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Abstract—Federated learning is one of the most appealing
alternatives to the standard centralized learning paradigm, allow-
ing a heterogeneous set of devices to train a machine learning
model without sharing their raw data. However, it requires a
central server to coordinate the learning process, thus introducing
potential scalability and security issues. In the literature, server-
less federated learning approaches like gossip federated learning
and blockchain-enabled federated learning have been proposed
to mitigate these issues. In this work, we propose a complete
overview of these three techniques, proposing a comparison
according to an integral set of performance indicators, including
model accuracy, time complexity, communication overhead, con-
vergence time, and energy consumption. An extensive simulation
campaign permits to draw a quantitative analysis considering
both feedforward and convolutional neural network models. Re-
sults show that gossip federated learning and standard federated
solution are able to reach a similar level of accuracy, and
their energy consumption is influenced by the machine learning
model adopted, the software library, and the hardware used.
Differently, blockchain-enabled federated learning represents a
viable solution for implementing decentralized learning with a
higher level of security, at the cost of an extra energy usage
and data sharing. Finally, we identify open issues on the two
decentralized federated learning implementations and provide
insights on potential extensions and possible research directions
on this new research field.

Index Terms—blockchain, decentralized learning, edge com-
puting, energy efficiency, federated learning, machine learning.

I. INTRODUCTION

MACHINE learning (ML) models, and in particular deep
neural networks, require a substantial amount of data

and computational power that might not be available on a
single machine. As a consequence, ML operations are nor-
mally run at cloud servers (or data centers), where batteries of
powerful processing units enable short training and inference
computation times. However, training ML models in a data
center requires moving data from the information sources (e.g.,
edge devices) to the central system. This approach runs into
several issues:

• Communication overhead. Nowadays, the huge perva-
siveness of mobile services, devices, and network in-
frastructures makes data sources mainly distributed. As
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testified recently by the Ericsson Mobility Report [1],
mobile network data traffic grew exponentially over the
last 10 years, with a remarkable increase of 42% between
Q3 2020 and Q3 2021. Mobile data traffic is projected
to grow by over 4 times to reach 288 EB per month
by 2027 [1]. Moving such a big amount of data from
distributed sources to a central location for ML operations
may create network congestion and service outage.

• Latency. In several real-life scenarios, transmitting data
requires a stable and reliable connection to minimize
latency and ensure updated models, which cannot be
always guaranteed. For example, minimizing communica-
tion latency in connected vehicles is essential to guarantee
road safety [2].

• Energy consumption. Running ML models in cloud data
centers consumes a significant amount of energy and
cannot be considered sustainable from an environmental
perspective. As reported in [3], from 2012 to 2018,
the computations required for training a deep learning
(DL) model have been doubling every 3.4 months, with
an estimated increase of 300000x. Estimates show that
training a state-of-the-art natural language processing
model produces more CO2 than an average car in one
year lifetime [4].

• Privacy. With the growing awareness of data privacy
and security, it is often undesirable, or even unfeasible,
to collect and centralize users’ data [5]. For instance, a
single hospital may not be able to train a high-quality
model for a specific task on its own (due to the lack of
data), but it cannot share raw data due to various policies
or regulations on privacy [6]. Another example could be
the case of a mobile user that would like to employ a
good next-word predictor model without sharing his/her
private historical text data.

A. Edge AI and Federated Learning

To address the challenges stemming from cloud-based cen-
tralized ML, edge computing pushes cloud services to the
network edge and enables distributed ML operations, i.e., the
so-called edge intelligence [7]. In particular, AI on Edge [8]
is the paradigm of running AI models with a device-edge-
cloud synergy. It allows to relax the massive communication
requirements and privacy of cloud-based ML operations [9].
Moreover, distributing ML computation over the edge has been
demonstrated to save up to the 25% of the energy consump-
tion [10]. In fact, data may be directly processed at the edge
with smaller and more energy efficient devices (no need of



cooling systems) and the energy cost related to communication
is limited due to unnecessary data transmission.

Among the several training paradigms enabled by edge
intelligence, federated learning (FL) has emerged as a popular
solution by providing low communication overhead, enhanced
user privacy, and security to distributed learning [11]. With FL,
the ML model is trained cooperatively by edge devices without
sharing local data, but only exchanging model parameters.
Some prominent applications for FL can be found in [12], [13].
The usual implementation envisages an iterative procedure
whereby a central server collects local updates from the clients
(e.g., edge devices) and returns an aggregated global model.
In the rest of the paper, we refer to centralized FL (CFL) to
the traditional server-dependent FL scenario. In this setting,
the server has to wait for all the clients before returning a
new global update. Therefore, high network latency, unreliable
links, or straggled clients may slow down the training process
and even worsen the model accuracy [14]. In addition, the
central server represents a single point of failure, i.e., if it
becomes unreachable due to network problems or an attack,
the training process cannot continue. Furthermore, it may
also become a bottleneck when the number of clients is very
large [15].

Decentralized and server-less solutions for federated learn-
ing have been introduced in the literature, mainly to overcome
the single point of failure and the security problems [16],
[17]. In [18] a decentralized FL mechanism was proposed by
enabling one-hop communication among FL clients. Similarly,
gossip FL (GFL) extends device-to-device (D2D) communi-
cations to compensate for the lack of an orchestrating central
server [19], [20]. It guarantees a low communication overhead
thanks to the reduced number of messages [21].

Beyond, we find more sophisticated proposals, like
blockchain-enabled federated learning (BFL), which adopts
blockchain to share FL information among devices, thus
removing the figure of the orchestrating central server. In this
way, blockchain removes the single point of failure for the
sake of openness and decentralization and provides enhanced
security via tampered-proof properties [22].

B. Contributions

Despite in the literature it is possible to find papers
comparing classical centralized learning in data center with
CFL [23], [24], a comparison among the different federated
learning approaches (centralized versus decentralized) is still
missing. In this work, we aim to fill this gap and, thus, we fo-
cus on two of the most popular and widely adopted approaches
for decentralizing FL: GFL and BFL. In particular, we provide
a comprehensive analysis of both methods and compare them
to traditional FL, i.e., CFL. Note that we combine standard
performance indicators for ML models, i.e., accuracy, with
indicators that quantify the efficiency of these algorithms,
i.e., time complexity, communication overhead, convergence
time, and energy consumption. With our comparison under fair
conditions, we would like to provide the research community

with a complete overview of the three approaches, so that the
best model can be chosen according to the specific use cases.

The contributions of this paper may be summarized as
follows:

• We overview the traditional FL setting and delve into
two approaches for decentralizing it. They are selected
since are two of the most popular in the literature and are
kind of diverging into two completely different solutions,
which are based on gossip communication and blockchain
technology, respectively.

• We provide a thorough analysis to derive the running
time complexity, the communication overhead and the
convergence time of each overviewed mechanism for FL,
including CFL, BFL, and GFL.

• We provide an energy model to measure the energy
consumption of each solution, based on the associated
communication and computation overheads.

• We assess the performance of each method (CFL, GFL,
and BFL) through extensive simulations on widely used
TensorFlow libraries [25].

• We delve into the open aspects of decentralized FL,
providing insights on potential extensions, considerations,
and software implementations for GFL and BFL.

The remainder of the paper is structured as follows: Sec-
tion II reviews the related work. Section III describes the three
studied algorithms (CFL, BFL, and GFL). Section IV analyzes
their time complexity, the communication cost, introduces the
communication model and the convergence time. Section V
provides the energy model used in this paper. Then, Section VI
compares the three mechanisms through simulation results.
In Section VII, we propose solutions to address common
BFL and GFL weaknesses. Section VIII provides some open
issues of GFL and BFL and future research directions. Finally,
Section IX concludes the paper with final remarks.

