slightly 

different locations, the measured values of R and mw 

were corrected using linear extrapolation in proportion 

to the full length of each wing from the shoulder hinge 

joint to the wing tip. The full length was calculated as a 

sum of the measured length and the length of the 

discarded part. The latter was estimated using the 

venation pattern near the shoulder, assumed to be 

geometrically similar for all wings. 

D. Wing Contour Measurement 

The input data required for numerical simulation of 

passive feathering rotations includes wing shape and 

moments of inertia. In our model, we approximate the 

wings as flat plates and only account for the wing planar 

shape. Deviation from the planar shape may have 

important consequences for the force generation but, to 

account for it properly, wing deformation should be 

taken into consideration, which is beyond the scope of 

this work.  

To obtain the wing outlines, wings were glued on 

millimeter paper and photographic images were taken. 

20 forewings and 18 hindwings were used. To 

distinguish the wing from the background, a threshold of 

gray value for binarization was obtained by trial and 

error using a custom software written in Matlab 

(MathWorks, USA). Figure 1 shows an example. All 

wings were aligned along their major axes before edge 

detection. All wing outlines were rescaled by their 

maximum wing chord length, then aligned to obtain the 

best match in leading edge. The forewings and the 

hindwings were treated separately.  
 

 
Fig. 1 Wing image after choosing threshold of gray value for 

binarization. 
 

The average wing contour calculation can be 

simplified through a transform from Cartesian 

coordinates to polar coordinates, since averaging is 

conducted towards a single valued function in polar 

coordinates instead of multivalued function in Cartesian 

coordinates then. Thus, the origin of the polar coordinate 

system is selected at a fixed offset from the wing root (at 

70% in the spanwise direction and 50% between the 

front point of the leading edge and the rear point of the 

trailing edge). Then, the polar radius is calculated for a 

set of 150 values of the polar angle uniformly distributed 

between 0 and 2π. The mean and the standard deviation 

(STD) are then calculated for each point of the wing 

contour by using all of the wing samples. Finally, the 

mean contour is transformed into the Cartesian 

coordinates, as well as the contours that correspond to 

the mean polar radius ±1 and ±2 STD, see Fig. 2. 
 

 
Fig. 2 The shape variation of bumblebee wings. 

E. Vein Morphology Measurement 

In addition to the statistical analysis, one image was 

digitized manually using Engauge Digitizer software [9], 

for the purpose of obtaining the wing contours for the 

CFD model and vein coordinates for the mass 

distribution model. The vein thickness, necessary for 

estimating the mass distribution, could not be reliably 

determined from photographic images. We measured the 

vein thickness from micro-CT scans (inspeXio SMX-

100CT, Shimadzu, Japan) with 0.037 mm voxel 

resolution. A forewing and a hindwing separately were 

glued on stainless steel pins at their roots and were stored 
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refrigerated for about two hours prior to measurement. 

Example images from the CT-scan are shown in Fig. 3. 

The left part of the figure shows the front view of each 

piece of the wing, and the right part of the figure shows 

several horizontally oriented planar sections (i.e., 

sections perpendicular to the pin). The wing is not flat, 

therefore, the example planar sections shown in the 

figure are not exactly perpendicular to the wing. But the 

deviation from perpendicularity is less than 30 degrees 

so that the wing thickness can be determined from these 

images with less than 15% error, which is of the same 

order of magnitude as the spatial resolution of the CT 

scan. In some particular cases we also examined planes 

oriented perpendicularly to selected veins. 

Based on the CT scan data, we classified the veins and 

measured the thickness of each vein near its middle point 

using myVGL viewer (Volume Graphics, Germany). 

Several measurements in different directions were 

acquired to determine the nominal circular-cylinder 

diameter of the vein dv and its uncertainty interval δv 

defined as the half-difference between the maximum and 

the minimum data point values in the measurement. 

Since the CT-scanned wing was larger than the 

photographed wing used for measuring the venation 

pattern (R=17 mm vs 15 mm, respectively), the vein 

diameters were downscaled isometrically.  

