
Vol.:(0123456789)1 3

The International Journal of Advanced Manufacturing Technology 
https://doi.org/10.1007/s00170-023-11524-9

ORIGINAL ARTICLE

Application of machine learning for fleet‑based condition monitoring 
of ball screw drives in machine tools

Berend Denkena1 · Marc‑André Dittrich1 · Hendrik Noske1   · Dirk Lange2 · Carolin Benjamins3 · Marius Lindauer3

Received: 1 February 2023 / Accepted: 3 May 2023 
© The Author(s) 2023

Abstract
Ball screws are frequently used as drive elements in the feed axes of machine tools. The failure of ball screw drives is asso-
ciated with high downtimes and costs for manufacturing companies, which harm competitiveness. Data-based monitoring 
approaches derive the ball screw condition based on sensor data in cases where no knowledge is available to derive a physical 
model-based approach. An essential criterion for selecting the condition assessment method is the availability of fault data. 
In the literature, fault patterns are often artificially created in an experimental test bench scenario. This paper presents ball 
screw drive monitoring approaches for machine tool fleets based on machine learning. First, the potentials of automated 
machine learning for supervised anomaly detection are investigated. It is shown that the AutoML tool Auto-Sklearn achieves 
a higher monitoring quality compared to literature approaches. However, fault data are often not available. Therefore, unified 
outlier scores are applied in a semi-supervised anomaly detection mode. The unified outlier score approach outperforms 
threshold-based approaches commonly used in industry. The considered data set originates from a machine tool fleet used 
in series production in the automotive industry collected over 8 months. Within the observation period, multiple ball screw 
failures are observed so that sensor data about the transient phases between normal and fault conditions is available.

Keywords  Condition monitoring · Machine learning · Ball screw · Failure

1 � Introduction 

1.1 � Need for condition monitoring of ball screw 
drives in machine tools

Machine tool feed drives are used for high-precision posi-
tioning of the milling tool and workpiece. Ball screw drives 
are suitable for this task due to their high-efficiency level 
[1, 2]. Ball screws also exhibit low heating and length vari-
ation and high positioning accuracy [3]. Ball screws also 
have a low failure frequency. However, in case of failure, 
high downtime follows, reducing machine tools’ technical 
availability. A total of 38% of the downtimes of feed axes are 

caused by ball screws and feed axes, accounting for nearly 
40% of the leading causes of machine tool failure [3]. A 
ball screw drive consists of multiple components, includ-
ing a raceway, ball screw, screw nut, drive motor, support 
bearings, and the table. The ball screw is subjected to pre-
loading to increase rigidity [4]. Various types of ball screw 
damage exist. In the case of sudden early damage, running 
instability occurs due to damage sustained by the deflec-
tion elements resulting in defects of balls and the raceways. 
Gradual late damage occurs in ball screws used for longer 
than the intended operating time. In this case, pitting is cre-
ated in the raceway and ball surfaces, leading to running 
irregularities. Another type of damage is the insidious loss 
of preload. Over time, the ball diameter decreases, reducing 
the preload and, thus, the stiffness properties of the drive. 
The stiffness variations increase the chatter tendency of the 
axis, and thereby surface tolerances of workpieces can no 
longer be maintained [5]. Additionally, ball screws exhibit 
higher wear than linear drives due to their higher friction 
component [2]. If the wear exceeds 80%, the ball screw is 
irreparable and must be replaced. If a ball screw is repaired 
in time, 30–50% of the replacement costs can be saved 

 *	 Hendrik Noske 
	 noske@ifw.uni-hannover.de

1	 Institute of Production Engineering and Machine Tools, An 
der Universität 2, 30823 Garbsen, Germany

2	 Marposs Monitoring Solutions GmbH, Buchenring 40, 
21272 Egestorf, Germany

3	 Institute of Artificial Intelligence, Appelstraße 9a, 
30167 Hannover, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s00170-023-11524-9&domain=pdf
http://orcid.org/0000-0001-5126-1727


	 The International Journal of Advanced Manufacturing Technology

1 3

[6]. Due to the diversity of wear and fluctuating operating 
parameters (temperature, load, lubrication, etc.), predicting 
the operating time of ball screws is difficult [2].

Condition monitoring is used to reduce downtimes and 
high replacement costs of machine components and thus 
increase the availability of machine tools [7]. In addi-
tion, condition monitoring can assist in optimizing main-
tenance activities [4]. Condition monitoring approaches 
are divided into model-based and data-based approaches. 
Model-based approaches include physical models, and 
classical AI approaches like expert systems. Physical 
models comprise approaches based on parameter esti-
mates, which use estimation methods and differential 
equations to determine the model parameters. Data-based 
approaches learn the system behavior automatically based 
on past data. This group includes machine learning meth-
ods such as artificial neural networks used as classifiers. 
In addition, machine learning methods are used to output 
an outlier score if fault data is unavailable (semi-super-
vised anomaly detection) [8]. In contrast to threshold-
based approaches (also called limit-value based) which 
allow fault detection, machine learning methods can be 
used for fault diagnosis. This requires that information 
about different types of faults is available [9].

1.2 � Our contribution

This work presents a ball screw drive monitoring 
approach for machine tool fleets based on machine learn-
ing. An industrial data set of a machine tool fleet (moni-
toring data of 13 five-axis machine tools MAG SPECHT 
600 collected over 8 months) used in series production in 
the automotive industry is considered. Within the moni-
toring period under consideration, the ball screw drives 
of the Z-axis are replaced on 4 machines. The distinctive 
feature of the data set is that information about the tran-
sition between normal and faulty conditions is apparent 
in three ball screw drives. In the literature, anomalies 
are often artificially generated in an experimental test 
bench scenario. There is usually no data available that 
(a) describes the entire life cycle of the ball screws in 
industrial practice and (b) describes the transition phase 
between normal and faulty conditions. These approaches 
also neglect the fact that the normal state of the machines 
changes over time. For this reason, an in-depth analysis 
of the monitoring signals in the normal and faulty condi-
tion of ball screws of 13 five-axis machine tools MAG 
SPECHT 600 is performed.

In the past, many researchers used machine learning 
classifiers for condition monitoring of ball screw drives 
[10–16]. This approach can be followed when fault data 
is available (supervised anomaly detection). These stud-
ies arbitrarily select the methods at the respective stages 

of data and feature preprocessing, dimensionality reduc-
tion, and classification. Often, it is not shown to what 
extent the model hyperparameters, e.g., how to configure 
the method, are optimized. In this context, automated 
machine learning (AutoML) offers the possibility to sys-
tematically support the practical user in selecting meth-
ods at the respective stages [17]. In addition, past studies 
have shown that AutoML tools like Auto-Sklearn achieve 
better classification results on average through ensemble 
building and meta-learning [18]. However, the potential 
for performance improvements of Auto-ML tools for ball 
screw condition monitoring has not been investigated to 
date. In this paper, a methodology for supervised anom-
aly detection using Auto-Sklearn is developed for ball 
screw drive monitoring in machine tool fleets. The pro-
posed method is able to detect fault states of ball screw 
drives, and because of the generality of AutoML, it is not 
restricted to the machine types monitored in this paper.