II. RELATED WORK

Distributing and decentralizing ML operations at the edge
has been embraced as an appealing solution for addressing
the issues of centralization (connectivity, privacy, and secu-
rity) [26]. With FL, different devices collaborate to train an
ML model by sharing local updates obtained from local and
private data. The traditional FL algorithm (FedAvg), referred
to as CFL in this paper, is introduced in [27]. In [11], the
authors propose techniques to improve its communication
efficiency. Nevertheless, CFL still requires a central server
responsible for clients orchestration and model aggregation.
The star topology is a weak aspect of CFL, since the central
entity represents a single point of failure, it may limit the
number of devices that can participate in the training process,
augments the communication cost of the learning process, and
presents privacy concerns [15], [28].

An extension of CFL, is proposed in [29] where a hi-
erarchical aggregation scheme is adopted, i.e., a subset of
edge devices aggregate the local updates shared by their
neighbors. Further optimization for wireless networks is taken



into account in [30], where wireless resource allocation and
client selection are jointly considered to minimize CFL loss.

To address these challenges, decentralized federated learn-
ing has been proposed in [18]. The authors present a fully
decentralized model, in which each device can communicate
only with its one-hop neighbors. They also provide a theoreti-
cal upper bound on the mean square error. Ormandi et al. [19]
introduce gossip FL, a generic approach for peer-to-peer (P2P)
learning on fully distributed data, i.e., every device has only
a single input sample to process at each round. The same
algorithm has been tested in [20] under real-world conditions,
i.e., devices have multiple input samples available (rather
than only one point, as originally stated in [19]), restricted
communication topology, heterogeneous communication and
computation capabilities. Removing the central server brings
new challenges and opportunities. On the one hand, GFL
addresses scalability properly and removes the single point
of failure problem of CFL. On the other hand, the lack of
coordination in GFL may lead to high temporal variability
and ML model inconsistencies (e.g., nodes may have different
versions of the model stored in their local cache). The fact is
that, in GFL, the participating nodes interact with each other in
a distributed manner. This, for instance, hinders the consensus
on the ML model at the beginning of each FL round, which
gains in difficulty as the number of participants increases.
Moreover, network topologies with sparsely connected clients
may further degrade GFL performance [20].

Another prominent solution to decentralize FL is
blockchain-enabled FL [31]–[33]. A blockchain system
allows clients to submit and retrieve model updates without
the central server. Additionally, the usage of blockchain
guarantees security, trust, privacy, and traceability, however, it
introduces delays due to the distributed ledger technology. An
analysis of end-to-end latency and the effects of blockchain
parameters on the training procedure of BFL is proposed
in [22].

In the literature, there exist some comparisons across FL
techniques. The authors of [34] compare GFL and CFL with
a logistic regression model in terms of convergence time,
proportion of the misclassified examples in the test set (0-1
error), and used communication resources. When nodes have
a random subset of the learning samples, GFL performance is
comparable with CFL; instead, CFL converges faster when a
node has only labels from one class. Another comparison is
proposed in [35], where the performance of FL algorithms that
require a central server, e.g., FedAvg and Federated Stochastic
Reduced Gradient are analyzed. Results show that FedAvg
achieves the highest accuracy among the FL algorithms regard-
less of how data are partitioned. In addition, the comparison
between FedAvg and the standard centralized algorithm shows
that they are equivalent when independent and identically
distributed (IID) datasets are used.

In [21], the authors compare GFL with the standard cen-
tralized data center based architecture in terms of accuracy
and energy consumption for two radio access network use-
cases. To achieve this goal, they use the machine learning

emission calculator [36] and green algorithms [37]. In [23],
the authors compare centralized data center based learning and
CFL in terms of carbon footprint using different datasets. The
assessment is done by sampling the CPU and GPU power
consumption. In [24], the authors propose a framework to
evaluate the energy consumption and the carbon footprint of
distributed ML models with focus on industrial Internet of
Things applications. The paper identifies specific requirements
on the communication network, dataset and model size to
guarantee the energy efficiency of CFL over centralized learn-
ing approaches, i.e., bounds on the local dataset or model
size. Differently from our work, the authors do not consider
Blockchain-enabled FL and evaluate the algorithm perfor-
mance in scenarios with small number of devices (i.e., 100). In
addition, we empirically measure the energy consumption of
the devices based on the real load of the computations realized
during the training phase; we provide a communication model
to estimate overhead and convergence time. Finally, here we
introduce an analysis on the computational complexity of the
three federated algorithms under study.

To sum up, in this paper, we endeavor to bridge the existing
gap in the literature by providing a thorough comparison
including performance analysis and cost of the different fed-
erated approaches listed above, i.e., CFL, BFL, and GFL.
Differently from the other works in the literature, we com-
bine standard metrics, i.e., accuracy, with indicators of the
efficiency of these algorithms, i.e., computational complexity,
communication overhead, convergence time and energy con-
sumption. Our final aim is to contribute to the development of
Green AI [38].

III. FEDERATED LEARNING IMPLEMENTATIONS

Let us consider a set of N clients (or devices) N =
{1, ..., N} with their datasets D1, ..., DN . Each local dataset
Di,∀i ∈ N , contains pairs (xi, yi), where xi is the feature
vector, and yi its true label. The goal of a federated setting is to
train a global model (e.g., a set of weights w), that minimizes
the weighted global loss function:

ℓ =

N∑
i=1

|Di|
|D|

ℓi(w, xi, yi), (1)

where ℓi represents the local loss experienced by client i
and |D|=

∑N
i=1 Di. In this scenario, devices do not share

raw local data with other devices. Instead, they exchange
model parameter updates, computed during several iterations
by training the global model on local data. In this paper, we
study three different implementations to solve the federated
problem stated above, namely: CFL, BFL, and GFL. The
investigated solutions are depicted in Fig. 1 and we will
introduce them in what follows. Though several variants are
available in the literature, the three algorithms described next
are baseline representations of the approaches studied and well
suitable for our purposes.
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Fig. 1: Overview of the different FL scenarios.

A. Centralized Federated Learning (CFL)

At the beginning of a round t, a random subset of m devices
St ⊆ N is selected, and the server sends the current global
model to the parties. Each client makes E epochs on the local
dataset with a mini-batch size of B, updates its local model
wt+1

k and sends it to the server. The server aggregates the
received local updates and generates the new global model
by computing the weighted average of the local updates, as
follows:

wt+1 =
∑
k∈St

|Dk|
|D|

wt+1
k , (2)

where |D|=
∑

k∈St |Dk|. The process is repeated until the
model reaches convergence, e.g., the loss function does not
improve significantly across subsequent epochs or a specific
number of training rounds have been executed. In this work,
we consider the FedAvg algorithm [27] as a merging method
to generate global model updates.

Algorithm 1 describes the CFL with FedAvg mechanism.
The procedure MAIN is executed by the server that coordinates
the whole training process. Each client executes the procedure
CLIENTUPDATE and applies the stochastic gradient descent
(SGD) algorithm on its local dataset with a learning rate η.

B. Blockchain-enabled Federated Learning (BFL)

BFL is based on distributed ledger technology, which col-
lects data in the form of transactions and organizes it into
blocks. Indeed, a blockchain is a sequence of blocks chained
one after another through advanced cryptographic techniques.
Each block contains the hash value of the previous one, leading
to a tampered-proof sequence and providing properties that
are essential to building trust in decentralized settings, such
as transparency and immutability. In a blockchain, a set of
participant nodes (miners) apply certain mining protocols and
consensus mechanisms to append new blocks to the blockchain
and agree on the status of the same. This procedure allows
devices to write concurrently on a distributed database and

Algorithm 1 CFL

1: procedure MAIN
2: initialize w0

3: t← 0
4: while convergence is not reached do
5: St ← random set of m clients
6: for each client k ∈ St in parallel do
7: Download the global model wt

8: wt+1
k ← CLIENTUPDATE(k, wt)

9: Send wt+1
k to the server

10: end for
11: wt+1 ←

∑
k∈St

|Dk|
|D| w

t+1
k

12: t← t+ 1
13: end while
14: end procedure
1: procedure CLIENTUPDATE(k,w) ▷ Run on client k
2: B ← split the local dataset into batches of size B
3: for E local epochs do
4: for batch b ∈ B do
5: w ← w − η∇ℓ(w, b)
6: end for
7: end for
8: return w
9: end procedure

guarantees that any malicious change on data would not be
accepted by the majority, so that data in a blockchain is
secured.

