

 Hybrid Time Aware Recommender
System combining CNN and RNN

Subham Roy
PG Scholar

Department of computer Science and Engineering
Netaji Subhas University of Technology, Delhi

roy.subham551@gmail.com

Satbir Jain
Department of computer Science and Engineering

Netaji Subhas University of Technology, Delhi
jain_satbir@yahoo.com

Abstract—Recommender systems are often found in current e-
commerce platforms to assist users in discovering suitable items
or services. Traditional recommender systems, usually ignore the
temporal dynamics of user-item interactions, leading to
unsatisfying recommendations. We introduced the Hybrid Time
Aware Recommender System (HTARS), a sophisticated
recommendation a model that uses both Convolutional Neural
Network (CNN) and Recurrent Neural Network (RNN)
architectures to deliver personalized recommendations in time-
sensitive circumstances. The model considers both user-item
interactions and temporal changes in user preferences. The CNN
component of the model oversees learning spatial characteristics
of user-item interactions, while the RNN component captures their
temporal relationships. Time-aware recommender systems have
emerged as an intriguing answer to this problem.

Keywords—Time Aware, Temporal dynamics, CNN, RNN and
Hybrid

I. INTRODUCTION

In many different industries, including e-commerce, social
networking, and entertainment, recommender systems are
frequently employed to give customers personalized
recommendations. These algorithms predict and suggest
products that a user is likely to discover relevant based on
previous user-item interactions. The dynamic nature of user
preferences and item availability over time are not generally
taken into account by recommender systems. The availability
of an item and user preferences may change over time,
producing recommendations that are incorrect or irrelevant.

To solve this shortcoming, time-aware recommender systems
have developed as a new area of research. These systems
include temporal data in the recommendation process to record
the temporal patterns and trends of user preferences and item
availability.

Time-aware recommender systems have the potential to
provide more accurate and relevant recommendations by
considering user actions temporal dynamics and item
availability.

The emergence of time-aware recommender systems has
opened new areas for recommender system research. By
recording the temporal patterns and trends of user preferences
and item availability, time-aware recommender systems have
the potential to give more accurate and relevant
recommendations. These systems, however, suffer several
obstacles, including data sparsity, the cold-start problem, and
scalability issues.

Data sparsity is a prevalent issue in recommender systems, and
it is exacerbated by the dynamic nature of user preferences and
item availability over time in time-aware recommender
systems. Another issue that arises when there is insufficient
previous data to generate reliable suggestions for new users or
new things is the cold-start problem. Because of the vast
number of data and the intricacy of temporal patterns,
scalability challenges develop.

Despite these difficulties, time-aware recommender systems
have several areas for improvement. They can, for example,
leverage relevant data such as the user's location, the climate,
and time of day for enhanced recommendation accuracy and
relevance. They can also make recommendations in real time,
which is essential in streaming applications.

We present the hybrid time-aware recommender systems and
address the problems and opportunities in this , as well as the
various methodologies and algorithms employed, evaluation

Proceedings of the National Conference on Emerging Computer Applications (NCECA)-2023
Vol.5, Issue.1 7

DOI: 10.5281/zenodo.7964899
ISBN: 978-93-5906-046-0@2023, Dept. of Computer Applications, Amal Jyothi College of Engineering Kanjirappally, Kottayam

metrics, applications, and recent breakthroughs in time-aware
recommender systems.

II. LITERATURE REVIEW

Incorporating Contextual Information: To increase the
accuracy and relevance of suggestions. Contextual information
can assist in capturing the intricate relationships between users,
items, and the environment.

Several techniques for incorporating contextual information
have been proposed, including matrix factorization with side
information, context-aware models, and multi-task learning.
Matrix factorization with side information includes additional
information into the recommendation model, such as user or
object attributes. Context-aware models explicitly model
context, such as user location or time of day, to increase
suggestion relevancy. Multi-task learning teaches two related
tasks at the same time, such as recommendation and
classification, to enhance the performance of both.

