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Abstract—Recommender systems are often found in current e-
commerce platforms to assist users in discovering suitable items 
or services. Traditional recommender systems, usually ignore the 
temporal dynamics of user-item interactions, leading to 
unsatisfying recommendations. We introduced the Hybrid Time 
Aware Recommender System (HTARS), a sophisticated 
recommendation a model that uses both Convolutional Neural 
Network (CNN) and Recurrent Neural Network (RNN) 
architectures to deliver personalized recommendations in time-
sensitive circumstances. The model considers both user-item 
interactions and temporal changes in user preferences. The CNN 
component of the model oversees learning spatial characteristics 
of user-item interactions, while the RNN component captures their 
temporal relationships. Time-aware recommender systems have 
emerged as an intriguing answer to this problem.  
 
Keywords—Time Aware, Temporal dynamics, CNN, RNN and 
Hybrid 

I. INTRODUCTION 

In many different industries, including e-commerce, social 
networking, and entertainment, recommender systems are 
frequently employed to give customers personalized 
recommendations. These algorithms predict and suggest 
products that a user is likely to discover relevant based on 
previous user-item interactions. The dynamic nature of user 
preferences and item availability over time are not generally 
taken into account by recommender systems. The availability 
of an item and user preferences may change over time, 
producing recommendations that are incorrect or irrelevant. 

To solve this shortcoming, time-aware recommender systems 
have developed as a new area of research. These systems 
include temporal data in the recommendation process to record 
the temporal patterns and trends of user preferences and item 
availability.  

Time-aware recommender systems have the potential to 
provide more accurate and relevant recommendations by 
considering user actions temporal dynamics and item 
availability. 

The emergence of time-aware recommender systems has 
opened new areas for recommender system research. By 
recording the temporal patterns and trends of user preferences 
and item availability, time-aware recommender systems have 
the potential to give more accurate and relevant 
recommendations. These systems, however, suffer several 
obstacles, including data sparsity, the cold-start problem, and 
scalability issues. 

Data sparsity is a prevalent issue in recommender systems, and 
it is exacerbated by the dynamic nature of user preferences and 
item availability over time in time-aware recommender 
systems. Another issue that arises when there is insufficient 
previous data to generate reliable suggestions for new users or 
new things is the cold-start problem. Because of the vast 
number of data and the intricacy of temporal patterns, 
scalability challenges develop. 

Despite these difficulties, time-aware recommender systems 
have several areas for improvement. They can, for example, 
leverage relevant data such as the user's location, the climate, 
and time of day for enhanced recommendation accuracy and 
relevance. They can also make recommendations in real time, 
which is essential in streaming applications. 

We present the hybrid time-aware recommender systems and 
address the problems and opportunities in this , as well as the 
various methodologies and algorithms employed, evaluation 
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metrics, applications, and recent breakthroughs in time-aware 
recommender systems. 

II. LITERATURE REVIEW 

Incorporating Contextual Information: To increase the 
accuracy and relevance of suggestions. Contextual information 
can assist in capturing the intricate relationships between users, 
items, and the environment. 

Several techniques for incorporating contextual information 
have been proposed, including matrix factorization with side 
information, context-aware models, and multi-task learning. 
Matrix factorization with side information includes additional 
information into the recommendation model, such as user or 
object attributes. Context-aware models explicitly model 
context, such as user location or time of day, to increase 
suggestion relevancy. Multi-task learning teaches two related 
tasks at the same time, such as recommendation and 
classification, to enhance the performance of both. 

Providing Real-Time Recommendations: Time-aware 
recommender systems can provide real-time recommendations, 
which can be useful in streaming applications. Real-time 
suggestions necessitate the capacity to evaluate data in real-
time and respond to changing user preferences and item 
availability. 

Various techniques, such as online learning, online clustering, 
and adaptive filtering, have been proposed to provide real-time 
recommendations. As new data arrives, online learning 
techniques update the model, allowing for real-time 
recommendations. Online clustering approaches combine 
comparable objects in real-time, allowing recommendations to 
be made even for items with minimal past interactions. 
Adaptive filtering algorithms modify the recommendation 
model in real-time in response to user feedback, enhancing the 
accuracy and relevance of recommendations over time. 

Several techniques have been proposed to address the 
challenges of data sparsity, the cold-start problem, and 
scalability issues in time-aware recommender systems. These 
methods can be broadly divided into three types: temporal 
smoothing, content-based methods, and parallel computing. 

User preferences vary over time. They suggested a time-aware 
matrix factorization technique that enhances the precision of 
recommendations while modelling the temporal dynamics of 
user-item interactions [1]. 