Supervised anomaly detection methods are only applica-
ble when sufficient fault data is available. For this reason, a 
semi-supervised anomaly detection approach is applied and 
evaluated. A so-called baseline model is created based on 
data describing the normal state of ball screws. The baseline 
model produces a unified outlier score to perform condition 
assessment. The monitoring quality of the unified outlier 
score approach outperforms threshold-based approaches 
commonly used in industry.

The paper is organized as follows: Chapter 2 presents 
the related work in machine learning based ball screw drive 
condition monitoring. The data set is described in Chap-
ter 3. In Chapter 4, the monitoring methodologies are intro-
duced. The results of the experimental study are presented 
in Chapter 5.

2 � Related work on monitoring approaches 
of ball screw drives based on machine 
learning

Usually, machine axes are evaluated via a test cycle executed 
intermittently during the manufacturing process. To ensure 
robust monitoring, the influence of any sources of interfer-
ence must be avoided. One source of interference is the 
manufacturing process. During the process, process param-
eters and the workpiece mass change within metal-cutting 
manufacturing processes. Consequently, the monitoring sig-
nals change regardless of the ball screw drive condition. For 
this reason, the monitoring signals are recorded during the 
process-free time in a predefined test cycle [2].

Anomalies are often artificially generated in recent 
studies to evaluate monitoring approaches. Jin et al. and 
Denkena et al. use different ball sizes to simulate the 
preload loss [10, 11]. Emilia et al. induce defects on the 
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running surface of the ball screw with the laser powder 
cladding method [12]. Feng and Pan use a double-nut 
system to vary the preload [13]. Benker et al. use two 
ball screws with different levels of preload [14]. Balaban 
et al. block the return channel with a detached piece of 
insulation. Additionally, the backlash is simulated using 
undersized balls and spalling defects on the ball screw 
are generated using electro-discharge machining [15]. Li 
et al. use different wear levels of ball screws acquired 
from an industrial partner [16]. An overview of the faults 
considered as well as the internal and external sensors 
used, is given by Butler et al. [4].

To detect anomalies, a distinction is made between two dif-
ferent procedures in condition monitoring: In the context of 
semi-supervised anomaly detection, it is assumed that only 
data describing the normal state is available [19]. For exam-
ple, control charts based on T2 and Q-statistics, as well as the 
Mahalanobis-distance, have already been used for ball screw 
monitoring [20, 21]. In contrast, supervised anomaly detection 
uses fault classes in conjunction with a classifier that distin-
guishes between normal and fault states [19]. Table 1 gives an 
overview of supervised anomaly detection approaches of ball 
screw drives. Jin et al. apply various methods such as Gaussian 
Mixture Models, Self-Organizing-Maps, and the Mahalanobis-
distance in a supervised mode for ball screw monitoring based 
on vibration and temperature data. The presented methods out-
put a health index based on extracted features to evaluate the 
machine component’s health. The authors show that the health 
indices correlate with the anomalies such as lack of lubrication 
and preload loss. Suitable features for classification are iden-
tified using the Fisher-score [10]. Benker et al. use Gaussian 
Process Classification to classify different preload levels [11, 
14]. Li et al. employ a support vector machine to classify the 
condition of ball screws. Sensor data from the machine con-
trol, such as torque, and data from three accelerometers are 
given. Relevant features are preselected in the first step using 

the Fisher-score. Furthermore, only a small subset of the pre-
selected features is used for classification by sequential forward 
selection. The authors show that torque is more suitable for 
classifying the ball screw condition than vibration signals [16]. 
Feng and Pan develop a low-cost sensor system to collect tem-
perature and vibration data for ball screw monitoring. Support 
Vector Machines are applied to classify different preload levels 
[13]. Emilia et al. present an approach for ball screw monitoring 
based on vibration and acoustic emission data. A Naive-Bayes 
classifier and a K-Nearest Neighbor classifier are employed to 
classify different states. The authors obtained improved results 
using vibration data compared to acoustic emission data [12]. 
Denkena et al. use the F-score and the principal component 
analysis (PCA) for feature selection and feature extraction. It 
is shown that the position error is more suitable for the clas-
sification of different preload levels than the acceleration signal 
data [11]. Schmidt et al. performed condition monitoring using 
a so-called ball-bar measurement. This method is used to deter-
mine the positioning accuracy of the machine tool. In total, data 
from 32 ball screws, including 145 measurements, are used. A 
K-Nearest Neighbor model is applied for classification. How-
ever, the data set is not described in detail [22]. Other authors 
use deep learning methods for ball screw monitoring, such as 
convolutional neural networks [23–26]. In the literature, there 
is often no comparison with “simpler” classifiers when deep 
learning methods are applied.

As described earlier, there is no systemic nature to the 
previously described work on supervised anomaly detec-
tion concerning method selection. It is rarely described 
why a specific method is selected for data and feature 
preprocessing and classification. Therefore, using an 
AutoML tool to create the model pipeline to predict ball 
screw conditions is a systematic and replicable approach. 
AutoML tools are increasingly being applied in the man-
ufacturing context. For example, ML-Plan-RUL, pre-
sented by Tornede et al., allows for predicting machines’ 

Table 1   Overview of machine learning approaches for supervised anomaly detection of ball screw drives 

Ref Data splitting mode Hyperparameter opti-
mization

Data preprocessing  / Dim. reduction Classifier

[10] Hold out (train, test) None Feature selection (Fisher-Score) Self-organizing map, Gaussian 
mixture models, Mahalanobis 
distance

[11] Hold out (train, test) None Normalization Decision Tree
[12] Hold out (train, test) None None Naïve Bayes, K-Nearest-Neighbors
[13] Hold out (train, test) 2 Kernels of SVC None Support Vector Machine
[14] None Maximum likelihood None Gaussian Process Classification
[15] Hold out (train, test) None Feature scaling (Standardization) Feed Forward Neural Network
[16] Cross validation None Feature scaling (Standardization), feature 

selection (Fisher-Score, Sequential Forward 
Selection)

Support Vector Machine



	 The International Journal of Advanced Manufacturing Technology

1 3

remaining useful life (RUL) for predictive maintenance 
[27]. For predicting the shape error for pocket milling 
operations in process planning, Denkena et al. use Auto-
Sklearn [28]. Auto-Sklearn is also used by Kißkalt et al. 
to predict tool wear during lot milling [29].