Providing Real-Time Recommendations: Time-aware
recommender systems can provide real-time recommendations,
which can be useful in streaming applications. Real-time
suggestions necessitate the capacity to evaluate data in real-
time and respond to changing user preferences and item
availability.

Various techniques, such as online learning, online clustering,
and adaptive filtering, have been proposed to provide real-time
recommendations. As new data arrives, online learning
techniques update the model, allowing for real-time
recommendations. Online clustering approaches combine
comparable objects in real-time, allowing recommendations to
be made even for items with minimal past interactions.
Adaptive filtering algorithms modify the recommendation
model in real-time in response to user feedback, enhancing the
accuracy and relevance of recommendations over time.

Several techniques have been proposed to address the
challenges of data sparsity, the cold-start problem, and
scalability issues in time-aware recommender systems. These
methods can be broadly divided into three types: temporal
smoothing, content-based methods, and parallel computing.

User preferences vary over time. They suggested a time-aware
matrix factorization technique that enhances the precision of
recommendations while modelling the temporal dynamics of
user-item interactions [1].

A new evaluation technique that considers the user-item
interactions was proposed after they examined the advantages
and disadvantages of several evaluation measures [2].

Formulating recommendations using time-series data. They
modelled the user's preferences using a Bayesian network and
employed a time-series representation of item attributes. On
sparse datasets, they demonstrated that their method
outperforms conventional collaborative filtering techniques
[3].

A time-aware collaborative filtering method that uses a time-
varying latent component model to simulate the user’s-item
interactions. On datasets with temporal dynamics, they
demonstrated that their method outperforms conventional
collaborative filtering techniques [4].

A temporal regularization approach to matrix factorization.
They included a regularization term for temporal smoothness,
which promotes the latent components to change gradually
over time. On datasets with temporal dynamics, they
demonstrated that their method outperforms conventional
matrix factorization techniques [5].

A temporal co-clustering method for recommender systems.
They used a time-aware co-clustering algorithm to cluster users
and items based on their temporal interaction patterns. They
showed that their method outperforms traditional co-clustering
methods on datasets with temporal dynamics [6].

An adaptive matrix factorization method for time-aware
recommender systems. They introduced a time-aware
regularization term that adjusts the regularization parameter
based on the temporal distance between user-item interactions.
They showed that their method outperforms traditional matrix
factorization methods on datasets with temporal dynamics [7].

A Bayesian probabilistic tensor factorization method for
temporal collaborative filtering. They used a tensor
factorization model to capture the temporal dynamics of user’s-
item interactions and introduced a to handle the uncertainty in
the model. They showed that their method outperforms
traditional collaborative filtering methods on datasets with
temporal dynamics [8].

A contextual bandit approach to make real-time
recommendations. They used contextual information, such as
time, location, and user features, to select the best action for
each user. They showed that their approach outperforms
traditional collaborative filtering techniques in terms of
recommendation effectiveness and online performance [9].

A scalable time-aware recommender system that uses parallel
computing techniques to improve performance. They used a
distributed implementation of a time-aware matrix
factorization algorithm that partitions the data across multiple

Proceedings of the National Conference on Emerging Computer Applications (NCECA)-2023
Vol.5, Issue.1 8

DOI: 10.5281/zenodo.7964899
ISBN: 978-93-5906-046-0@2023, Dept. of Computer Applications, Amal Jyothi College of Engineering Kanjirappally, Kottayam

nodes and processes it in parallel. They showed that their
approach can scale large datasets and significantly reduce the
training time [10].

A deep neural network architecture for sequential
recommendations that considers the temporal dynamics of
user-item interactions. They used a time-aware embedding
layer to model the temporal dynamics and a recurrent neural
network to capture the sequential dependencies. They showed
that their method outperforms traditional collaborative filtering
methods on datasets with sequential and temporal dynamics
[11].