 
Fig. 3 Example micro-CT images of a forewing and a hindwing 

of the same individual with R=17 mm. Planar cross-sections 

correspond to the stations schematically shown using color 

annotations. 

F. Estimation of Moments of Inertia 

The moments of inertia are calculated as sums of 

contributions from the membrane and the veins, i.e.  

𝐽𝑥𝑥 = 𝐽𝑚𝑥𝑥 + 𝐽𝑣𝑥𝑥 , 𝐽𝑦𝑦 = 𝐽𝑚𝑦𝑦 + 𝐽𝑣𝑦𝑦 ,  

𝐽𝑥𝑦 = 𝐽𝑚𝑥𝑦 + 𝐽𝑣𝑥𝑦, 

which is possible due to linearity of the inertia tensor 

with respect to the material density. The veins are 

discriminated from the membrane using the 

morphological model described above. The moments of 

inertia of the veins are calculated using the measured 

length and diameter of the veins,  

𝐽𝑣𝑥𝑥 = ∫ ¼𝜋𝜌𝑐𝑦𝑣
2𝑑𝑣

2d𝑙𝑣
𝛤𝑣𝑓

+ ∫ ¼𝜋𝜌𝑐𝑦𝑣
2𝑑𝑣

2d𝑙𝑣
𝛤𝑣ℎ

 

𝐽𝑣𝑦𝑦 = ∫ ¼𝜋𝜌𝑐𝑥𝑣
2𝑑𝑣

2d𝑙𝑣
𝛤𝑣𝑓

+ ∫ ¼𝜋𝜌𝑐𝑥𝑣
2𝑑𝑣

2d𝑙𝑣
𝛤𝑣ℎ

 

𝐽𝑣𝑥𝑦 = ∫ ¼𝜋𝜌𝑐𝑥𝑣𝑦𝑣𝑑𝑣
2d𝑙𝑣

𝛤𝑣𝑓

+ ∫ ¼𝜋𝜌𝑐𝑥𝑣𝑦𝑣𝑑𝑣
2d𝑙𝑣

𝛤𝑣ℎ

 

where  d𝑙𝑣 is the elementary length of small linear 

elements of the veins that belong to the forewing ( 𝛤𝑣𝑓  ) 

or to the hindwing ( 𝛤𝑣ℎ  ), respectively. Material density 

of the veins equal to that of the cuticle, 𝜌𝑐 =1300 kg/m3 

[10], is assumed. The integrals are evaluated numerically 

by discretizing the veins using line elements of small 

length, then summing up the masses of all elements. 

Contribution from the membrane is calculated as 

𝐽𝑚𝑥𝑥 = ∫ 𝑦𝑤
2 𝜌𝑓d𝑥𝑤d𝑦𝑤

𝛴𝑚𝑓

+ ∫ 𝑦𝑤
2 𝜌ℎd𝑥𝑤d𝑦𝑤

𝛴𝑚ℎ

 

𝐽𝑚𝑦𝑦 = ∫ 𝑥𝑤
2 𝜌𝑓d𝑥𝑤d𝑦𝑤

𝛴𝑚𝑓

+ ∫ 𝑥𝑤
2 𝜌ℎd𝑥𝑤d𝑦𝑤

𝛴𝑚ℎ

 

𝐽𝑚𝑥𝑦 = ∫ 𝑥𝑤𝑦𝑤𝜌𝑓d𝑥𝑤d𝑦𝑤
𝛴𝑚𝑓

+ ∫ 𝑥𝑤𝑦𝑤𝜌ℎd𝑥𝑤d𝑦𝑤
𝛴𝑚ℎ

 

where surface integration is performed over the forewing 

membrane ( 𝛴𝑚𝑓) and the hindwing membrane ( 𝛴𝑚ℎ) 

placed in the coordinate system of the wing in its flight 

position, which corresponds to the wing shape in Fig. 2. 