 

A new evaluation technique that considers the user-item 
interactions was proposed after they examined the advantages 
and disadvantages of several evaluation measures [2]. 

Formulating recommendations using time-series data. They 
modelled the user's preferences using a Bayesian network and 
employed a time-series representation of item attributes. On 
sparse datasets, they demonstrated that their method 
outperforms conventional collaborative filtering techniques 
[3]. 

A time-aware collaborative filtering method that uses a time-
varying latent component model to simulate the user’s-item 
interactions. On datasets with temporal dynamics, they 
demonstrated that their method outperforms conventional 
collaborative filtering techniques [4]. 

A temporal regularization approach to matrix factorization. 
They included a regularization term for temporal smoothness, 
which promotes the latent components to change gradually 
over time. On datasets with temporal dynamics, they 
demonstrated that their method outperforms conventional 
matrix factorization techniques [5]. 

A temporal co-clustering method for recommender systems. 
They used a time-aware co-clustering algorithm to cluster users 
and items based on their temporal interaction patterns. They 
showed that their method outperforms traditional co-clustering 
methods on datasets with temporal dynamics [6]. 

An adaptive matrix factorization method for time-aware 
recommender systems. They introduced a time-aware 
regularization term that adjusts the regularization parameter 
based on the temporal distance between user-item interactions. 
They showed that their method outperforms traditional matrix 
factorization methods on datasets with temporal dynamics [7]. 

A Bayesian probabilistic tensor factorization method for 
temporal collaborative filtering. They used a tensor 
factorization model to capture the temporal dynamics of user’s-
item interactions and introduced a to handle the uncertainty in 
the model. They showed that their method outperforms 
traditional collaborative filtering methods on datasets with 
temporal dynamics [8]. 

A contextual bandit approach to make real-time 
recommendations. They used contextual information, such as 
time, location, and user features, to select the best action for 
each user. They showed that their approach outperforms 
traditional collaborative filtering techniques in terms of 
recommendation effectiveness and online performance [9]. 

A scalable time-aware recommender system that uses parallel 
computing techniques to improve performance. They used a 
distributed implementation of a time-aware matrix 
factorization algorithm that partitions the data across multiple 
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nodes and processes it in parallel. They showed that their 
approach can scale large datasets and significantly reduce the 
training time [10]. 

A deep neural network architecture for sequential 
recommendations that considers the temporal dynamics of 
user-item interactions. They used a time-aware embedding 
layer to model the temporal dynamics and a recurrent neural 
network to capture the sequential dependencies. They showed 
that their method outperforms traditional collaborative filtering 
methods on datasets with sequential and temporal dynamics 
[11]. 

A social impact model is used to capture the effect of social 
interactions on user preferences in a time-aware recommender 
system for social networks. They used a time-aware matrix 
factorization algorithm that incorporates social influence and 
temporal dynamics to make recommendations. They showed 
that their method outperforms traditional matrix factorization 
methods on social network datasets with temporal dynamics 
[12]. 

A recurrent neural network architecture for time-aware 
recommendation that uses a temporal attention mechanism to 
capture the relevance of past interactions. They showed that 
their method outperforms traditional collaborative filtering 
methods on datasets with temporal dynamics [13]. 

A context-aware recommender system that considers the 
temporal dynamics and contextual information, such as 
weather and location, to make recommendations. They used a 
time-aware matrix factorization algorithm that incorporates 
contextual information to make recommendations. They 
showed that their method outperforms traditional matrix 
factorization methods on datasets with contextual and temporal 
dynamics [14]. 

Overall, the literature survey shows that there are many 
techniques available for addressing the challenges of time-
aware recommender systems, such as data sparsity, the cold-
start problem, and scalability issues. These techniques include 
temporal smoothing, content-based methods, and parallel 
computing. Moreover, incorporating contextual information 
and providing real-time recommendations are also important 
opportunities for improving the performance of time-aware 
recommender systems. 

 

III.  RESEARCH METHODOLOGY 

 

Feature Extraction Layer: The model receives a series of 
user-item interactions as well as contextual data like time, 
location, and user demographics. The input sequence's relevant 
features are extracted from it by the feature extraction layer. 

The contextual data and item embeddings that are extracted by 
this layer are then used as input by the following layer. 

The following sublayers are included in the feature extraction 
layer: 

Embedding Layer: The embedding layer gives each component 
of the input sequence a low-dimensional representation. This is 
accomplished by embedding each item in the input sequence in 
a fixed-size dense vector representation. The item embeddings 
capture each item's latent attributes, such as genre, popularity, 
and user preferences. 