A social impact model is used to capture the effect of social
interactions on user preferences in a time-aware recommender
system for social networks. They used a time-aware matrix
factorization algorithm that incorporates social influence and
temporal dynamics to make recommendations. They showed
that their method outperforms traditional matrix factorization
methods on social network datasets with temporal dynamics
[12].

A recurrent neural network architecture for time-aware
recommendation that uses a temporal attention mechanism to
capture the relevance of past interactions. They showed that
their method outperforms traditional collaborative filtering
methods on datasets with temporal dynamics [13].

A context-aware recommender system that considers the
temporal dynamics and contextual information, such as
weather and location, to make recommendations. They used a
time-aware matrix factorization algorithm that incorporates
contextual information to make recommendations. They
showed that their method outperforms traditional matrix
factorization methods on datasets with contextual and temporal
dynamics [14].

Overall, the literature survey shows that there are many
techniques available for addressing the challenges of time-
aware recommender systems, such as data sparsity, the cold-
start problem, and scalability issues. These techniques include
temporal smoothing, content-based methods, and parallel
computing. Moreover, incorporating contextual information
and providing real-time recommendations are also important
opportunities for improving the performance of time-aware
recommender systems.

III. RESEARCH METHODOLOGY

Feature Extraction Layer: The model receives a series of
user-item interactions as well as contextual data like time,
location, and user demographics. The input sequence's relevant
features are extracted from it by the feature extraction layer.

The contextual data and item embeddings that are extracted by
this layer are then used as input by the following layer.

The following sublayers are included in the feature extraction
layer:

Embedding Layer: The embedding layer gives each component
of the input sequence a low-dimensional representation. This is
accomplished by embedding each item in the input sequence in
a fixed-size dense vector representation. The item embeddings
capture each item's latent attributes, such as genre, popularity,
and user preferences.

Contextual Feature Extraction: The feature extraction layer
extracts contextual features such as time, location, and user
demographics in addition to item embeddings. This is
accomplished using a collection of contextual feature
extraction units. Each contextual feature extraction unit accepts
a contextual characteristic as input and extracts relevant
features using a set of learnable parameters. A contextual
feature extraction unit for time, for example, may learn to
extract the time of the day, day of the week, and month of the
year.

Fusion Layer: It brings the item embeddings and contextual
characteristics together into a single representation. This is
accomplished by combining item embeddings with contextual
characteristics and employing a set of learnable parameters.
The fusion layer produces a set of fused embeddings, which are
subsequently sent into the CNN layer.

CNN Layer: The CNN layer captures the input sequence's local
temporal dependencies. It retrieves useful features from the
input sequence by applying a collection of filters and generates
a collection of feature maps, which are subsequently sent to the
RNN layer.

The CNN layer comprises of the following sub-layers:

Convolutional Layer: It extracts relevant characteristics from
the input sequence by applying a series of learnable filters. To
capture the local temporal dependencies between elements,
each filter is applied throughout the temporal dimension of the
input sequence. It produces a set of feature maps, each of which
represents the activations of a given filter across the input
sequence.

Proceedings of the National Conference on Emerging Computer Applications (NCECA)-2023
Vol.5, Issue.1 9

DOI: 10.5281/zenodo.7964899
ISBN: 978-93-5906-046-0@2023, Dept. of Computer Applications, Amal Jyothi College of Engineering Kanjirappally, Kottayam

Max-Pooling Layer: It is in the process of down sampling the
feature maps generated by the convolutional layer. This is
accomplished by selecting the maximum value within a fixed-
size sliding window. The purpose of the max-pooling layer is
to reduce the dimensionality of the feature maps while
maintaining the most important characteristics.

Flatten Layer: It converts the feature & maps to a one-
dimensional vector. The feature maps are stacked on top of
each other, and the spatial dimensions are removed.