For the hindwing, we assume uniform area density of the 

membrane, 𝜌ℎ = 𝜌ℎ0 = (𝑚ℎ − 𝑚𝑣ℎ)/𝐴ℎ , where 𝐴ℎ  is 

the hindwing area. This fully defines the mass 

distribution over the surface of the hindwing. However, 

the area density of the forewing membrane is far from 

being uniform, and we approximate its distribution with 

a bilinear function 𝜌𝑓 = 𝜌𝑓0 + 𝑥𝜌𝑓𝑥 + 𝑦𝜌𝑓𝑦, where the 

coefficients 𝜌𝑓0 , 𝜌𝑓𝑥  and 𝜌𝑓𝑦  are determined using 

optimization, with the wing mass as a constraint. As a 

target function for minimization, we choose the r.m.s. 

deviation from a measured coarse-grain mass 

distribution. In a separate measurement (n=3 samples), 

we cut wings in segments and weighed each segment. On 

the other hand, the segment mass can be calculated as an 

integral of the bilinear approximation 𝜌𝑓  over the 

segment area, plus the vein mass of the same segment. 

Thus, we define the target function as the r.m.s. deviation 

between the measured and the calculated segment mass 

per unit area. Its minimization provides the optimal 

values of the coefficients 𝜌𝑓𝑥  and 𝜌𝑓𝑦 to be used in the 

bilinear fit when calculating the moments of inertia.  
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Note that, in [3,4,5], the area density distribution was 

determined as the dissected wing segment mass divided 

by the respective area. Our approach of calculating 

separately the vein mass and the membrane mass is less 

straightforward, but it allows us to use only a small 

number of segments and still account for the important 

area density variation near the leading edges and the 

roots, because it is mainly due to the veins. 

Once the mass distribution is determined, it is useful 

to calculate the position of the wing center of mass, even 

though this quantity does not enter in the wing rotation 

model. The center of mass is determined using formulae 

𝑥𝑐 = (𝑆𝑣𝑦 + 𝑆𝑚𝑦)/𝑚𝑤   and   𝑦𝑐 = (𝑆𝑣𝑥 + 𝑆𝑚𝑥)/𝑚𝑤, 

where 

    𝑆𝑣𝑥 = ∫ ¼𝜋𝜌𝑐𝑦𝑣 𝑑𝑣
2d𝑙𝑣𝛤𝑣𝑓

+ ∫ ¼𝜋𝜌𝑐𝑦𝑣 𝑑𝑣
2d𝑙𝑣𝛤𝑣ℎ

, 

    𝑆𝑣𝑦 = ∫ ¼𝜋𝜌𝑐𝑥𝑣 𝑑𝑣
2d𝑙𝑣𝛤𝑣𝑓

+ ∫ ¼𝜋𝜌𝑐𝑥𝑣 𝑑𝑣
2d𝑙𝑣𝛤𝑣ℎ

, 

𝑆𝑚𝑥 = ∫ 𝑦𝑤 𝜌𝑓d𝑥𝑤d𝑦𝑤𝛴𝑚𝑓
+ ∫ 𝑦𝑤 𝜌ℎd𝑥𝑤d𝑦𝑤𝛴𝑚ℎ

, 

𝑆𝑚𝑦 = ∫ 𝑥𝑤 𝜌𝑓d𝑥𝑤d𝑦𝑤𝛴𝑚𝑓
+ ∫ 𝑥𝑤 𝜌ℎd𝑥𝑤d𝑦𝑤𝛴𝑚ℎ

. 

III. RESULTS AND DISCUSSION 

A. Wing Morphology 

The dotted lines in Fig. 2 show the mean contours of 

the forewing and the hindwing. The area filled with grey 

color displays the interval of ±1 STD, calculated in polar 

coordinates. Light blue color shows the ±2 STD interval. 

The archetypal wing contour used in the CFD 

simulations is shown in Fig. 2 with a solid black line. 