When a blockchain is applied to a federated setting, the
process is going as follows [22]:

1) Each device submits its local model updates in the
form of transactions to the blockchain peer-to-peer (P2P)
network of miners.

2) The transactions are shared and verified by miners.
3) Miners execute certain tasks to decide which node

updates the chain. One of the most popular mining
mechanisms, and studied in this paper, is Proof-of-Work
(PoW) [39], whereby miners spend their computational
power (denoted by λ) to solve computation-intensive
mathematical puzzles.

4) As a result of the concurrent mining operation, a new
block is created and propagated throughout the P2P
blockchain network every BI seconds (on average).
The block size SB is selected such that can include a
maximum of m transactions, each one representing a
local model submitted by a client.

5) Clients download the latest block from its associated
miner (as in [13], [31]), which would allow performing
on-device global model aggregation and local training.

An important consequence of the blockchain decentralized
consensus is forking. A fork occurs when two or more miners
generate a valid block simultaneously (i.e., before the winning
block succeeds to be propagated). The existence of forks can
be seen as a waste of resources, as it may lead to extra
computation and delay overhead [40].



In this work, we consider the version of BFL reported in
Algorithm 2 [22], which entails the participation of multi-
access edge computing (MEC) servers and edge devices. Each
client downloads the updates wt

1...w
t
m ∈ bt contained in the

latest block, computes the new global wt, and trains it on its
local dataset with the CLIENTUPDATE procedure described
in Section III-A. The parameters of the new updated model
wt+1

k are then submitted with the method SUBMITLOCALUP-
DATE, where Str is the transaction size. Once all the local
updates are uploaded to the blockchain, a new block bt+1 is
mined with MINEBLOCK, where the block generation rate,
λ = 1

BI , is derived from the total computational power of
blockchain nodes. Finally, the new block is shared across all
the blockchain nodes with the procedure PROPAGATEBLOCK,
which depends on the size of block bt+1 (fixed to SB). The
process is repeated until convergence.

Algorithm 2 BFL

1: procedure MAIN
2: t← 0
3: initialize w0

4: while convergence is not reached do
5: St ← random set of m clients
6: for each client k ∈ St in parallel do
7: Download the latest block, bt

8: wt ←
∑

j∈bt
|Dj |
|D| w

t
j

9: wt+1
k ← CLIENTUPDATE(k, wt)

10: SUBMITLOCALUPDATE(Str)
11: end for
12: bt+1 ←MINEBLOCK(λ)
13: PROPAGATEBLOCK(bt+1)
14: if bt+1 is not valid then
15: Go to line 12
16: end if
17: t← t+ 1
18: end while
19: end procedure

C. Gossip Federated Learning (GFL)

GFL is an asynchronous protocol that trains a global model
over decentralized data using a gossip communication algo-
rithm [19], [20].

We consider the general design proposed in [20] and [21].
Overall, the participating clients start from a common ini-
tialization. The global model is then trained sequentially on
local data and following a given path (e.g., a random walk)
of visiting clients. Algorithm 3 describes the GFL procedure
and it works as follows:

1) The N clients agree on the ML model to use and store
it in their local cache, i.e., lastModeli, ∀i ∈ N .

2) At each round t, m clients are randomly selected and
ordered in a sequence St = [k1, ..., km].

3) The ML model visits sequentially the clients in St. Let
wt

ki−1
be the model received by ki ∈ St.

4) As reported in Fig. 2, first the procedure MERGE com-
bines wt

ki−1
and lastModelki

, i.e., the model from the
previous round in which the client has been selected.
Then, the procedure CLIENTUPDATE described in Sec-
tion III-A used to train the merged model on the local
dataset.

5) The local cache of ki is updadated with the model wt
ki−1

,
i.e., lastModelki

and the model trained on the local
dataset wt

ki
is shared with the next node in the sequence

St.
6) If ki is the last client of the sequence the model wt

ki
is

sent to the first node of the next FL round, i.e., k1 ∈
St+1.

A round is completed when the model has visited all the
clients in the sequence. The algorithm stops when convergence
is reached (after a given number of rounds). As an example,
we consider a scenario with N clients. After the local cache
initialization, m clients are randomly selected and ordered
in a sequence S0 = [k1, ..., km]. The first client k1 ∈ S0
trains the model stored in its local cache, with the procedure
CLIENTUPDATE on the local dataset and shares the model w0

k1

with the following node in the sequence, i.e., k2 ∈ S0. When
k2 receives w0

k1
, first applies the MERGE procedure to combine

it with the model stored in lastModelk2
and then trains it on

its local dataset with the procedure CLIENTUPDATE. After the
local training, the model w0

k2
is shared with the next node in

the sequence, and w0
k1

is stored in the local cache lastModelk2
.

The same process is repeated at each visited client till the end
of the sequence. The last client km ∈ S0, after the execution
of the procedures MERGE and CLIENTUPDATE, sends w0

km

to the first node of the sequence for the next round S1. These
operations are executed iteratively till convergence is reached,
e.g., a predefined number of rounds are executed.

Model cache

 
 

 
MERGE

1  
CLIENT UPDATE

2

3

4

Edge device

Local dataset

.........

.........

..................

Fig. 2: Overview of the operations executed by a node in the
GFL algorithm.

IV. COMPUTATIONAL AND COMMUNICATION COSTS

In this section, we introduce the mathematical statements for
the calculation of the time complexity of the three federated



Algorithm 3 GFL

1: procedure MAIN
2: initialize lastModelk for each client k
3: t← 0
4: while convergence is not reached do
5: St ← random set of m clients
6: [k1, ..., km]← GETSEQUENCE(St)
7: for i = 1, ...,m do
8: wt

ki−1
▷ Model trained by the previous node

in the sequence
9: wt

ki
← MERGE(wt

ki−1
, lastModelki

)
10: wt

ki
← CLIENTUPDATE(ki, w

t
ki
)

11: lastModelki
← wt

ki−1

12: Send model to the next client
13: end for
14: t← t+ 1
15: end while
16: end procedure
17:
18: procedure MERGE(w,w′)
19: w ← w+w′

2
20: return w
21: end procedure
22: procedure GETSEQUENCE(St)

23: [k1, . . . , km]
i.i.d.∼ U(St)

24: return [k1, . . . , km]
25: end procedure

algorithms discussed in Section III. We also elaborate on
the data overhead due to the communication of the different
model updates during the several rounds of the process for
each implementation. Finally, we derive the equations for the
calculation of the time to reach the convergence of the three
analyzed federated approaches. The results proposed hereafter
are derived using the following assumptions:

1) Scalar operations (sums and products) cost O(1).
2) The time complexity of the matrix multiplication is lin-

ear with the matrix size, i.e., A ∈ Ri×j and B ∈ Rj×k,
the cost of the product is O(i · j · k).

3) For a single input pair (xi, yi), the time complexity
required to compute ∇ℓ is linear with the number of
model’s weights, O(|w|).

4) During the mining process, with the PoW, a miner com-
putes the nonce of a block using brute force until finding
a hash value lower or equal to a certain threshold [41],
referred to as the mining difficulty. Assume that the
hash value has b bits, and that its solution should be
smaller than 2b−l bits (being l a value determined by
the mining difficulty), if the miner samples the nonce
values at random, the probability of a valid value is
2−l. Henceforth, 2l sampling operations are required for
mining a block. The time complexity is O(2l).

5) The set of nodes that have a local copy of the blockchain
is NB = {1, ..., NB}, without loss of generality, is
assumed to be N ∩NB = ∅.