In contrast to literature approaches, data from a machine 
tool fleet are available in this work. Fleet-based condition 
monitoring assumes data from several identical machines 
or machine components are available. This increases the 
probability that failures of machine components occur in an 
observation period and thus that fault data are available. In 
addition, the question arises as to whether monitoring can be 
improved using data from other machines. Fleet-based moni-
toring approaches can be found in the literature focusing 
on specific machine components. For instance, Hendrickx 
et al. [30] develop a clustering-based condition monitoring 
approach for electrical drivetrain fleets. However, literature 

on ball screw drive monitoring in machine tool fleets that 
include long-term datasets is missing.

3 � Data set description and analysis

The data set is collected from 13 five-axis machine tools 
of the type MAG Specht 600, recorded over more than 
8 months. These machines are used in the automotive indus-
try, where the Z-axis is heavily stressed. After the production 
of a lot, an identical test cycle of the Z-axis is performed. 
The machine’s axis kinematics and the Z-axis’s torque in 
normal condition from a test cycle are shown in Fig. 1. For 
each machine, the Z-axis torque MBSD is recorded at a sam-
pling frequency of 100Hz via the machine control. In addi-
tion, the data from a 3-axis acceleration sensor Acc1−3 from 
Marposs Monitoring Solution GmbH (Artis) is recorded, 

Z-axis ball screw drives

Z

Y

X

Spindle

A

MAG SPECHT 600

B

time

-5

Nm

5

forward

backward

0 5 s 15

©No/97419

Fig. 1   Axis kinematics and torque signal of the test cycle (Z-axis) 

Fig. 2   Measuring setup for ball screw drive monitoring
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which is attached to the machine bed. Another acceleration 
sensor Spi is mounted on the tool spindle. The acceleration 
sensor Spi is originally installed for spindle monitoring. The 
acceleration sensors are connected to an industrial PC which 
stores the signal data for each test cycle. The industrial PC 
accesses the machine control data via Profibus. In addition, 
the test cycle data can be visualized via a control panel at the 
machine. The measuring setup is depicted in Fig. 2.

The sensor data is available as discrete time series 
xc,b,m(t)�R for c�{1,… , nb} test cycles, t�{1,… , T} time 
steps, and m�{1,… ,M} machine tools. The parameter nb 
represents the number of test cycles for b�{1,… ,B} ball 
screw drives. It should be noted that in the fault cases, two 
ball screw drives are assigned to one machine. Table 2 
shows the number of test cycles with and without anoma-
lies of the respective ball screws during the observation 
period. The numbering of the ball screws corresponds 
to the respective machine tool in which the ball screw is 
installed. A total of 1540 test cycles are performed for 13 
identical machines. For a total of 4 machines, a ball screw 
drive is replaced during the observation period. The ball 
screw drives are replaced due to tolerance deviations con-
cerning the manufactured products. The ball screws used 
before disassembly are marked “pre” in the table.

The first step involves analyzing the fault patterns of 
the monitoring signals in the time and frequency domains 
that occur before ball screw disassembly. In the case of 
three ball screws, test cycles are available that describe 
the transition between normal and faulty conditions 
(Bs7-pre, Bs11-pre, Bs13-pre). In the case of ball screw 

Bs12-pre, it is noted that an advanced state of degradation 
is already present at the beginning of data acquisition. 
For ball screws Bs-11-pre and Bs-12-pre, damage to the 
raceways is detected after disassembly. In contrast, worn-
out balls have been the root cause of failure in the case of 
ball screw Bs13-pre. No condition changes are detected 
for the newly replaced ball screws (Bs7-post, Bs11-post, 
Bs12-post, Bs13-post).

Figure 3 illustrates the segmented torque of the Z-axis 
MBSD and the accelerometer signals ( Acc1−3, Spi ) for dif-
ferent degradation levels. The time series are segmented 
in such a way that only the segments in the forward direc-
tion with constant feed are considered. These fixed seg-
ments are selected based on expert knowledge. In the 
case of ball screw Bs7-pre, no significant changes in 
the torque signal MBSD are observed after the anomaly 
starts. In contrast to the observations of Lia et al. [16], 
this means that the internal control sensor signals are 
not sufficient for robust monitoring of ball screw drives 
in machine tools. In the case of ball screws Bs11-pre, 
Bs12-pre, and Bs13-pre, higher frequencies occur in thee 
torque signal MBSD at the start of the anomaly. For each 
faulty ball screw, changes in the accelerometer signals 
are visible when the abnormality occurs. In the case of 
ball screw Bs14-pre, signal Acc2 is shown since no sig-
nificant changes are visible in signal Acc1 . Therefore, it 
is concluded that the acceleration signals of the triaxial 
accelerometer should be evaluated in each direction. In 
the case of ball screw Bs11-pre, more significant peaks 
initially appear in the acceleration signal Acc1 at the 

Table 2   Overview of the 
number of test cycles performed 
during the observation period

Ball screw name Number of recorded test 
cycles

Number of test cycles with-
out anomalies

Number of test cycles 
containing anomalies

Bs1 123 123 0
Bs2 127 127 0
Bs3 129 129 0
Bs4 126 126 0
Bs5 124 124 0
Bs6 125 125 0
Bs7-pre 109 102 7
Bs7-post 30 30 0
Bs8 116 116 0
Bs9 100 100 0
Bs10 142 142 0
Bs11-pre 95 42 53
Bs11-post 28 28 0
Bs12-pre 74 0 74
BS12-post 24 24 0
Bs13-pre 52 18 34
Bs13-post 16 16 0
Total 1.540 1.372 168
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beginning of the abnormality. This is also observed in 
the signal of the acceleration sensor Spi of the spindle. 
As wear progresses, new signal plateaus are formed in 
all cases after several test cycles. These signal plateaus 
initially form for specific value ranges and increase in 
size over time.

Figure 4 depicts the frequency spectra of different ball 
screw conditions of the torque signal. For this purpose, the 
signals are transformed using a fast Fourier transform (FFT). 
In the case of the ball screws Bs11-pre and Bs13-pre, it can 
be seen that peaks occur in similar areas at the beginning 
of the anomaly. It is noted that in addition to the amplitude, 
the signal’s frequency also changes as wear progresses. The 
frequency changes may be due to the fact that the damage to 
the ball raceways gets wider and thus the excitations change. 
Changes in the frequency range of the accelerometer is only 
observed in the case of the ball screw Bs11-pre.