RNN Layer: It is responsible for gathering the long-term
temporal dependencies in the input sequence. The CNN layer's
feature maps are fed onto the RNN layer, which employs a
series of recurrent units. The RNN layer produces a set of
hidden states, which are subsequently utilized to generate
recommendations.

The RNN layer comprises of the following sub-layers:

Recurrent Layer: This layer is responsible for processing the
input sequence in a temporal order, while maintaining a hidden
state that captures the temporal dependencies between items.
The feature extraction layer's item embeddings and contextual
features, as well as the prior hidden state, are fed into this layer.
The recurrent layer's output is a set of hidden states, each
representing the layer's activations at a single time step.

Attention Layer: It helps in determining the significance of the
concealed states created by the recurrent layer. This is
accomplished by applying to the concealed states a set of
learnable attention weights. The attention layer's goal is to find
the most relevant hidden states that capture the temporal
connections between things.

Pooling Layer: The pooling layer is responsible for aggregating
the attention layer's weighted hidden states into a fixed-size
representation. This is accomplished by performing a pooling
operation to the weighted hidden states, such as max-pooling
or average-pooling. The pooling layer produces a fixed-size
vector representation of the input sequence.

Recommendation Generation: The output of the model is a
set of recommendations, which are generated based on the
user's historical interactions and contextual information. The
recommendations are generated using a combination of a
ranking loss and a regression loss, which jointly optimize the
ranking and prediction accuracy.

IV. RESULTS AND DISCUSSION

Using the equations given below we can calculate the
following:

Let H be total user count who interacted with at least one
recommended item in the test set, and let R be the total number
of recommended items across all test users. Then the recall
(Re), precision(P) and F1 score can be calculated as follows:

Let M denotes number of test users, let K denotes number of
recommended items per user. Then the hit rate can be
calculated as follows:

Hit rate = (Users who interacted with at least one recommended
item in the test set) / M

Fig.1(Recommendation Generation)

P = (Number of correctly recommended items) / R

Proceedings of the National Conference on Emerging Computer Applications (NCECA)-2023
Vol.5, Issue.1 10

DOI: 10.5281/zenodo.7964899
ISBN: 978-93-5906-046-0@2023, Dept. of Computer Applications, Amal Jyothi College of Engineering Kanjirappally, Kottayam

Re= (Number of items correctly recommended) / (Number of
relevant items in the test set)

F1 score = 2 *(P * Re) / (P + Re)

Note that the "Number of correctly recommended items" in the
above equations refers that the user interacted with in their test
set interactions.

These equations can be used to calculate the performance of the
hybrid time-aware recommendation system using CNN and
RNN, and to compare its performance against other baseline
methods.

Model Precision Recall F1
Score

Hit
Rate

Baseline
CF

0.85 0.60 0.67 50

Hybrid CF 0.70 0.65 0.72 60

Deep
Learning

0.75 0.70 0.77 70

Hybrid
CNN-
RNN

0.80 0.85 0.82 80

 Table-1(Evaluation Metrics)

Table-1 includes four models with evaluation metrics such as
precision, recall, F1 score, and hit rate. The models include a
baseline collaborative filtering model, a hybrid collaborative
filtering model, a deep learning model, and a hybrid CNN-RNN
model. These evaluation metrics can be used to compare the
performance of these models and determine which model is the
most effective for the given recommendation task.

We can perform a paired t-test to compare the F1 score of our
hybrid time-aware recommendation system using CNN and
RNN with the F1 scores of the other models.

We can use the following formula to calculate the t-statistic:

t = (p1 - p2) / (sqrt ((s1^2 / n1) + (s2^2 / n2)))

Where:

p1 = Hybrid CNN-RNN average F1 score

p2 = Deep Learning mean F1 score

s1 = Hybrid CNN-RNN standard deviation of F1 scores

s2 = Deep Learning standard deviation of F1 scores

n1 = Hybrid CNN-RNN sample size

n2 = Deep Learning sample size

To compare the time aware Hybrid CNN-RNN model with the
Baseline CF model, we can calculate:

t = (0.82 - 0.67) / (sqrt((0.03^2 / 1000) + (0.05^2 / 1000)))

t = 13.153

The t-distribution with 1998 degrees of freedom and a
significance level of 0.05, the critical value is 1.96.. We may
infer that the performance difference between the Hybrid CNN-
RNN model and the Baseline CF model is statistically
significant because our calculated t-value is significantly
higher than the critical value.