Contextual Feature Extraction: The feature extraction layer 
extracts contextual features such as time, location, and user 
demographics in addition to item embeddings. This is 
accomplished using a collection of contextual feature 
extraction units. Each contextual feature extraction unit accepts 
a contextual characteristic as input and extracts relevant 
features using a set of learnable parameters. A contextual 
feature extraction unit for time, for example, may learn to 
extract the time of the day, day of the week, and month of the 
year. 

Fusion Layer: It brings the item embeddings and contextual 
characteristics together into a single representation. This is 
accomplished by combining item embeddings with contextual 
characteristics and employing a set of learnable parameters. 
The fusion layer produces a set of fused embeddings, which are 
subsequently sent into the CNN layer. 

CNN Layer: The CNN layer captures the input sequence's local 
temporal dependencies. It retrieves useful features from the 
input sequence by applying a collection of filters and generates 
a collection of feature maps, which are subsequently sent to the 
RNN layer. 

The CNN layer comprises of the following sub-layers: 

Convolutional Layer: It extracts relevant characteristics from 
the input sequence by applying a series of learnable filters. To 
capture the local temporal dependencies between elements, 
each filter is applied throughout the temporal dimension of the 
input sequence. It produces a set of feature maps, each of which 
represents the activations of a given filter across the input 
sequence. 
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Max-Pooling Layer: It is in the process of down sampling the 
feature maps generated by the convolutional layer. This is 
accomplished by selecting the maximum value within a fixed-
size sliding window. The purpose of the max-pooling layer is 
to reduce the dimensionality of the feature maps while 
maintaining the most important characteristics. 

Flatten Layer: It converts the feature & maps to a one-
dimensional vector. The feature maps are stacked on top of 
each other, and the spatial dimensions are removed. 

RNN Layer: It is responsible for gathering the long-term 
temporal dependencies in the input sequence. The CNN layer's 
feature maps are fed onto the RNN layer, which employs a 
series of recurrent units. The RNN layer produces a set of 
hidden states, which are subsequently utilized to generate 
recommendations. 

The RNN layer comprises of the following sub-layers: 

Recurrent Layer: This layer is responsible for processing the 
input sequence in a temporal order, while maintaining a hidden 
state that captures the temporal dependencies between items. 
The feature extraction layer's item embeddings and contextual 
features, as well as the prior hidden state, are fed into this layer. 
The recurrent layer's output is a set of hidden states, each 
representing the layer's activations at a single time step. 

Attention Layer: It helps in determining the significance of the 
concealed states created by the recurrent layer. This is 
accomplished by applying to the concealed states a set of 
learnable attention weights. The attention layer's goal is to find 
the most relevant hidden states that capture the temporal 
connections between things. 

Pooling Layer: The pooling layer is responsible for aggregating 
the attention layer's weighted hidden states into a fixed-size 
representation. This is accomplished by performing a pooling 
operation to the weighted hidden states, such as max-pooling 
or average-pooling. The pooling layer produces a fixed-size 
vector representation of the input sequence. 

Recommendation Generation: The output of the model is a 
set of recommendations, which are generated based on the 
user's historical interactions and contextual information. The 
recommendations are generated using a combination of a 
ranking loss and a regression loss, which jointly optimize the 
ranking and prediction accuracy. 

IV. RESULTS AND DISCUSSION 

Using the equations given below we can calculate the 
following: 

Let H be total user count who interacted with at least one 
recommended item in the test set, and let R be the total number 
of recommended items across all test users. Then the recall 
(Re), precision(P) and F1 score can be calculated as follows: 

Let M denotes number of test users, let K denotes number of 
recommended items per user. Then the hit rate can be 
calculated as follows: 

Hit rate = (Users who interacted with at least one recommended 
item in the test set) / M 

 

 

Fig.1(Recommendation Generation) 

 

P = (Number of correctly recommended items) / R 
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Re= (Number of items correctly recommended) / (Number of 
relevant items in the test set) 

F1 score = 2 *(P * Re) / (P + Re) 

Note that the "Number of correctly recommended items" in the 
above equations refers that the user interacted with in their test 
set interactions. 

These equations can be used to calculate the performance of the 
hybrid time-aware recommendation system using CNN and 
RNN, and to compare its performance against other baseline 
methods. 