Most of its part lies within the ±1 STD band, and it lies 

entirely in the ±2 STD band. Visually, it is only slightly 

different from the mean contour obtained by statistical 

averaging over all samples. Note that the sample that we 

selected for the wing contour in the CFD simulations was 

that of an intact wing, while some of the samples used 

for the statistical averaging showed considerable wear. 

The mean chord length, defined as the wing area divided 

by R, is equal to c = 0.273R.   

B. Wing Mass and Moments of Inertia 

The measured wing mass data points are shown in Fig. 

4 as blue circles. The average wing length is 15.38 mm 

and the average wing mass is equal to 0.836 mg. The red 

dashed curve shows a regression line calculated using 

linear regression of log(𝑚𝑤)  as a function of log(𝑅) . 

This power law 𝑚𝑤  ~ 𝑅3.04 is remarkably close to the 

isometric scaling 𝑚𝑤 ~ 𝑅3 that holds for geometrically 

similar wings. We therefore use the isometric scaling in 

our subsequent analysis.  

 

 
Fig. 4 Wing mass (one forewing plus one hindwing) as a 

function of the wing length. 
 

 

We calculated the mean 𝑚𝑤/𝑅3  and its standard 

deviation for all measurement data points, and obtained 

the scaling law 𝑚𝑤 = (0.2251 ± 0.0296)𝑅3 , where R 

is in meters and 𝑚𝑤 is in kilograms. The mean 𝑚𝑤(𝑅) 

is shown in Fig. 4 with a black solid line, and the ±1 STD 

interval is shown as a gray-filled band. For a wing of 

length 𝑅 = 15.2 mm  in our example numerical 

simulation, the mass is equal to 0.791 mg. Relative mass 

of forewings and hindwings was determined from 

separate measurements using n=4 samples. The results 

show that forewing mass is 𝑚𝑓 = 0.806𝑚𝑤  and the 

hindwing mass is  𝑚ℎ = 0.194𝑚𝑤 , on the average.  

 
Fig. 5 Vein number and the corresponding position in forewing and hindwing. The black and white marker shows the center of mass. 

The wing length is equal to R = 15 mm in this example. 
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Fig. 6 Segmentation of the wing for mass distribution 

measurement. 
 

The planar location of the veins obtained from a 

photographic image is shown in Fig. 5. Different color 

segments marked with different numbers each have 

approximately constant thickness, and the measured 

values are displayed in Table 1, which shows the 

nominal values of the vein diameters, normalized by R, 

and the corresponding uncertainty intervals. Using these 

geometrical parameters and uniform vein density, we 

find that the relative contribution of veins to the forewing 

mass is equal to  𝑚𝑣𝑓/𝑚𝑓 = 0.61 . For the hindwing 

veins, it is equal to 𝑚𝑣ℎ/𝑚ℎ = 0.90 . The membrane 

contributes to the remaining 39% of the forewing mass 

and 10% of the hindwing mass. 
 

Table 1 Vein non-dimensional thickness dv/R and 

measurement uncertainty interval δv/R. 