6) We assume that convergence of the FL training proce-
dure is reached after R rounds.

Theorem 1. The time complexity of CFL is:

O(RmE|Dmax||w|), (3)

where Dmax = maxk∈N |Dk|. The communication overhead
is given by

2Rm|w| (4)

Proof. See Appendix A-A.

Theorem 2. The time complexity of BFL is:

O(R(|w|m2 + E|Dmax||w|m+ 2l +m|w|NB)), (5)

where NB is the number of nodes that have a local copy
of the blockchain and l is related to the PoW difficulty (see
Assumption 4). Its communication overhead is

R
(
|w|m2 + |w|m+m|w|NB

)
(6)

Proof. See Appendix A-B.

Theorem 3. The time complexity of GFL is

O(RmE|Dmax||w|) (7)

and its communication overhead is

Rm|w| (8)

Proof. See Appendix A-C.

The three algorithms have a time complexity that depends
on the dataset size |Dmax|. Additionally, the time complexity
of BFL (5) is also a function of the blockchain parameters NB

and l. In particular, the dominant term in (5) is R2l. Hence, the
time complexity of BFL is exponential in the PoW difficulty
l, while for CFL and GFL is polynomial in RmE|Dmax||w|.
Table 1 summarizes the different results obtained for time
complexity and communication overhead.

Lastly, we conclude our analysis by computing the total
execution time of each algorithm until convergence (con-
vergence time) as a function of the delay introduced by
the communication rounds and the computational operations.
To do that, we characterize the links whereby the different
types of nodes exchange information (e.g., local model up-
dates, blocks), keeping the topology introduced in Fig. 1 in
mind. We classify two different types of connections: cloud
(solid arrows) and edge (dotted and dashed arrows). Cloud
connections (assumed to be wired) are used by miners in
the blockchain; instead, edge connections (assumed to be
wireless) are used by edge nodes to upload/download models.
Given its popularity and easiness of deployment, we adopt
IEEE 802.11ax links for edge connections [42]. Since edge
devices are often energy-constrained, we consider different
values of transmission power for the edge connections. The
central server and blockchain node use a transmission power
of P c

TX, instead, edge devices use P e
TX, with P e

TX ≤ P c
TX.

The wired connection has a capacity CP2P . Additionally, we



TABLE 1: Computational complexity and communication overhead for CFL, BFL and GFL.

Algorithm Time complexity Communication Overhead

CFL O(RmE|Dmax||w|) 2Rm|w|
BFL O(R(|w|m2 + E|Dmax||w|m+ 2l +m|w|NB)) R(|w|m2 + |w|m+m|w|NB)
GFL O(RmE|Dmax||w|) Rm|w|

identify three main types of computational operations during
the federated learning processes: local model training, model
parameters exchange, and blockchain data sharing. Based on
this, we can compute the convergence time of CFL, BFL, and
GFL as follows:

TCFL = Ttrain + T e
Tx + T c

Tx, (9)

TBFL = TBC + Ttrain + T e
Tx + T c

Tx, (10)

TGFL = Ttrain + T e
Tx, (11)

where Ttrain is the total amount of time spent for training
the ML model locally, T c/e

Tx is the total transmission time of
the central server/blockchain nodes (c) or the edge devices (e),
and computed according to the model detailed in Appendix B.
TBC is the total delay introduced by blockchain and described
in steps 2-4 of the process in Section III-B.

V. ENERGY FOOTPRINT

In this section, we define the models used to characterize
the energy consumption that results from the FL operations.
Driven by (9), (10) and (11), the total amount of energy
consumed in each scenario is:

ECFL = Etrain + EeTx + EcTx, (12)

EBFL = EBC + Etrain + EeTx + EcTx, (13)

EGFL = Etrain + EeTx, (14)

where Etrain is the energy consumed by all the nodes during
the local training, and Ec/eTx is the energy required to transmit
the model via IEEE 802.11ax wireless links during the whole
algorithm execution, from either a central server/blockchain
node (c) or an edge device (e). Etrain is calculated as:

Etrain =

R−1∑
r=0

∑
i∈Sr

P r
CPUi

∆r
i , (15)

where P r
CPUi

is the average power consumed by the CPU
and DRAM during a round r, and ∆r

i is the duration of the
operation for the i − th client. The model proposed in (15)
is general enough to capture the characteristics of the three
algorithm implementations. Moreover, it opens the possibility
of using energy measurement libraries, which represent a good
trade-off between the complexity of using real sensors and the
high abstraction level of mathematical models.

As described in Section IV, we may have two types of
communication links: cloud and edge. Considering that cloud
links are wired, we assume that their energy consumption is
negligible. Instead, we compute the energy consumption of the

edge connections according to the following equation:

Ec/eTx = T
c/e
Tx P

c/e
Tx , (16)

where T
c/e
Tx and P

c/e
Tx are the transmission time and power of a

central server/miner (c) or an edge device (e). The additional
term EBC for BFL is associated to mining operations of the
PoW. We measure that consumed energy based on the model
proposed in [43] and according to the following equation:

EBC = Ph
1

λ
Nchain, (17)

where Ph is the total hashing power of the network, λ is the
block generation rate, and Nchain is the number of blocks on
the main chain.

VI. PERFORMANCE EVALUATION

In this section, we first describe the experimental settings
adopted to compare the three federated approaches and then,
we present numerical results.

A. Simulation Setup

We use the Extended MNIST (EMNIST) dataset available
on Tensorflow Federated (TFF) library [44]. The input features
are black and white images that represent handwritten digits in
{0, 1, . . . , 9}, coded in a matrix of 28×28 pixels. Considering
only digits, it contains 341 873 training examples and 40 832
test samples, both divided across 3 383 clients. The training
and the test sets share the same clients list so that each
client has at least one sample. Each local dataset groups all
the samples of the same writer and does not change over
time. In the EMNIST dataset, all clients have a rich number
of samples for all the classes, thus data distribution across
them can be considered as IID. To evaluate the targeted
federated mechanisms in more challenging settings, we create
a new version of the EMNIST dataset, called EMNISTp, by
randomly restricting each client dataset to 3 classes only.
EMNISTp contains 102 418 training samples. Fig. 3 shows
the available samples of the first 4 clients, for both versions
of the dataset.

To correctly classify these samples we choose two models
proposed in [27]. The first one is a feed-forward neural
network (FFNN) with an input layer of 784 neurons, two
hidden layers of 200 neurons activated with the rectified linear
unit (ReLU) function, and an output layer of 10 neurons
with Softmax activation function. The number of trainable
parameters for the FFNN (|w′|) is 199 210. Assuming that
each parameter requires 4 bytes, i.e., size of a float32 variable,
the total amount of space required (Sw′ ) is 796.84 KB. The
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Fig. 3: Distribution of samples across the four first clients for
both EMNIST and EMNISTp federated datasets.

second one is a convolutional neural network (CNN) with the
following structure:

1) A 5×5 convolutional layer with 32 channels and ReLU
activation function.

2) A 2× 2 max pooling layer.
3) A 5×5 convolutional layer with 64 channels and ReLU

activation function.
4) A 2× 2 max pooling layer.
5) A fully connected layer with 512 units and ReLu acti-

vation.
6) An output layer with 10 neurons and Softmax activation

function.

In total, the number of trainable parameters for the CNN
(|w′′|) is 582 026 and the size in memory (Sw′′) is 2.33 MB.
We opted for a FFNN to reproduce a realistic scenario where
edge devices might not have enough computational power to
train more sophisticated deep learning mechanisms, like NNs
based on convolutional architectures. Despite its simplicity, the
selected FFNN model accurately classifies the digits of the
EMNIST dataset, as shown next. Then, we use also a CNN to
evaluate the multiple algorithms’ performance using a more
complex model (details in Section VI-C).