However, the monitoring signals vary in the normal state. 
Recent studies have shown that monitoring signals change due 
to factors such as temperature, axis position, and ball screw 
exchanges regardless of the ball screw conditions [31]. Other rea-
sons could be different lubrication and preload states. In addition, 
a slight tilting of the machine axes and adapted controller settings 
could also cause different signal trajectories. Figure 5 illustrates 
the distributions of the segmented time series of the torque as 
well as the acceleration sensors in the normal state. The accelera-
tion sensor Acc1−3 takes the value 0 for some test cycles in the 
case of ball screw Bs2, which indicates incorrect data acquisition. 
It is observed that the value range of the acceleration signal Spi 
is significantly larger than the signals of the triaxial acceleration 
sensor Acc1−3 . For those machines without a ball screw disas-
sembly, the sensor values’ ranges are very similar. However, the 
distributions of the torque take different shapes in distribution. It 
is observed that the value range of newly assembled ball screws, 

©No/97390
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Fig. 3   Visualization of different segmented signal trajectories in normal and abnormal condition
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like torque MBSD and the acceleration signals ( Acc1−3, Spi ) is 
significantly larger. This is due to the running-in processes of 
newly installed ball screws. Figure 6 presents the trajectories of 
the first 5 segmented torque signals after assembly. In the case of 
ball screw Bs7-post, Bs12-post, and Bs13-post, there are apparent 
differences in signal level and progression.

In addition to the signal changes in the running-in process, 
other signal patterns occur independently of condition changes of 
the ball screws. In the case of ball screw Bs6, higher frequencies 
occur in the torque of the forward motion without any replacement 
being documented. For ball screws Bs5, Bs9, and Bs10, higher 
frequencies are visible in the torque in the backward movement 
of the test cycle. In the case of torque, random level changes occur 
between test cycles in the normal condition. In addition, a gradual 
level shift is visible for the entire observation period for the torque 
and acceleration signals. In the case of acceleration signals, ran-
dom peaks occur at irregular intervals in the normal state. As a 
result, robust monitoring strategies are needed to prevent false 
alarms.

4 � Ball screw drive monitoring approaches 
for machine tool fleets using machine 
learning

4.1 � Supervised anomaly detection approach using 
automated machine learning

In the first step, machine learning is used for supervised anom-
aly detection of ball screw drives assuming that fault data is 
available. AutoML methods are used for decision support for 
model selection. In short, AutoML refers to methods for the 

optimization, automation, and analysis of design decisions 
regarding the complete machine learning (ML) pipeline to 
obtain a model with peak performance. The ML pipeline com-
prises data preprocessing, feature selection, model selection, 
and the optimization of their hyperparameters, as well as post-
processing of the results. The challenge involves determining 
a suitable solution within a computational budget in this large 
search space. Numerous approaches have been developed in 
the past to solve this problem [32–41]. These approaches allow 
domain experts without ML expertise to easily use ML methods 
in practice [18, 32]. Thornton et al. introduce Auto-WEKA to 
select models and optimize their hyperparameters for classifi-
cation problems simultaneously. They treat the choice of the 
model as another hyperparameter and use sequential model-
based algorithm configuration (SMAC) [42, 43] as their solver. 
SMAC is an iterative, global optimizer based on Bayesian opti-
mization. In Bayesian Optimization, the true objective func-
tion which should be optimized is approximated by a surrogate 
model. This makes it very sample-efficient and requires only few 
function interactions which is especially useful if the function 
evaluation is costly or time-consuming [44]. Extensions of Auto-
WEKA allow the selection of a model and its hyperparameters 
for regression and clustering tasks. The developed approach also 
enables the evaluation of features using filtering methods. The 
authors show that Auto-Weka can achieve better results than 
grid search or random search for model and hyperparameter 
selection [32].

A more recent approach inspired by Auto-WEKA is 
Auto-Sklearn, which can be used for regression and clas-
sification problems. Auto-Sklearn also uses SMAC as 
the optimizer. It further allows data preprocessing, e.g., 
the imputation of incomplete data, feature scaling, and 

Fig. 4   Visualization of the frequency spectrum of segmented torque signals for different ball screw conditions (anomalous cycles often show 
more and higher frequencies in the spectrum)
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Fig. 5   Distribution of segmented sensor values of ball screws in normal condition (signals from the same sensors for normal test cycles are 
highly distributed across machines, emphasizing the need for robust monitoring strategies)
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dimension reduction (e.g., PCA). In contrast to Auto-
WEKA, Auto-Sklearn has two additional components. 
Meta-learning is utilized for finding good instantia-
tions of Auto-Sklearn based on already-seen data sets. 
For this purpose, in an offline phase, data sets of the 
OpenML [45] database are described using meta-fea-
tures. In the next step, optimal configurations for these 
data sets are determined by SMAC. A new data set is 
assigned to a group of similar data sets in the OpenML 
database using the meta-features. This enables quick 
access to precomputed optimal configurations stored in 
the database saving computational costs on the user’s 
side. The second innovation enables the construction 
of ensembles with good prediction quality, allowing for 
more robust predictions. The authors showed that the 
prediction quality of Auto-Sklearn can outperform the 
results of other Auto-ML approaches for several data sets 
of the OpenML repository [18]. The recently released 
version Auto-Sklearn 2.0 provides a new meta-learning 
technique for improved handling of iterative algorithms. 

Besides Auto-Sklearn and Auto-WEKA, other AutoML 
approaches such as hyperopt-sklearn, TPOT, TuPAQ, 
ATM, Automatic Frankensteining, ML-Plan, Auto-
stacker, AlphaD3M, Collaborative Filtering, and Auto-
Keras have also been published [17, 46]. An overview of 
different AutoML approaches and their features is given 
in Waring et al. [46]. Besides approaches from academia, 
there are numerous commercial approaches to AutoML, 
such as Rapidminer, Microsoft Azure Machine Learning, 
Google's Prediction API, Amazon Machine Learning, 
etc. [35]. In this study, Auto-Sklearn is used for super-
vised anomaly detection of ball screw drives in machine 
tool fleets.

The overall workflow with Auto-Sklearn is depicted 
in Fig. 7. Segments of the time series are usually selected 
to increase the monitoring quality. In addition to the time 
series of the test cycles, the labels for each time series 
are also available (see Table 2). In this work, a distinc-
tion is made between normal and faulty conditions (fault 
detection). For condition monitoring after data acquisition 

Fig. 6   Segmented torque signals of the first five test cycles after assembly of a new ball screw (running-in behavior)
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is extracting features from the time series because the 
supervised learning methods in Auto-Sklearn require a 
fixed length input. However, it is not possible to deter-
mine in advance which signal features are best suited for 
the respective monitoring application. For this reason, a 
high quantity of features needs to be generated from the 
data to obtain a few useful features [47]. This highlights 
the need for an automatic selection of the data and fea-
ture processing. More than 700 time series features are 
generated for each sensor using the tsfresh [48] python 
library to determine the condition of the ball screw drive. 
The default hyperparameters of the signal feature gen-
eration methods contained in tsfresh are applied. How-
ever, tsfresh does vary the hyperparameters of the feature 
methods. For this purpose, a set of different discrete val-
ues within a defined range of values is defined for the 
hyperparameters of the feature methods. Using the library 
tsfresh, features from the time domain (mean, standard 
deviation, kurtosis, skewness, etc.) and features from the 
frequency domain are generated. Thus, various statistical 
quantities of the absolute Fourier transform spectrum are 
considered features. In addition, the Fourier coefficients 
of the one-dimensional discrete Fourier transform are 
applied as features.