Forewing Hindwing 

# Nominal 

thickness 

Uncertainty 

interval 

# Nominal 

thickness 

Uncertainty 

interval 

1 0.0070 0.0011 1 0.0065 0.0005 

2 0.0074 0.0009 2 0.0043 0.0004 

3 0.0055 0.0004 3 0.0046 0.0006 

4 0.0051 0.0011 4 0.0011 0.0008 

5 0.0040 0.0007 5 0.0038 0.0006 

6 0.0048 0.0010 6 0.0037 0.0006 

7 0.0040 0.0010  

8 0.0038 0.0010 

9 0.0041 0.0010 

10 0.0048 0.0008 

11 0.0045 0.0012 

12 0.0038 0.0010 

13 0.0042 0.0011 

14 0.0038 0.0009 

15 0.0034 0.0008 

16 0.0032 0.0012 

17 0.0032 0.0010 

18 0.0044 0.0015 

19 0.0015 0.0014 

20 0.0018 0.0017 
 

Segmentation of the wing used for the linear 

regression analysis of the membrane density distribution 

is shown in Fig. 6. Every segment is labelled with a 

number. The area density of each segment can be 

determined from Table 2. The values in the table 

correspond to the wing segment mass, divided by the 

area of the same segment and by the wing length R. The 

values obtained directly from mass measurements are 

shown in the second last column. Note that they include 

both the membrane and the vein. This coarse 

segmentation is sufficient for evaluation of the bi-linear 

and uniform models of membrane density of the 

forewing and the hindwing, respectively. The optimal 

linear regression approximation parameters of the 

membrane are as follows: 𝜌𝑓0/𝑅 = 0.826kg/m3, 𝜌𝑓𝑥 =

−0.798 kg/m3, 𝜌𝑓𝑦 = 0.672 kg/m3, 𝜌ℎ0/𝑅 =

0.045 kg/m3. Integration of this membrane density 

distribution and summation with the vein mass leads to 

the values in the last column. The agreement between the 

values in the two columns speaks in support of the 

regression model.   

Calculation of the moments of inertia yields the 

following isometric scaling relationships: 

𝐽𝑥𝑥 = 0.0014𝑅5,     𝐽𝑦𝑦 = 0.0426𝑅5, 

𝐽𝑥𝑦 = −0.0010𝑅5, 

where R is in meters and the result is in kg ⋅ m2. For a 

wing of length 𝑅 = 15.2 mm , we obtain 𝐽𝑥𝑥 = 1.14 ⋅
10−12 kg ⋅ m2,  𝐽𝑦𝑦 = 34.6 ⋅ 10−12 kg ⋅ m2 , 𝐽𝑥𝑦 =

−0.81 ⋅ 10−12 kg ⋅ m2.  

In order to estimate the error in the inertia calculation 

induced when the veins are approximated as circular 

cylinders, we repeated the inertia calculations 33 times 

with the thickness of each vein modified as dv+χδv, where 

the values of χ were taken randomly between -1 and 1 

with uniform probability distribution. We thus obtained 

sequences of values for each component of the inertia 

tensor. They have the mean values equal up to the last 

digit to the nominal values shown above, and the 

standard deviations equal to  Δ𝐽𝑥𝑥 = 0.00006𝑅5 , 

Δ𝐽𝑦𝑦 = 0.00140𝑅5, Δ𝐽𝑥𝑦 = 0.00023𝑅5, respectively. 

The full wing center of mass is located remarkably 

near to the rotation axis at xc = 0.379R, yc = -0.019R. This 

result, based on calculation as described above, turns out 

to be close to our quick first estimate obtained by placing 

clipped wings on a prism: xc = 0.42R, yc = -0.03R. 
 

Table 2 Area density of the wing segments divided by the 

wing length R, in kg/m3. 

 Segment Measured(mean±STD) Calculated 

Fore 

wing 

1 3.64 ± 0.44 3.52 

2 1.66 ± 0.07 1.90 

3 0.87 ± 0.10 0.60 

4 1.48 ± 0.08 1.22 

5 0.49 ± 0.03 0.65 

6 0.16 ± 0.001 0.17 

Hind 

wing 

7 1.38 ± 0.13 1.28 

8 0.24 ± 0.04 0.27 
 

 Sometimes, the wing is approximated as an ellipse 

with uniform density in order to simplify the calculation 

of its moments of inertia. The hinge point is offset from 

the centroid by a distance a in the spanwise direction 

towards the wing root and by b/2 in the chordwise 

direction towards the leading edge, where a and b are the 

major and the minor semi-axes, respectively. In that 

approximation, the area density is equal to  𝜌𝑤
𝑒𝑙𝑙 =

𝑚𝑤/𝜋𝑎𝑏 . The moments of inertia with respect to the 

hinge point are calculated using the parallel axis 
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theorem, that yields 𝐽𝑥𝑥
𝑒𝑙𝑙 = 𝜌𝑤

𝑒𝑙𝑙(𝜋𝑎𝑏(𝑏/2)2 + 𝜋𝑎𝑏3/4),  

𝐽𝑦𝑦
𝑒𝑙𝑙 = 𝜌𝑤

𝑒𝑙𝑙(𝜋𝑎𝑏𝑎2 + 𝜋𝑎3𝑏/4) ,  𝐽𝑥𝑦
𝑒𝑙𝑙 = −𝜌𝑤

𝑒𝑙𝑙𝜋𝑎𝑏𝑎𝑏/2 . 