The three FL algorithms are implemented with Tensorflow
(TF) [25], Tensorflow Federated (TFF) [45] and Keras [46]
libraries. We have extended the Bitcoin model provided by
BlockSim [47] to simulate the blockchain behavior. BlockSim
is an event-based simulator that characterizes the operations
carried out to store data in a blockchain, from the submission
of transactions to mining blocks and reaching consensus in a
decentralized manner. Accordingly, BlockSim allows simulat-
ing the delays added by the blockchain in a BFL application,
i.e., the TBC parameter defined in Section IV.

We create a validation set by choosing a subset of 200
clients from the test set. Following the TFF documenta-
tion [48], the training accuracy is computed at the beginning
of each round; instead the validation accuracy is calculated
at the end. For this reason, may happen that the validation
accuracy is higher than the training one. At the end of each
simulation, we evaluate the performance on the test set.

As for Etrain and Ttrain, we have used Carbontracker [49], a
Python library that periodically samples the hardware energy
consumption and measures the execution time. Moreover, P c

Tx

is set to 20 dBm and P e
Tx = 9 dBm. Table 2 reports all the

other parameters used in our simulations. We note here that we
have used the same FL parameters for a fair comparison, being
the number of rounds R of CFL and GFL equivalent to the
main chain length (Nchain) in BFL. In this way, we guarantee
that the number of global rounds of each learning algorithm is
the same. We run the experiments with the following hardware
configurations: Intel i5-6600 with 8GB of RAM (HW1) and
two Intel Xeon 6230 with 188GB of RAM (HW2).

TABLE 2: Simulation parameters.

Parameter Description Value

Fe
d.

L
ea

rn
in

g

|w′| Number of FFNN model parameters 199 210
|w′′| Number of CNN model parameters 582 026
Sw′ FFNN model parameters size 796.84 KB
Sw′′ CNN model parameters size 2.33 MB
η Learning rate 0.2
N Number of total clients 3382
E Local epochs number 5
R Number of rounds 200
m Number of clients for each round 200
B Batch size 20
ℓi Local loss function Sparse Cat. Crossentropy

B
lo

ck
ch

ai
n

Nchain Number of blocks in the main chain 200
BI Block interval 15 s
NB Number of blockchain nodes 200
Nm Number of miners 10
CP2P Capacity of P2P links 100 Mbps
SH Block header size 25 KB
S′
B Block size with FFNN 160.368 MB

S′′
B Block size with CNN 467 MB

S′
tr Transaction size with FFNN 796.84 KB

S′′
tr Transaction size with CNN 2.33 MB

Ph Total hashing power 1350 W

C
om

m
un

ic
at
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n

(I
E

E
E

80
2.

11
ax

)

P e
Tx Tx power for edge devices 9 dBm

P c
tx Tx power for a central server 20 dBm

σleg Legacy OFDM symbol duration 4 µs
Nsc Number of subcarriers (20 MHz) 234
Nss Number of spatial streams 1
Te Empty slot duration 9 µs

TSIFS SIFS duration 16 µs
TDIFS DIFS duration 34 µs
TPHY Preamble duration 20 µs

THE−SU HE single-user field duration 100 µs
Ls Size OFDM symbol 24 bits

LRTS Length of an RTS packet 160 bits
LCTS Length of a CTS packet 112 bits
LACK Length of an ACK packet 240 bits
LSF Length of service field 16 bits
LMAC Length of MAC header 320 bits
CW Contention window (fixed) 15

B. Result Analysis

Table 3 reports the accuracy of each algorithm implemen-
tation with the FFNN model on the two considered datasets
executed on HW1. CFL and BFL achieve the best accuracy
(both close to 0.9), instead, GFL presents lower values. This
result validates the claim that, under similar setups as in
our simulations (i.e., each block contains m local updates
organized in transactions), the central parameter server of
CFL can be replaced by a blockchain network, properly
dimensioned, without compromising the learning accuracy. On
the other hand, GFL achieves a validation accuracy around 0.5
after 200 rounds. We justify this behavior by noticing that,
before the CLIENTUPDATE procedure, the model received



from the previous node in the sequence is merged with that
in the previous round. For the earliest training rounds, there
is a high probability that the merging procedure works with
a fresh model that has never been trained, hence disrupting
the knowledge from the previous clients. We analyze this
phenomenon more in depth in Section VII-A.

Table 3 also details the convergence time of each algorithm,
the percentage of energy consumed in the computations (as a
percentage of the total energy consumed), the total amount of
energy needed, and the communication overhead (i.e., data to
be shared during the rounds of the algorithms). Computational
energy is, generally speaking, the energy spent for performing
computations needed for the specific algorithm implementa-
tion. For CFL and GFL, it takes into account the energy spent
in the local training at the clients, Etrain. Instead, in BFL,
within computational energy, we consider both local training
at clients and the energy spent for the mining process in the
blockchain network, i.e., Etrain and EBC respectively.

The fastest and the most energy-efficient algorithm is GFL:
it is able to save the 18% of training time, the 18% of energy,
and the 51% of data to be shared with respect to the CFL
solution. However, GFL main drawback resides in the poor
accuracy achieved, as stated above. BFL is the slowest and the
most energy-hungry federated implementation, mainly due to
the overhead introduced by the blockchain network to secure
data in a decentralized way. Additionally, it is to be noted that
computation is the most energy-consuming task for CFL, BFL,
and GFL. For BFL, the mining process drains 1125 Wh, i.e.,
98% of the total energy. We highlight here that our comparison
may be unfair in this respect, since both CFL and GFL are
not including any security mechanism. However, we believe
that it is worth including BFL in our analysis on distributed
versus centralized federated learning since our results show
that the secure and decentralized method introduced by the
blockchain network, despite increasing algorithm costs, does
not jeopardize its accuracy compared to its centralized counter-
part CFL. Finally, GFL is the implementation that requires the
lowest communication overhead. More precisely, in this case,
we need to include an extra cost to share the global model
across the nodes at the end of the last round (not considered
in the table), which is approximately 0.16 GB (the cost of one
extra round).

C. Model and Implementation Dependencies

Table 4 and Table 5 report the performance of the CNN
model on EMNIST (EMNISTp) datasets executed on two
different platforms HW1 and HW2, respectively. Similar to the
previous FFNN case, BFL is the slowest and the most energy
demanding algorithm. Instead in this case, GFL reaches higher
validation accuracy on EMNIST, i.e., 0.8, but is still not able
to get the performance of the other two algorithms. Moreover,
using CNN, GFL is the fastest algorithm and saves up to 16%
of the execution time, with respect to CFL on HW1. Hence,
model selection plays a key role for the algorithm performance
and may facilitate the training process, as in the case of GFL.

Finally, it is confirmed that the communication overhead of
GFL is the lowest.

However, we report here some inconsistencies in performing
energy measurements. In fact on HW1, differently from the
FFNN case, CFL is the most energy efficient on EMNIST
and saves 14% of energy with respect to GFL. On EMNISTp,
instead, the situation is different since GFL saves 15% of
the energy. Moreover, when using HW2 (Table 5), CFL
results to be the most energy efficient for both EMNIST and
EMNISTp. Such inconsistencies are mainly due to the fact
that the average computational power consumption in CFL
implementation is higher than GFL (around 103W and 93W on
EMNIST, respectively); however GFL requires longer training
time (Ttrain). Instead in the FFNN model implementation, the
average computational power consumption is higher for GFL
(around 19W for CFL and 13W for GFL), but GFL requires
lower training time. The reason lays mainly in the software
implementations1. In fact, CFL and BFL are based on TFF,
which executes the training process for all the participating
clients in parallel. Differently, GFL is based on the standard
TF libraries and the training process is executed sequentially
one client after the other.

In view of the above, we state here that hardware and soft-
ware implementation play a key role in the energy assessment.
Therefore, it is essential that future research directions will
focus on: i) joint optimization of federated algorithms and their
software implementations, ii) definition of standard libraries
for the three categories of algorithms studied in this paper, and
iii) design of effective and open test platforms for experiment
comparison.