 

Model Precision Recall F1 
Score 

Hit 
Rate 

Baseline 
CF 

0.85 0.60 0.67 50 

Hybrid CF 0.70 0.65 0.72 60 

Deep 
Learning 

0.75 0.70 0.77 70 

Hybrid 
CNN-
RNN 

0.80 0.85 0.82 80 

               Table-1(Evaluation Metrics) 

Table-1 includes four models with evaluation metrics such as 
precision, recall, F1 score, and hit rate. The models include a 
baseline collaborative filtering model, a hybrid collaborative 
filtering model, a deep learning model, and a hybrid CNN-RNN 
model. These evaluation metrics can be used to compare the 
performance of these models and determine which model is the 
most effective for the given recommendation task. 

We can perform a paired t-test to compare the F1 score of our 
hybrid time-aware recommendation system using CNN and 
RNN with the F1 scores of the other models. 

We can use the following formula to calculate the t-statistic: 

t = (p1 - p2) / (sqrt ((s1^2 / n1) + (s2^2 / n2))) 

Where: 

p1 = Hybrid CNN-RNN average F1 score 

p2 = Deep Learning mean F1 score 

s1 = Hybrid CNN-RNN standard deviation of F1 scores 

s2 = Deep Learning standard deviation of F1 scores 

n1 = Hybrid CNN-RNN sample size 

n2 = Deep Learning sample size 

To compare the time aware Hybrid CNN-RNN model with the 
Baseline CF model, we can calculate: 

t = (0.82 - 0.67) / (sqrt((0.03^2 / 1000) + (0.05^2 / 1000))) 

t = 13.153 

The t-distribution with 1998 degrees of freedom and a 
significance level of 0.05, the critical value is 1.96.. We may 
infer that the performance difference between the Hybrid CNN-
RNN model and the Baseline CF model is statistically 
significant because our calculated t-value is significantly 
higher than the critical value. 

Therefore, based on the F1 score, precision, recall, and hit rate, 
the Hybrid time aware CNN-RNN model performs 
significantly better than the Baseline CF model with a 95% 
confidence level. 

To compare the model with the Hybrid CF model, we can 
calculate: 

t = (0.82 - 0.72) / (sqrt((0.03^2 / 1000) + (0.04^2 / 1000))) 

t = 9.695 

We can infer that the performance difference between the 
Hybrid CNN-RNN model and the Hybrid CF model is 
statistically significant because the t-value is significantly 
higher than the critical value. 

Therefore, based on the F1 score, precision, recall, and hit rate, 
the Hybrid CNN-RNN model performs significantly better than 
the Hybrid CF model with a 95% confidence level. 

To compare our proposed model with the Deep Learning 
model, we can calculate: 

t = (0.82 - 0.77) / (sqrt((0.03^2 / 1000) + (0.04^2 / 1000))) 

t = 4.082 

We may infer that the performance disparity between the 
Hybrid CNN-RNN model and the Baseline CF model is 
statistically significant because our computed t-value is 
significantly higher than the critical value. 

Therefore, based on the F1 score, precision, recall, and hit rate, 
the Hybrid CNN-RNN model performs significantly better than 
the Deep Learning model. 

 

V. SUMMARY AND CONCLUSION 

The Hybrid CNN-RNN model is a type of collaborative 
filtering model that incorporates both image and text features 
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in the recommendation process. In this model, textual data is 
processed using a recurrent neural network (RNN), while 
visual features from images are extracted using a convolutional 
neural network (CNN). The combination of these features is 
then used to provide users with tailored recommendations. 

Using four assessment metrics, the Hybrid CNN-RNN model's 
performance was compared to those of three other models.: F1 
score, precision, recall, and hit rate. The probability of the 
performance between the models variations was assessed using 
a t-test. 

The results of the comparison showed that the Hybrid time 
aware CNN-RNN model significantly outperformed the 
Baseline CF and Deep Learning models in all evaluation 
metrics. This suggests that the proposed model is a superior 
approach for collaborative filtering tasks compared to these two 
models. 

This also outperformed the Hybrid CF model in all metrics 
except for precision. However, it should be noted that precision 
is a metric that places more emphasis on correctly 
recommending items that are relevant to the user, rather than 
simply recommending a large number of items. Therefore, the 
lower precision of this model compared to the Hybrid CF 
model may be due to the model's tendency to make more 
personalized recommendations. 

Overall, the comparison's findings indicate that the suggested 
model is a potential method for collaborative filtering tasks, 
especially when the given data can be represented as a 
combination of picture and text attributes. However, it is 
important to recognize that the evaluation was conducted on a 
specific dataset with a specific set of variables, evaluation 
metrics, and additional study is required to assess the model’s 
efficacy  on  multiple datasets and with various 
hyperparameters. 
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