After substituting a = R/2, b = 2c/π, using the previously 

determined scaling c = 0.273R for the mean chord and 

mw = 0.2251R3 for the wing mass, we obtain  𝐽𝑥𝑥
𝑒𝑙𝑙 =

0.0034𝑅5 ,  𝐽𝑦𝑦
𝑒𝑙𝑙 = 0.0703𝑅5 ,  𝐽𝑥𝑦

𝑒𝑙𝑙 = −0.0098𝑅5 . We 

thus find that, for the ellipse model, the xx and yy 

components differ by a factor of 2 from the morphology-

based estimates, and the xy component is one order of 

magnitude greater. The main reason for this inaccuracy 

of the ellipse model is that it allocates too much mass 

near the trailing edge. We therefore stick to the 

morphology-based relations for Jxx, Jyy and Jxy given 

earlier in this section.  

C. Wing pitching motion 

Let us consider an example result of a numerical 

simulation, which is shown in Fig. 7. It corresponds to 

hovering flight of a bumblebee with the following 

parameters: body mass 𝑚𝑏 = 418 mg, wing length 𝑅 =
15.2  mm, flapping frequency 𝑓 = 136  Hz, wing beat 

amplitude 𝛷 = 137  deg, body angle 𝛽 = 41  deg, 

anatomical stroke plane angle 𝜂 = 53 deg. The elastic 

hinge model is used with the following parameters: 

stiffness 𝐾 = 2.61 ⋅ 10−6 N⋅m, damping 𝐶 = 0, neutral 

angle 𝛼0 = −1.4 deg. Periodic symmetric time profiles 

of the wing angles 𝜙(𝑡) , 𝜃(𝑡)  and 𝛼(𝑡) , shown with 

black dash, dash-dot and solid lines, respectively, are 

derived from flight experiment measurement.  
 

 
Fig. 7 Time evolution of the wing angles and the vertical 

aerodynamic force. Note that ϕ and θ in the CFD are identical 

with the experimental values. 
 

The red line shows the time evolution of α obtained 

from the CFD model with the same 𝜙(𝑡) , 𝜃(𝑡) . The 

r.m.s. distance between the time evolution of 𝛼 in the 

experiment and during the 4th wingbeat cycle of the 

numerical simulation is less than 9 deg. The two profiles 

have essentially the same shape. The most prominent 

difference is during upstroke where the CFD profile 

shows a narrower minimum. It can be explained by 

substantial rotation of the hindwing relative to the 

forewing that is not accounted for in the model. Since the 

passive rotation model is in a reasonable agreement with 

the experiment in terms of 𝛼(𝑡), it is not surprising that 

the time-varying vertical force 𝐿(𝑡) obtained from the 

model (blue line) displays the double peak profile typical 

of hovering insects, and that the mean vertical force is 

equal to 407 mgf, which is within 3% of the measured 

body mass.  

IV. CONCLUSIONS  

Morphological measurements of the wings of 

bumblebees B. ignitus are described. It is found that the 

isometric scaling relation adequately describes the 

variation of the wing mass with the wing length. An 

archetypical wing shape and the surface density 

distribution are derived and used for evaluation of the 

moments of inertia.  Using these geometrical and inertial 

properties as input data for a numerical simulation that 

implements the passive feathering rotation model, we 

observe that the wing rotation about its feathering axis 

during hovering flight can be adequately described from 

the standpoint of fluid-structure interaction, as 

hypothesized in the introduction. Thus, the selected 

example simulation result differs from the experiment by 

less than 9 deg in terms of the r.m.s. error in 𝛼(𝑡). 