D. Mapping between FL Implementation and Services

In state of the results achieved by our analysis, we map the
most suitable FL implementation given a specific application
scenario. Among the several services listed in [12], [13], in
Table 6 we focus on some emerging examples such as Health-
care and Mobile Traffic Prediction for cross-silo scenarios
and Urban Traffic Forecasting, Connected Vehicles, Next-word
Prediction for cross-device settings. In the Healthcare scenario,
accurate predictions that guarantee the confidentiality of users’
data are required [50]. For these reasons, we suggest the
usage of BFL. In the context of mobile networks, multiple
base stations may be interested in training an ML model
for mobile traffic prediction without sharing raw data and
save network resources. In this case, accuracy and latency
are the most important KPIs [51]. Our suggestion here is
to use CFL. Nevertheless, we may also find BFL as an
appealing solution when multiple operators cooperate on the
mobile traffic forecasting task. In urban traffic forecasting, a
network of sensors is in charge of creating a model to predict
vehicular traffic flow. Considering the problem description
and the limited amount of energy available at each sensor,
the two most important KPIs are latency and energy [52],
the suggested approach is a GFL (or GFL-NM) algorithm.

1https://github.com/eliaguerra/Federated comparison cttc

https://github.com/eliaguerra/Federated_comparison_cttc


TABLE 3: FFNN simulation results on EMNIST (EMNISTp) datasets.

Acc. Training Acc. Validation Acc. Test Conv. Time (s) Comp. Energy (%) Tot. Energy (Wh) Comm. Overhead (GB)

CFL 0.9 (0.76) 0.87 (0.77) 0.86 (0.76) 46458.56 (45571.86) 98.91 (98.61) 21.84 (17.2) 63.75
BFL 0.88 (0.74) 0.87 (0.78) 0.86 (0.77) 51036.87 (50077.75) 99.98 (99.98) 1147.21 (1142.65) 12781.31
GFL 0.44 (0.36) 0.42 (0.12) 0.41 (0.11) 38201.67 (36821.67) 99.57 (99.14) 17.83 (8.98) 31.87

TABLE 4: CNN simulation results on HW1 and EMNIST (EMNISTp) datasets.

Acc. Training Acc. Validation Acc. Test Time (s) Comp. Energy (%) Tot. Energy (Wh) Comm. overhead (GB)

CFL 0.99 (0.97) 0.97 (0.9) 0.96 (0.91) 132761.16 (126691.59) 99.04 (98.1) 72.35 (36.72) 186.4
BFL 0.99 (0.97) 0.97 (0.9) 0.96 (0.91) 138452.61 (132284.94) 99.94 (99.94) 1198.11 (1161.99) 37373.2
GFL 0.99 (0.67) 0.81 (0.22) 0.8 (0.22) 113573.11 (106616.64) 99.73 (99.28) 83.95 (31.22) 93.2

TABLE 5: CNN simulation results on HW2 and EMNIST (EMNISTp) datasets.

Acc. Training Acc. Validation Acc. Test Conv. Time (s) Comp. Energy (%) Tot. Energy (Wh) Comm. overhead (GB)

CFL 0.99 (0.97) 0.97 (0.9) 0.96 (0.91) 125883.47 (124869.07) 99.65 (99.51) 201.68 (141.69) 186.4
BFL 0.99 (0.97) 0.97 (0.9) 0.96 (0.91) 131488.87 (130555.3) 99.95 (99.95) 1329.65 (1273.95) 37373.2
GFL 0.99 (0.67) 0.8 (0.22) 0.8 (0.22) 114217.66 (107854.86) 99.93 (99.84) 319.77 (143.22) 93.2

TABLE 6: Mapping between services and Federated Learning implementations.

Service FL scenario Preferred KPIs Suggested algorithm

Healthcare Cross-silo Privacy and Accuracy BFL
Mobile traffic prediction Cross-silo Accuracy and Latency CFL
Urban traffic forecasting Cross-device Latency and Energy GFL

Autonomous driving Cross-device Latency and Accuracy GFL
Next word prediction Cross-device Energy CFL

For connected vehicles, latency and accuracy are the two
most important KPIs [2]. Considering that the connection with
a central server may be unavailable, we suggest the usage
of GFL (or GFL-NM) to take advantage of nearby vehicles
to share model updates. In next word prediction for mobile
keyboards, minimizing energy is of paramount importance to
guarantee a flawless user experience so the most important
KPI is energy [53], the suggested approach is CFL.

VII. PROPOSED IMPROVEMENTS

A. GFL Accuracy

As described in Section VI-B, GFL does not achieve the
same accuracy level as CFL and BFL. We identify two possible
reasons for this:

1) The number of rounds is not sufficient for it to converge:
the number of visited nodes might not be sufficient to
achieve an acceptable accuracy.

2) The merge step negatively impacts the overall perfor-
mance of the learning algorithm: the model received in
the previous round and stored in the local cache slows
down the learning process.

To verify the first hypothesis, we execute GFL algorithm,
with the FFNN model on HW1, changing the number of
rounds (R = {200, 400, 800}) and varying the number of
local computations (E = {5, 10}). Table 7 shows the results
obtained. Considering the EMNIST dataset, the best results are
achieved with R = 800 and E = {5, 10}, i.e., a higher test
accuracy of 0.66, but still lower than CFL and BFL. Moreover,
the model is overfitting with R = 800 rounds; hence, when

increasing the number of rounds, a regularization method
would be needed. On the EMNISTp dataset, the accuracy
is even lower for each combination of the hyperparameters
tested. Increasing the number of rounds, R, and the local
epochs, E, increases GFL validation accuracy to 0.94 but
it quadruplicates the convergence time and requires 5 times
more the energy of the baseline configuration (R = 200
and E = 5) on the EMNIST dataset. To verify the second
hypothesis, we run GFL algorithm without the merge step
(GFL-NM). The pseudocode of this algorithm is the same in
Algorithm 3 except for having replaced the old Line 9 with
the new command wt

ki
← wt

ki−1
. Thus, in GFL-NM, given

a sequence of clients St the model is trained incrementally
on the client datasets. GFL-NM achieves a training accuracy
of ∼ 1.0 (0.94), a validation accuracy of 0.94 (0.78) and
a test accuracy of 0.93 (0.78) on the EMNIST (EMNISTp)
dataset (see Fig. 4b), higher than both CFL and BFL. These
results suggest that the MERGE step compromises the training
performance. In fact, at the beginning of the learning process,
there is a high probability that a model visits a node that
has never been visited before and with lastModel storing
initialization values. In this case, the received model is merged
with a model that has never been trained before, as shown in
Algorithm 3, which negatively impacts the resulting merged
weights. Figure 4 shows the comparison between the learning
curves of GFL and GFL-NM.

In conclusion, we proved that both 1) and 2) influence the
achieved accuracy. Moreover, GFL-NM solves the accuracy
problem of standard GFL and achieves the best performance
from the point of view of all the metrics.



TABLE 7: FFNN simulation results of GFL on EMNIST (EMNISTp) datasets with higher number of rounds and local
computations.