It should be noted that feature engineering and selec-
tion is essential for the monitoring quality. The generated 
features serve as input for Auto-Sklearn to determine the 
condition of the ball screws. Each pipeline constructed 
by Auto-Sklearn consists of up to three data preproc-
essors, one feature preprocessor and one classifier plus 
their respective hyperparameters. The search space for 
the ML pipeline is hierarchically organized as a tree and 
contains continuous, categorical and conditional hyper-
parameters. Auto-Sklearn can select from 16 classifiers, 
19 feature preprocessing methods, and numerous data 
preprocessing methods for the classification task. In 
total, there are more than 150 hyperparameters [17]. The 
data preprocessing can include feature scaling, imputa-
tion of missing values, one-hot encoding, and/or balanc-
ing of target classes. Examples of feature preprocessing 
are PCA and ICA. Available classifiers are Adaboost, 
Naive Bayes, Decision Tree, Extra Trees, Gaussian Naive 
Bayes, Gradient Boosting, K-Nearest Neighbor, Linear 
Discriminant Analysis, Linear Support Vector Machine 
(SVM), Non-Linear SVM, Multi-layer Perceptron, Mul-
tinomial Naive Bayes, Passive Aggressive, Quadratic 
Discriminant Analysis, Random Forest, and Stochas-
tic Gradient Descent. In addition, Auto-Sklearn builds 
ensembles for robust predictions. The idea behind ensem-
ble building is based on the fact that classifiers have 
different advantages and disadvantages on different data 
sets that complement each other.

In contrast to many literature approaches, data from 
several machine tools are available in this work. Figure 5 
illustrates that the data distribution in the normal state of 
ball screws differs from machine to machine. In addition, 
signal characteristics change over time without any defect 
of the ball screws being present. This raises the question 
of the generalizability or applicability of the ML-pipeline 
to new ball screws and the robustness against false alarms. 
For this reason, Chapter 5 evaluates different strategies for 
applying the presented approach to new and unseen data.

4.2 � Semi‑supervised anomaly detection

4.2.1 � Computation of unified outlier scores using machine 
learning

In supervised anomaly detection, a labeled data set con-
taining fault data is assumed to be available. If only 
insufficient fault data is available to train a classifier, 
semi-supervised anomaly detection approaches can be 
considered. A so-called baseline model is trained based 
on data describing the normal state. An outlier score is 
produced which varies in case of condition changes. In 
this work, the approach of Denkena et al. [49] is used 
and adapted for anomaly detection of ball screw drives 
in machine tool fleets. Thereby, methods for unsuper-
vised anomaly detection are used for semi-supervised 
anomaly detection. According to Kriegel et  al. [50], 
the approach for calculating uniform outlier scores is 
employed. Using the uniform outlier scores, the scores 
of several outlier score methods can be combined into an 
ensemble. Moreover, scores from multiple sensors can 
be aggregated for robust monitoring. In contrast to the 
work of Denkena et al. [49], data from multiple machine 
tools are considered. In addition, different scaling strate-
gies are applied.

In the first step, feature groups are extracted based 
on the segmented signals. In contrast to the supervised 
approach, only simple signal features are considered. 
This is due to the fact that no fault data is available for 
model training. Table 3 provides an overview of the fea-
ture groups used.

The first group consists of the general-purpose features 
in the time domain, which are adopted from the study of 
Denkena et al. [49]. Another feature group uses information 
on the sample autocovariance. The autocovariance indi-
cates how similar a time series xi−l shifted by l discrete time 
steps is to the original time series xi . According to Eq. (1), 
the sample autocovariance is calculated as follows [38, 51]: 

(1)�̂(l) =
1

I − 1

I−1∑
i=1

xixi−l.
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The sample autocovar iance is calculated for 
l ∈ {0,… , 9} . Features are also extracted from the fre-
quency domain by transforming the raw data of all signals 
using an FFT. The amplitude and frequency of the five 
most dominant peaks between 10 and 50 Hz are used as 
another set of features. The sciPy library is used to calcu-
late the features from the time domain [52]. Additionally, 
the statsmodels library is applied to compute the sample 
autocovariance [51].

In the next step, an outlier score calculation method 
is selected. Various methods exist for unsupervised 
anomaly detection that makes different assumptions 
about the data and the occurrence of anomalies. In this 
work, the K-Nearest Neighbor (KNN) method is used to 
evaluate the ball screw condition based on the extracted 
features of the test cycles. This method is characterized 
by a small number of hyperparameters and makes no 
assumptions about the data distribution or signal fea-
tures. Using the KNN method, an anomaly score S(o) 
is calculated for a new observation o ∈ O . Thereby, 
according to Eq.  (2), the distance of a new observa-
tion o ∈ O to its nearest neighbor i ∈ Nk(o) is used as an 
anomaly score [53]:

For this purpose, a distance metric d  needs to be 
selected. An observation o is the standardized feature 
vector extracted from the time series of test cycles 
c�{1,… , nb} . Additionally, the outlier score is scaled 
using the approach of Kriegel et al. [50]. The scaling of 
the outlier score allows the calculation of decision bound-
aries and the construction of robust ensembles. Accord-
ing to Kriegel et al. [50], the outlier score is scaled to 
be regular and normal. An anomaly score S is regular if 
S(o) ≫ 0 is true for a new observation o when anomalies 
occur. Thus, if a new observation o does not represent an 
anomaly, S(o) ≈ 0 holds. Equation (3) is used to regularize 
the KNN-score:

The minimum distance of an observation o of the training 
dataset Otrain to its Nk nearest neighbors is used as the basis:

(2)S(o) = d(o, i),∀i ∈ Nk(o).

(3)Reg
baseS
S

(o) = max
{
0, S(o) − baseS

}
.