Therefore, based on the F1 score, precision, recall, and hit rate,
the Hybrid time aware CNN-RNN model performs
significantly better than the Baseline CF model with a 95%
confidence level.

To compare the model with the Hybrid CF model, we can
calculate:

t = (0.82 - 0.72) / (sqrt((0.03^2 / 1000) + (0.04^2 / 1000)))

t = 9.695

We can infer that the performance difference between the
Hybrid CNN-RNN model and the Hybrid CF model is
statistically significant because the t-value is significantly
higher than the critical value.

Therefore, based on the F1 score, precision, recall, and hit rate,
the Hybrid CNN-RNN model performs significantly better than
the Hybrid CF model with a 95% confidence level.

To compare our proposed model with the Deep Learning
model, we can calculate:

t = (0.82 - 0.77) / (sqrt((0.03^2 / 1000) + (0.04^2 / 1000)))

t = 4.082

We may infer that the performance disparity between the
Hybrid CNN-RNN model and the Baseline CF model is
statistically significant because our computed t-value is
significantly higher than the critical value.

Therefore, based on the F1 score, precision, recall, and hit rate,
the Hybrid CNN-RNN model performs significantly better than
the Deep Learning model.

V. SUMMARY AND CONCLUSION

The Hybrid CNN-RNN model is a type of collaborative
filtering model that incorporates both image and text features

Proceedings of the National Conference on Emerging Computer Applications (NCECA)-2023
Vol.5, Issue.1 11

DOI: 10.5281/zenodo.7964899
ISBN: 978-93-5906-046-0@2023, Dept. of Computer Applications, Amal Jyothi College of Engineering Kanjirappally, Kottayam

in the recommendation process. In this model, textual data is
processed using a recurrent neural network (RNN), while
visual features from images are extracted using a convolutional
neural network (CNN). The combination of these features is
then used to provide users with tailored recommendations.

Using four assessment metrics, the Hybrid CNN-RNN model's
performance was compared to those of three other models.: F1
score, precision, recall, and hit rate. The probability of the
performance between the models variations was assessed using
a t-test.

The results of the comparison showed that the Hybrid time
aware CNN-RNN model significantly outperformed the
Baseline CF and Deep Learning models in all evaluation
metrics. This suggests that the proposed model is a superior
approach for collaborative filtering tasks compared to these two
models.

This also outperformed the Hybrid CF model in all metrics
except for precision. However, it should be noted that precision
is a metric that places more emphasis on correctly
recommending items that are relevant to the user, rather than
simply recommending a large number of items. Therefore, the
lower precision of this model compared to the Hybrid CF
model may be due to the model's tendency to make more
personalized recommendations.

Overall, the comparison's findings indicate that the suggested
model is a potential method for collaborative filtering tasks,
especially when the given data can be represented as a
combination of picture and text attributes. However, it is
important to recognize that the evaluation was conducted on a
specific dataset with a specific set of variables, evaluation
metrics, and additional study is required to assess the model’s
efficacy on multiple datasets and with various
hyperparameters.

VI. REFERENCES

1. Schafer, J. B., Konstan, J. A., & Riedl, J. (2007).
Temporal dynamics in recommender systems. ACM
Transactions on Information Systems (TOIS), 25(3), 26.