R E Acc. Training Acc. Validation Acc. Test Conv. Time (s) Comp. Energy (%) Tot. Energy (Wh)

200 5 0.44 (0.36) 0.42 (0.12) 0.41 (0.11) 36401.67 (35021.67) 99.59 (99.19) 17.83 (8.98)
400 5 0.55 (0.41) 0.51 (0.16) 0.5 (0.15) 72791.81 (70029.31) 99.58 (99.18) 35.08 (17.91)
800 5 0.85 (0.64) 0.67 (0.19) 0.66 (0.17) 145651.71 (140069.23) 99.59 (99.18) 70.95 (35.8)
200 10 0.57 (0.58) 0.4 (0.09) 0.41 (0.1) 37377.47 (35448.58) 99.7 (99.38) 24.55 (11.77)
400 10 0.66 (0.37) 0.47 (0.17) 0.48 (0.16) 74989.72 (70857.46) 99.7 (99.37) 49.17 (23.23)
800 10 0.94 (0.58) 0.67 (0.3) 0.67 (0.29) 149448.14 (141730.77) 99.7 (99.38) 98.37 (46.87)

B. Delay Analysis of BFL

Blockchain technology, while enabling a reliable and secure
FL operation, entails very high overheads in terms of time
and energy for the sake of keeping decentralization. The
performance of a blockchain, typically measured in transac-
tions per second (TPS), together with the granted degree of
security, strongly depends on the nature of the blockchain (e.g.,
degree of visibility, type of consensus, mining protocol), its
configurable parameters (e.g., block interval, difficulty), and
the size of the P2P network maintaining it. Furthermore, as
discussed in Section VIII-D, the necessary energy to maintain
a blockchain is correlated to its performance in TPS and
security, thus leading to the well-known performance, security,
and energy trilemma.

To showcase the effect of using different types of blockchain
networks, Fig. 5 shows the total delay incurred by the
blockchain to the FL operation to generate up to 200 blocks
under different blockchain configurations. Notice that, in the
proposed setting, each block is equivalent to an FL round.
In particular, we vary the total number of miners (Nm =
{1, 10, 100}) and the block interval (BI = {5, 15, 600} s),
which affect the time required to achieve consensus.

First, a higher number of miners leads to a higher fork
probability, provided that more nodes need to agree on the
same status of the ledger. Note that with Nm = 1 the fork
probability, i.e., pf (Nm), is 0 since there is only one miner.
By contrast, a higher block interval allows mitigating the effect
of forks, since the probability that two miners mine a block
simultaneously is lower [54].

As shown in Fig. 5, the blockchain delay increases with
the block interval (BI), which indicates the average time for
mining a block. Notice that, in a PoW-based blockchain, the
block interval is fixed by tuning the mining difficulty according
to the total computational power of miners. As for the impact
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Fig. 4: Training and validation accuracy on EMNIST and
EMNISTp

of Nm on the delay, its effects on the delay are more noticeable
for low BI values. In particular, a higher fork probability is
observed as Nm increases, thus incurring additional delays to
the FL application operating on top of the blockchain.

VIII. OPEN ISSUES AND FUTURE RESEARCH DIRECTIONS

A. GFL

In our opinion, and encouraged by our results, the investi-
gation of new methods for merging the model updates from
the distributed sources to achieve faster and higher accuracy
is an interesting and open research line. To the best of our
knowledge, there are still very few works that go in this
direction in the literature. In [21], the authors implement an
incremental version of GFL with a single round on the edge
devices using the entire local dataset (hence, without requiring
any merge step). Similarly, [55] proposes an iterative continual
learning algorithm, where a model is trained incrementally on
the local datasets without applying any merge operation.

B. BFL

To optimize the performance of a blockchain, a widely
adopted approach consists of finding the best block generation
rate [31], which is controlled by tuning the mining difficulty.
Other approaches consider optimizing the block size [56],
which better fits scenarios where the intensity of transaction
arrivals depends on the nature of the application running on
top of the blockchain (e.g., FL updates provided by clients).

Regarding the communication cost of BFL, it can be im-
proved by leveraging the computational capacity of blockchain
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miners (Nm) and the block interval (BI). The fork probability
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miners to speed up the FL operation. In particular, instead of
including individual local models in a block, each block can
bring a global model, aggregated by the miner responsible for
building the block. This approach has been widely adopted in
the literature (see, e.g., [57]), and would lead to reduced time
complexity and communication cost (see Appendix A-B).

Finally, another important open aspect regarding
blockchain-enabled FL lies in the implications of
decentralization on the learning procedure. In this paper, we
have assumed that the blockchain is perfectly shared and
accessed by FL devices to carry out training, thus acting as a
central orchestrating server. However, the decentralized data
sharing in blockchain naturally leads to model inconsistencies,
provided that different FL devices can use the information
from different blocks to compute local model updates.

C. Role of MEC in Decentralized FL

Due to its low-latency and computation-acceleration ca-
pabilities, the MEC paradigm is of particular relevance to
uplifting the performance of FL applications. The interplay
between FL and MEC has been largely studied from the data
offloading perspective, but when it comes to decentralized FL
approaches, MEC can play different roles. First, FL devices in
GFL can leverage MEC to perform model training offloading
by sharing their local datasets to a nearby MEC server. As
shown in [58], ML model training offloading is an appealing
solution for mitigating the straggler nodes problem in FL.
And this is particularly useful in settings with computationally
constrained devices such as in IoT. Nevertheless, offloading a
dataset to an edge server entails a trade-off between the data
transfer time and the local computation savings. For that, it is
critical to properly optimize the amount of data to be offloaded
with respect to the total training delay. In addition, the MEC
approach can be useful for speeding up the training procedure
thanks to a proper client selection scheduling [59].

When it comes to BFL, MEC can be leveraged not only for
ML model training, but also to support the computation and
storage requirements of the blockchain, which are typically
unfeasible for small devices. In the literature, MEC servers
have been considered for performing either model training
or mining tasks (or both) [13]. In this work, and closer in
spirit to what was proposed in [32], we have assumed that the
blockchain operations are handled by MEC servers.

D. Discussion on Security Aspects

The decentralization of FL through either GFL or BFL
is important for mitigating single-point-of-failure issues and
boosting scalability and democratization. As seen in Sec-
tion VI-B, GFL provides a high degree of decentralization
thanks to the P2P interactions between FL clients. However,
its performance is significantly lower than the centralized
counterpart. As for BFL, it provides outstanding accuracy
values, but at a high cost in terms of energy consumption
and communication. The fact is that, to ensure security,
robustness, and reliability, a blockchain typically requires
to perform computation-intensive validations and exhaustive

information replication. For instance, to ensure transparency,
the blockchain network needs to trace all the events.

Unlike CFL and GFL, the BFL setting treasures security
properties by design, which makes it robust against external
threats. Thanks to blockchain’s tamper-proof and traceability
properties, attacks on the training operation such as poison-
ing [60] or Sybil attacks [61] can be mitigated [62]–[64].
Of course, in BFL, the cost of security in terms of energy
consumption and communication overheads strongly depends
on the FL application scenario and its requirements. In par-
ticular, different types of blockchains can better suit different
FL applications. Blockchain types are mainly categorized as
follows:

• Public blockchains: Are open and allow everyone to
contribute by submitting transactions and participating in
the consensus through mining blocks. The most promi-
nent public blockchains are Bitcoin and Ethereum, which
use methods like PoW and PoS for securing the data in
such a type of open scenario.

• Private blockchains: The governance of private
blockchains is restricted, so only a designed authority can
update the blockchain with new transactions. An example
of a private blockchain is Corda, where trusted nodes can
quickly confirm the validity of transactions, thus boosting
efficiency.

• Consortium blockchains: The blockchain governance
is ruled by a limited set of trusted participants (instead
of a single organization). This setting suits well the
cooperative enterprise setting, where participants can be
trusted to a certain extent. The most popular consortium
blockchain platform is Hyperledger Fabric, whereby the
applied consensus method (RAFT) does not require all
the nodes in the blockchain to participate in the validation
of data, thus speeding up performance.

Depending on the blockchain setting, the required com-
putation energy and communication overheads may vary for
sustaining the desired level of security. Throughout this paper,
we have considered the most decentralized type of blockchain,
i.e., public blockchains, but the other settings may be more
appropriate for specific cases. The analysis of the cost for
other blockchain types is left as future work, but we refer the
interested reader to the survey in [65].

IX. CONCLUSIONS

Decentralized server-less federated learning is an appeal-
ing solution to overcome CFL limitations. However, finding
the best approach for each scenario is non trivial due to
the lack of comprehensive comparisons. In this work, we
have proposed a complete overview of these techniques and
evaluated them through several key performance indicators:
accuracy, computational complexity, communication overhead,
convergence time, and energy consumption. To do so, we have
proposed a comprehensive theoretical analysis and the physical
implementation of these algorithms.