An outlier score is normal if it assumes the value range 
[0,1]. There are different options for normalization, for 
example, linear scaling, Gaussian scaling, or gamma scal-
ing. For a new observation o ∈ Otest , linear scaling is used to 
calculate the normalized anomaly score according to Eq. (5):

The linear scaling assumes an equal distribution of 
the regularized outlier scores. It should be noted that the 
optimal choice of the correct distribution depends, for 
example, on the method chosen to calculate the outlier 
scores. In this work, the Gaussian scaling as well as the 
Gamma scaling are applied. The Gaussian scaling con-
tains only two adjustable parameters (mean and standard 
deviation). According to Eq. (6), the Gaussian scaling is 
calculated:

Before normalization, the mean �Regtrain

S
 and standard devi-

ation �Regtrain

S
 of the regularized outlier scores of the train-

ing set are determined. The Gaussian error function (erf ) is 
also employed. Kriegel et al. [50] note that low-dimensional 
KNN-scores are more likely to reflect a gamma distribution. 
To perform gamma scaling, the cumulative density function 
is calculated according to Eq. (7):

Thereby, P represents the regularized gamma function. 
The parameters of the gamma function (shape k and mean 

� ) are replaced by the estimators k̂ = �
Regtrain

S

�
Regtrain

S

 and �̂ =
�
Regtrain

S

�
Regtrain

S

 . 

Equation  (8) is applied for normalization using gamma 
scaling:

(4)baseKNN = ���
(
disto,i

)
,∀o ∈ Otrain,∀i ∈ Nk,o.

(5)

Normlinear
S

(o) = min

{
RegS(o) − Regtrain

S,min

Regtrain
S,max

− Regtrain
S,min

, 1

}
, ∀o ∈ Otest.

(6)

Norm
gauss

S
(o) = max

�
0, erf

�
RegS(o) − �

Regtrain

S

�
Regtrain

S
∙
√
2

��
,∀o ∈ Otest

.

(7)cdf
gamma

S
(o) = P

(
k̂,
RegS(o)

�̂

)
.

Table 3   Generated signal 
features for condition 
monitoring

Time domain General-purpose features (mean, standard deviation, root mean square, kurtosis, 
skewness, signal-to-noise-ratio, peak2peak, shape factor, crest factor, interquar-
tile range, integral)

Autocovariance (First ten lag coefficients)
Frequency domain Amplitude and frequency of the five most dominant peaks between 10 and 50 Hz
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where �cdf = cdf
gamma

S

(
�
Regtrain

S

)
 . After calculating the nor-

malized anomaly scores, an aggregated score considering 
ODj ∈ OD outlier scores of the ensemble is calculated 
according to Eq. (9):

In this work, the scores of the accelerometer signals 
Acc1−3 are aggregated into an ensemble to minimize the 
number of false alarms. To decide whether a new observa-
tion o ∈ Otest represents an anomaly, Eq. (10) is evaluated:

An alarm is issued in case of Sfinal(o) = 1 . The risk factor 
� allows us to adjust the sensitivity of the monitoring system.

4.2.2 � Signal threshold‑based approaches

In addition to machine learning, signal threshold-based 
approaches have been used for monitoring in the litera-
ture [9]. For example, fixed limits and tolerance bands are 
designed for process monitoring in machining to detect 
various anomalies such as collisions, overload situations of 
jammed tools, or tool breakage [54]. Two signal threshold-
based approaches for semi-supervised anomaly detection are 
evaluated in this work. The first approach proceeds in such a 
way that certain signal features sf c fixed limits are calculated 
based on safety factor �:

The safety factor � typically takes values of 1.1 or 1.2. An 
alarm is triggered if a signal feature sf c for c ∈ Ctest is greater 
than the limit value GP_up.

In another approach, tolerance bands, according to 
Brinkhaus [54], are used for monitoring. In the first step, 
upper and lower envelopes [h_upc(i), h_loc(i)] around xc(i)  
are formed according to Eqs. (12) and (13):

It is assumed that the upper and lower envelopes follow 
a normal distribution. The parameter � represents the shift 
factor of the time series. Based on the determined envelopes, 

(8)

Norm
gamma

S
(o) = max

{
0,

cdf
gamma

S
(o) − �cdf

1 − �cdf

}
,∀o ∈ Otest,

(9)P(o) =
1

|OD|
∑

ODj∈OD

Normj(o),∀o ∈ Otest.

(10)Sfinal(o) =

{
1, if P(o) > (1 − 𝛽),∀o ∈ Otest

0, otherwise
.

(11)GP_up = Max
(
sf c

)
∙ �,∀c ∈ Ctrain.

(12)h_upc(i) = Max
[
xc(i − �),… , xc(i + �)

]
,

(13)h_loc(i) = Min
[
xc(i − �),… , xc(i + �)

]
.

an upper and a lower limit value are determined according 
to the Eqs. (14) and (15):

The mean values 
−

h_up (i) and 
−

h_lo (i) and the standard 
deviations s

[
h_up(i)

]
 and s[h_lo(i)] of the envelopes are 

used to calculate the tolerance bands. The safety factor � is 
adjusted to set the distance between the decision bounda-
ries and the mean values of the envelopes. In the work of 
Brinkhaus [54], time series are weighted differently depend-
ing on their occurrence. Thus, the mean values and standard 
deviations of the envelopes are calculated based on the Eqs. 
(16) and (17) as a function of the memory parameter a:

For larger values for the memory parameter a , the weight 
of past time series for calculating the mean and standard 
deviation of the envelopes is reduced and vice versa.

5 � Results

5.1 � Supervised anomaly detection

In the first step, the supervised anomaly detection approach 
presented in Chapter 4.1 is applied for fleet-based condi-
tion monitoring of ball screw drives in machine tools. In 
an experimental study, the prediction quality of different 
machine learning methods used in the literature (see Table 1) 
is compared to Auto-Sklearn. Auto-Sklearn 2.0 [17] (ver-
sion 0.12.6) is used in the experiments. The data from all 
machines are combined into one set, and the time series are 
randomly shuffled. After feature generation using tsfresh, 
Auto-Sklearn is applied to perform fault detection. During 
optimization, fivefold cross-validation is performed in the 
inner training loop. Auto-Sklearn is compared to baseline 
methods used in literature with default hyperparameters. All 
baseline methods use the standard scaler as feature preproc-
essing (removing the mean and scaling to unit variance). 
Baseline methods are SVM, Decision Tree (DT), Gaussian 
Process Classifier (GP), K-Nearest Neighbor (KNN), Multi-
layer Perceptron (MLP), and Gaussian Naïve Bayes (GNB). 
In addition, methods for dimension reduction (feature extrac-
tion and feature selection) of the literature approaches are 
adopted. In this setting, Auto-Sklearn selects one single clas-
sifier for predictions. All experiments are performed on Intel 

(14)GP_up(i) = h_ upc (i) + � ∙ s[h_up(i)c] ,∀c ∈ Ctrain ,

(15)GP_lo(i) = h_loc (i) − � ∙ s[h_lo(i)c],∀c ∈ Ctrain.