V. ACKNOWLEDGEMENTS 

DK gratefully acknowledges financial support from 

the JSPS Grant-in-Aid JP18K13693, thanks Shimadzu 

Corp. for granting access to the CT system, and Dr. 

Hiroto Tanaka for his advice and assistance with mass 

measurements. TE, JS, MF, KS gratefully acknowledge 

financial support from the Agence nationale de la 

recherche (ANR Grant 15-CE40-0019) and Deutsche 

Forschungsgemeinschaft (DFG Grant SE 824/26-1), 

project AIFIT, and financial support granted by the 

Ministère de l'Europe et des affaires étrangères (MEAE), 

Ministère de l'enseignement supérieur, de la recherche et 

de l'innovation (MESRI), and the Deutscher 

Akademischer Austauschdienst (DAAD) within the 

French-German Procope project FIFIT. This work was 

granted access to the HPC resources of IDRIS (Institut 

du Développement et des Ressources en Informatique 

Scientifique) under the allocation made by GENCI 

(Grand Équipement National de Calcul Intensif), project 

number A0022A01664. 

VI. REFERENCES 

[1] J. P. Whitney and R. J. Wood, “Aeromechanics of passive 

rotation in flapping flight,” Journal of Fluid Mechanics, vol. 660, 

pp. 197-220, 2010. 

[2] D. Ishihara, T. Horie, T. Niho, “An experimental and three-

dimensional computational study on the aerodynamic 
contribution to the passive pitching motion of flapping wings in 

hovering flies,” Bioinspiration & Biomimetics, vol. 9, no. 4, 

046009, 2014. 

[3] A. R. Ennos, “Inertial and aerodynamic torques on the wings of 

diptera in flight,” Journal of Experimental Biology, vol. 142, no. 

1, pp. 87-95, 1989. 

[4] R. Åke Norberg, “The pterostigma of insect wings an inertial 

regulator of wing pitch,” Journal of Comparative Physiology, 

vol. 81, no. 1, pp. 9-22, 1972. 

JOURNAL OF AERO AQUA BIO-MECHANISMS, VOL.8, NO.1

 – 46 –



[5] H. V. Phan, H. C. Park, “Wing inertia as a cause of 

aerodynamically uneconomical flight with high angles of attack 

in hovering insects,” Journal of Experimental Biology, vol. 221, 

no. 19, jeb187369, 2018. 

[6] T. Jakobi, D. Kolomenskiy, T. Ikeda, S. Watkins, A. Fisher, H. 

Liu, S. Ravi, “Bees with attitude: the effects of directed gusts on 

flight trajectories,” Biology Open, vol. 7, bio034074, 2018. 

[7] T. Engels, D. Kolomenskiy, K. Schneider, J. Sesterhenn, “FluSI: 

A novel parallel simulation tool for flapping insect flight using a 
Fourier method with volume penalization,” SIAM Journal on 

Scientific Computing, vol. 38, no. 5, pp. S3-S24, 2016. 

[8] D. Kolomenskiy, S. Ravi, R. Xu, K. Ueyama, T. Jakobi, T. 

Engels, T. Nakata, J. Sesterhenn, K. Schneider, R. Onishi, H. Liu, 

“The dynamics of passive feathering rotation in hovering flight 
of bumblebees,” Journal of Fluids and Structures, 2019. 

https://doi.org/10.1016/j.jfluidstructs.2019.03.021 

[9] M. Mitchell, B. Muftakhidinov, T. Winchen et al, “Engauge 
Digitizer software,” markummitchell.github.io/engauge-

digitizer, last accessed: May 7, 2018. 

[10] J. F. V. Vincent, U. G. K. Wegst, “Design and mechanical 
properties of insect cuticle,” Arthropod Structure and 

Development, vol. 33, no. 3, pp. 187-199, 2004. 

 

JOURNAL OF AERO AQUA BIO-MECHANISMS, VOL.8, NO.1

 – 47 –