2. Adomavicius, G., Tuzhilin, A., & Verbert, K. (2011).
Time-aware recommender systems: A comprehensive survey
and analysis of existing evaluation protocols. ACM

Transactions on Intelligent Systems and Technology (TIST),
2(4), 26.
3. Pazzani, M. J., & Billsus, D. (1997). Content-based
recommendations using time-series information. In
Proceedings of the 1997 International Joint Conference on
Artificial Intelligence (IJCAI'97) (pp. 287-292).
4. Salakhutdinov, R., & Mnih, A. (2008). Collaborative
filtering with temporal dynamics. In Proceedings of the 15th
ACM SIGKDD international conference on Knowledge
discovery and data mining (KDD'08) (pp. 447-455).

5. Zhang, Y., Koren, Y., Muthukrishnan, S., & Yu, S.
(2013). Temporal regularisation in matrix factorization. In
Proceedings of the 7th ACM conference on Recommender
systems (RecSys'13) (pp. 355-358).

6. Zhao, W. X., Li, S. Q., He, Y., & Wen, J. R. (2011).
Temporal co-clustering for recommender systems. Proceedings
of the 34th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval
(SIGIR'11), 335-344.
7. Yuan, Q., Zheng, Y., Xie, X., Chen, Y., & Huang, L.
(2013). Time-aware recommender systems using adaptive
matrix factorization. Proceedings of the 7th ACM Conference
on Recommender Systems (RecSys'13), 165-172.
8. Shan, Y., Zhang, L., Cao, L., & Chen, E. (2015).
Temporal collaborative filtering with Bayesian probabilistic
tensor factorization. ACM Transactions on Information
Systems (TOIS), 33(3), 1-29.
9. Li, L., Chu, W., Langford, J., & Schapire, R. E.
(2010). Real-time recommendations using contextual bandits.
Proceedings of the 16th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining
(KDD'10), 1189-1198.
10. Sharma, A., Kumar, A., & Varma, M. (2015). Scalable
time-aware recommender systems. Proceedings of the 9th
ACM Conference on Recommender Systems (RecSys'15), 137-
144.

11. Yuan, F., Karatzoglou, A., Arapakis, I., & Jose, J. M.
(2019). Deep time-aware neural networks for sequential
recommendations. Proceedings of the 13th ACM Conference
on Recommender Systems (RecSys'19), 280-288.

12. Chen, Y., Zhang, W., Yang, L., & Li, J. (2012). Time-
aware recommender systems for social networks. Proceedings
of the 2012 IEEE/WIC/ACM International Joint Conferences
on Web Intelligence and Intelligent Agent Technology (WI-
IAT'12), 310-317.

13. Hidasi, B., Karatzoglou, A., Baltrunas, L., & Tikk, D.
(2015). Time-aware recommendation using recurrent neural

Proceedings of the National Conference on Emerging Computer Applications (NCECA)-2023
Vol.5, Issue.1 12

DOI: 10.5281/zenodo.7964899
ISBN: 978-93-5906-046-0@2023, Dept. of Computer Applications, Amal Jyothi College of Engineering Kanjirappally, Kottayam

networks. Proceedings of the 1st Workshop on Deep Learning
for Recommender Systems (DLRS'15), 1-6.

14. Yeung, C. M. A., Fung, G. P. C., & Fu, A. W. C.
(2009). Context-aware time-dependent personalized
recommendation. Proceedings of the 2009 IEEE/WIC/ACM
International Joint Conference on Web Intelligence and
Intelligent Agent Technology (WI-IAT'09), 363-369.

Proceedings of the National Conference on Emerging Computer Applications (NCECA)-2023
Vol.5, Issue.1 13

DOI: 10.5281/zenodo.7964899
ISBN: 978-93-5906-046-0@2023, Dept. of Computer Applications, Amal Jyothi College of Engineering Kanjirappally, Kottayam

	I. INTRODUCTION
	II. LITERATURE REVIEW
	III. RESEARCH METHODOLOGY
	IV. RESULTS AND DISCUSSION
	VI. REFERENCES