(16)hc+1(i) = (1 − a) ∙ hc(i) + a ∙ hc+1(i),

(17)sc+1(i) =

√
(1 − a)sc(i)

2 + a[hc+1(i) − hc+1(i)]
2

.
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Core i9-9900KF CPUs with 3.6 GHz and 32 GB RAM. A 
time budget of 1500 s is defined for Auto-Sklearn (fivefold 
inner cross-validation).

The predictions of binary classifiers can be evaluated 
using various metrics. Table 4 shows a confusion matrix 
for predictions of binary classifiers. The so-called false 
positives represent the number of false alarms issued by the 
monitoring system. The false negatives represent the number 
of anomalies not detected by the monitoring system. Com-
bined with the number of test cycles correctly detected as 
anomalies, the values for Precision and Recall are calculated 
according to Eqs. (18) and (19). Based on these values, the 
f1-metric is calculated according to Eq. (20). The proposed 
monitoring approach and the baselines are evaluated on an 
outer fivefold cross-validation for 5 different random seeds 
using f1-metric. The f1-metric is applied because the data 
set is unbalanced by the fewer number of faulty test cycles.

(18)Precision =
tp

tp + fp
,

(19)Recall =
tp

tp + fn
,

(20)f1score = 2 ∙
Precision ∙ Recall

Precision + Recall
.

Thereby, a perfect classifier achieves an f1-score of 1. It 
should be noted that this evaluation procedure is used for 
model comparison. In practice, Auto-Sklearn only needs to 
be run once using inner cross-validation on the whole data 
set. Table 5 shows the results for the case of non-segmented 
time series. The highest classification accuracy of the base-
line approaches is achieved by the MLP classifier (f1-score 
of 0.9059). For GP, the f1-score with baseline settings is 
0.0000. This is due to the fact that GP finds no true posi-
tives. Auto-Sklearn achieves the highest f1-score of 0.9509. 
A further step involves segmenting the time series. Thereby, 
only the segment of the time series in which the ball screw 
moves in the forward direction is considered, i.e., t�[SB, SE] . 
Thereby, SB and SE represent the start and the end of the 
segmentation window, respectively. It is observed that across 
all baselines, the classification accuracy is lower compared 
to the non-segmented case. The best baseline approach MLP 
realizes an f1-score of 0.8924. Auto-Sklearn achieves the 
best result (f1-score of 0.9576). Overall, the standard devi-
ations are lower compared to the non-segmented case. In 
summary, Auto-Sklearn performs well in a short amount of 
time whereas the baselines from the literature provide poor 
results. Auto-Sklearn also achieves robust monitoring results 
in both the segmented and non-segmented case.

Furthermore, it is evaluated how often a certain clas-
sifier and feature preprocessing method is considered by 
Auto-Sklearn. Figure 8 illustrates that RF is most com-
monly selected by Auto-Sklearn in case of non-segmented 
test cycles. It is noticeable that no preprocessing is applied 
most frequently.

The final f1-score depends significantly on the preset time 
budget of Auto-Sklearn. Figure 9 illustrates the incumbent 
changes of Auto-Sklearn and the best baseline approach over 
time. Thereby, incumbent denotes the currently best hyper-
parameter configuration. Auto-Sklearn outperforms the best 
baseline approach after a few seconds.

Furthermore, the evaluation mode is adapted in a further 
step. In the previous evaluation mode, the time series of all 
machine tools are combined into one data set and randomly 
shuffled. As shown in Chapter 3, the distributions and value 

Table 4   Confusion matrix and the relation between f1-score, preci-
sion, and recall

True condition

Faulty Healthy

Predicted 
condi-
tion

Faulty True positive 
(tp)

False positive 
(fp)

Precision

Healthy False negative 
(fn)

True negative 
(tn)

Recall f1-score

Table 5   Performance by 
method (shuffled mode)

Method Segmented signals Non-segmented signals

f1 mean f1 std f1 mean f1 std

Decision Tree (baseline [11]) 0.8214 0.0323 0.8881 0.0512
K-Nearest Neighbor (baseline [12]) 0.8042 0.0518 0.8921 0.0604
Gaussian Naive Bayes (baseline [12]) 0.7475 0.0182 0.7893 0.0295
Support Vector Machine (baseline [13]) 0.8821 0.0216 0.8946 0.0241
Gaussian Process Classifier (baseline [14]) 0.0000 0.0000 0.0000 0.0000
Multi-layer Perceptron (baseline [15]) 0.8924 0.0349 0.9059 0.0464
Support Vector Machine (baseline [16]) 0.8755 0.0176 0.9004 0.0455
Auto-Sklearn (ensemble size 1) 0.9576 0.0158 0.9509 0.0291
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ranges of the sensor data, especially the torque, vary between 
the respective machine tools. Therefore, the question arises 
how robust the monitoring system is for new and unseen ball 
screws. In the adapted evaluation mode, the data is itera-
tively partitioned so that Auto-Sklearn is applied to the ball 
screws of each machine tool separately (outer ball screw 
cross-validation mode). In each iteration, data from one ball 
screw is included in the test set and data from the remain-
ing ball screws are included in the training set. To optimize 
Auto-Sklearn, a fivefold inner cross-validation is performed 
using training data. The ensemble size is set to 1 for Auto-
Sklearn. The results for an ensemble size of 10 is shown in 
the appendix. For the ball screws that contain anomalies 
(Bs7-pre, Bs11-pre, Bs12-pre, Bs13-pre), the f1-metric is 
used to evaluate the monitoring quality. For the remaining 

ball screws that do not contain faulty time series, the false 
alarm rate FAR according to Eq. (21) is used for evaluation:

The false alarm rate FAR is calculated by dividing the 
normal condition time series that are falsely declared as 
faulty time series by all normal condition time series to be 
tested. The results of the evaluation are shown in Table 6.

The evaluation is performed considering segmented and 
non-segmented time series and different sensor groups. It 
should be noted that ball screw Bs12-pre is in a faulty state 
when the data acquisition started. It is observed that the 
number of detected faulty time series is significantly lower 
compared to the previous evaluation mode. This is due to 

(21)FAR =
misclassified normal cycles

number of normal cycles
.