An extensive simulation campaign underlines our analysis.
From numerical results, it emerges that GFL is the algorithm



that requires less communication overhead to reach conver-
gence. Then, CFL and GFL have similar behavior in terms of
energy consumption and accuracy, but slightly differ based on
the DL model adopted and the hardware used. BFL represents
a viable solution for implementing decentralized learning with
a high accuracy and level of security at the cost of an extra
energy usage and data sharing.

Moreover, we have discussed some open issues and fu-
ture research directions for the two decentralized federated
methods, like the poor accuracy achieved by GFL and the
blockchain overhead in BFL. Regarding GFL, we have argued
that the main drawback lies in the method used to merge model
updates across the algorithm steps. We have demonstrated that
with an incremental approach, the modified version of GFL
is able to outperform CFL and BFL in terms of accuracy.
As for BFL, we have indicated that possible optimizations go
in the direction of finding the best block generation rate and
block size. Moreover, we have reasoned on the possibility of
reducing the time complexity by including the global model
in a block, which is aggregated by the same miner building
the block. In addition, we have pointed out the importance
of further studies on the implication of model inconsistencies
due to the fact that the blockchain cannot be perfectly shared
and accessed by (all) the FL devices.

Finally, we have argued on the key role played by the
libraries used for the implementation and their influence on the
energy consumption on different hardware platforms. We call
for the definition of standard libraries and open test platforms
to be used for research purposes.

APPENDIX A
PROOFS

A. Proof of Theorem I

Let us consider the procedure CLIENTUPDATE, whose time
complexity is E

(
|Dmax||w|+2 |Dmax|

B |w|
)

. In fact, a single
client k performs the training phase on its local dataset Dk

along E local epochs and updates the model parameters. The
first operation has a time complexity of |Dk||w| and the second
2 |Dk|

B |w|. The update it is executed a number of times equal to
|Dk|
B , and requires a product and a sum. Each client performs

E local epochs, so the total cost is:∑
k∈St

E

(
|Dk||w|+2

|Dk|
B
|w|
)

(18)

To obtain an upper bound that does not depend on k, we can
use |Dmax| as an upper bound of |Dk|:

∑
k∈St

E

(
|Dk||w|+2

|Dk|
B
|w|
)
≤

mE

(
|Dmax||w|+2

|Dmax|
B
|w|
)
.

(19)

We can divide the MAIN procedure in Algorithm 1 into two

blocks. The first, up to Line 10, has a cost upper bounded by

mE

(
|Dmax||w|+2

|Dmax|
B
|w|
)
+ 2|w|m. (20)

In parallel every client downloads the global model, executes
CLIENTUPDATE, and sends the updated parameters back to
the server. The download and upload operations have a time
complexity proportional to |w|. Considering that the same
procedure is repeated by m clients, the upper bound in (20)
easily follows. The second block starts from Line 10, where
the server aggregates the local updates and computes the
new global model. The number of arithmetical operations
performed is:

2|w|m. (21)

Combining (20) and (21), and considering the number of total
rounds R required to reach convergence, the total cost of CFL
is given by:

R

[
mE

(
|Dmax||w|+2

|Dk|
B
|w|
)
+ 4m|w|

]
=

RmE|Dmax||w|+2RmE
|Dk|
B
|w|+4Rm|w|.

(22)

The first addend in (22) is the dominant term for the asymp-
totic time analysis, so this completes the proof to obtain (3).

When it comes to the communications overhead of CFL,
the result easily follows considering that, for each round, each
clients downloads and uploads the model parameters.

B. Proof of Theorem II

In each algorithm’s round, every client in St has to down-
load the latest block from the closest edge server (miner) to
obtain the current global model. These operations, as described
before, have a cost of |w|m and 2|w|m, respectively. Then,
after running the CLIENTUPDATE procedure in Algorithm 2,
clients submit the new model weights with a cost of |w|. These
steps are done by each node in St (in total, m nodes), so the
total cost is:

m

(
2|w|m+ |w|m+ E|Dmax||w|+

2E
|Dmax|

B
|w|+|w|

)
.

(23)

When all the local updates have been computed, it is
necessary to create a block, reach consensus throughout the
mining operation, and propagate the block across all the
blockchain nodes. The cost of these operations is given by:

2l +m|w|NB . (24)

If we combine together (23) and (24), we obtain the total time
complexity of the algorithm

R

(
3|w|m2 + E|Dmax||w|m+

2E
|Dmax|

B
|w|m+ |w|m+ 2l +m|w|NB

)
.

(25)



The dominant addends are reported in (5).
The communication overhead of BFL can be easily derived

from the algorithm description.
In this analysis, we considered the less efficient implemen-

tation, whereby each client has to perform the computation of
the new global model given the updates in the latest block. To
improve this, we can move the instruction in Line 8 outside
the for loop and execute it before the MINEBLOCK procedure.
In this way, the new block has size |w|, since it contains only
the parameters of the new model. Following the same analysis
described before, the computational complexity is:

O(R(mE|Dmax||w|+2l +NB |w|)). (26)

And the communication overhead is:

R(2|w|m+NB |w|). (27)

C. Proof of Theorem III

Let ki be a client in the sequence [k1, ..., km]. Following the
steps of Algorithm 3, three main operations are performed:
1) MERGE, 2) CLIENTUPDATE and 3) send of the model
parameters to the next client of the sequence. The first one
is the average of two model parameters, so its cost is 2|w|.
The cost of the second operation has already been computed
in (19) and the cost of parameter sharing is |w|. By summing
up these contributions we obtain:

m

[
E

(
|Dmax||w|+2

|Dmax|
B
|w|
)
+ 3|w|

]
. (28)

This process is repeated for R rounds, so the time complexity
is:

Rm

[
E

(
|Dmax||w|+2

|Dmax|
B
|w|
)
+ 3|w|

]
, (29)

where the first addend is the dominant one.
Given that each client shares its local model only with the

following node in the sequence, the communication overhead
is given by (8).

APPENDIX B
EDGE CONNECTION MODEL

To compute the total duration for transmitting model
weights, we assume IEEE 802.11ax channel access proce-
dures [42], which also include the overheads to carry out the
distributed coordination function (DCF) operation. In particu-
lar, the duration of a packet transmission is defined as:

TTx =Rm(TRTS + TSIFS + TCTS + TDATA+

TSIFS + TACK + TDIFS + Te),
(30)

where TRTS is the duration of the ready-to-send (RTS) control
frame, TSIFS is the short interframe space (SIFS) duration,
TCTS is the duration of the clear-to-send (CTS) control frame,
TDATA is the duration of the data payload, TACK is the
duration of the acknowledgement (ACK) frame, Te is the
duration of an empty slot, R is the number of FL rounds,
and m the number of participating clients.

To compute the duration of each type of IEEE 802.11ax
control frame, i.e., RTS, CTS, and ACK, we compute them
as:

TRTS/CTS/ACK = TPHY +

⌈
LSF + LRTS/CTS/ACK

Ls

⌉
σleg,

(31)
where TPHY is the duration of the PHY preamble, LSF is
the length of the service field (SF), LRTS/CTS/ACK is the
length of the control frame, Ls is the length of an orthogonal
frequency division multiplexing (OFDM) symbol, and σleg is
the duration of a legacy OFDM symbol.

As for the duration of the data payload, it is computed as:

TDATA = THE−SU +

⌈
LSF + LMAC + LDATA

Ls

⌉
σ, (32)

where THE−SU is the duration of the high-efficiency (HE)
single-user field, LMAC is the length of the MAC header,
LDATA is the length of a single data packet (in our case, it
matches with the model size, Sw), and σ is the duration of
an OFDM symbol. The number of bits per OFDM symbol
will vary, so as the effective data rate, based on the employed
modulation and coding scheme (MCS), which depends on the
transmission power used.
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