Fig. 8   Frequency of chosen models and chosen feature pre-processing methods by Auto-Sklearn (ensemble size 1) in case of non-segmented test 
cycles

Fig. 9   Incumbent performance 
over time (median) in case of 
non-segmented test cycles
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the fact that the sensor value trajectories and distributions 
differ for each ball screw. In addition, the adaptive evalu-
ation mode provides significantly fewer fault data to learn 
anomaly patterns in cases where faulty ball screw drives 
are tested. Condition changes are detected only in advanced 
faulty states in the case of ball screws bs7-pre, bs11-pre, 
and bs13-pre. As a result, the number of available fault data 
is not sufficient to detect incipient anomalies in the transi-
tion phase. Condition changes of ball screw bs7-pre are only 
detected using the acceleration sensors Acc1−3 . Considering 
the acceleration signals Acc1−3 , a larger number of faulty 
test cycles are detected compared to using the torque signal 
MBSD . Therefore, it is concluded that the torque signal is not 
sufficient for robust detection of faulty conditions. When 
utilizing all available sensor signals ( MBSD , Acc1−3 , Spi ), 
condition changes of ball screws bs11-pre, bs12-pre, and 
bs13-pre are detected in the segmented and non-segmented 
case. Due to the lower amount of detected fault cycles, the 
acceleration and torque signals should be evaluated sepa-
rately. However, the false alarm rate is the lowest across all 
ball screws considering all available sensors.

5.2 � Semi‑supervised anomaly detection

The first step evaluates the suitability of signal thresh-
old-based approaches for semi-supervised anomaly 

detection of ball screw drives in machine tool fleets. 
These approaches are applied when limited or no infor-
mation about faults is available. The results for the seg-
mented sensor signals are presented since the monitor-
ing quality is superior compared to the non-segmented 
case. The signal threshold-based approaches are applied 
first. According to Eq. (11), fixed limits are determined 
for various signal features based on the test cycles that 
describe the normal condition. However, a variety of 
challenges exist in the application of fixed limits. This 
approach is suitable for simple anomalies where compli-
cated interactions between signal features do not need 
to be evaluated. Figure 10 illustrates the fixed limits 
( � = 1.1, 1.2 ) for the peak-to-peak value of the segmented 
torque signal MBSD computed based on the first ten nor-
mal running test cycles.

Condition changes are reliably detected in the case 
of ball screw bs11-pre. It is observed that in the case of 
ball screws bs7-pre, bs12-pre, and bs13-pre, the feature 
changes with the replacement of the ball screw rather than 
with the occurrence of the anomaly. Similarly, in case ball 
screw bs13-pre, the feature changes at the beginning of 
data recording, so anomalies are not detected. In addition, 
false alarms are issued for the peak-to-peak feature in case 
of ball screws bs3, bs8, and bs9 without any anomalies 
occurring. In summary, fault patterns vary, and thus, the 

Table 6   Performance indicators 
overview applying Auto-
Sklearn (outer ball screw cross-
validation mode)

*At the start of the data acquisition, ball screw drive bs12-pre is already in fault condition

Ball screw (test) Segmented Non-segmented

Torque
MBSD

Acceleration
Acc1−3

All sensors
MBSD , 
Acc1−3,Spi

Torque
MBSD

Acceleration
Acc1−3

All sensors
MBSD , Acc1−3
,Spi

f1 FAR f1 FAR f1 FAR f1 FAR f1 FAR f1 FAR

Bs1 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00
Bs2 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00
Bs3 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00
Bs4 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00
Bs5 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00
Bs6 - 13.87 - 0.01 - 9.49 - 0.03 - 0.00 - 0.00
Bs7-pre 0.00 - 37.50 - 0.00 - 0.00 - 25.00 - 0.00 -
Bs7-post - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00
Bs8 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00
Bs9 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00
Bs10 - 2.65 - 0.00 - 0.00 - 21.12 - 0.00 - 0.70
Bs11-pre 0.00 - 65.82 - 49.32 - 65.82 - 58.67 - 46.38 -
Bs11-post - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00
Bs12-pre* 22.22 - 91.18 - 90.41 - 100.0 - 99.32 - 100.00 -
BS12-post - 0.00 - 37.5 - 0.00 - 0.00 - 0.00 - 0.00
Bs13-pre 24.39 - 38.10 - 20.00 - 5.71 - 34.15 - 25.64 -
Bs13-post - 0.00 - 12.50 - 0.00 - 0.00 - 75.00 - 0.00
Mean 1.27 3.85 0.73 1.63 5.77 0.05
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present monitoring problem cannot be solved considering 
single features without evaluating interactions of features. 
Some sensor features vary independently of the ball screw 
condition which increases the risk of false alarms. This is 
also true for the triaxial accelerometer signals Acc1−3 and 
the spindle accelerometer Spi.

In addition, the monitoring quality of the tolerance bands 
presented in Chapter 4.2.2 is evaluated. In Fig. 11, tolerance 
bands ( � = 6 , � = 0.4 ) using the segmented torque MBSD 
and the acceleration signal Acc1 of ball screw bs11-pre are 
shown. Signal changes in the case of torque and acceleration 
signals are not detected as the anomalies occur. The number 
of false alarms increases significantly when the safety factor 
� is reduced. It should be noted that tolerance bands only 

evaluate the time domain of the signals. In summary, it can 
be stated that the presented threshold-based approaches are 
not suitable for robust ball screw monitoring in machine 
tools.

The next step uses uniform outlier scores for ball screw 
drive monitoring. For this purpose, a so-called baseline 
model is trained based on data describing the normal con-
dition of ball screws. The outlier score is used as a health 
indicator to evaluate the ball screw condition. Since no fault 
data is available, the outlier score is calculated based on cer-
tain feature groups described in Chapter 4.2. In addition, the 
evaluation of the monitoring quality for the torque MBSD and 
acceleration signals Acc1−3 is performed separately. This is 
due to the fact that condition changes are not always visible 

bs7-pre bs11-pre

bs12-pre bs13-pre

-post

-post-post

Fig. 10   Visualization of fixed limits for ball screw drive monitoring; (red) start of degradation and (black) replacement of a ball screw (Robust 
monitoring results cannot be achieved by fixed limits over individual features)

Fig. 11   Visualization of tolerance bands for ball screw drive monitoring (condition changes of ball screw drives are often not detected)
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in the torque signals (e.g., for ball screw Bs7-pre). Conse-
quently, the number of detected anomalies is reduced by 
combining the outlier scores of the torque and the accelera-
tion signals.

The KNN-score is utilized to produce outlier scores. The 
number of k-nearest neighbors ( k = 5) and the distance met-
ric (Minkowski metric) are chosen. The risk factor � is set 
to 10−5 . The PyOD python library [55] is applied to cal-
culate the raw values of the outlier scores. Gaussian scal-
ing is first implemented to normalize the outlier scores. 
The outlier scores of the triaxial accelerometers Acc1−3 are 
aggregated into an ensemble using Eq. (9). This step is nec-
essary because these signals vary significantly compared to 
the torque signal in the normal state, increasing the risk of 
false alarms.

Overall, two approaches are evaluated to split the dataset 
and apply the baseline model. The first approach performs a 
ball screw cross-validation. In each iteration, one ball screw 
is used as the test data set. The remaining ball screws with-
out anomalies represent the training data set. Table 7 depicts 
the results of the evaluation. It is observed that in the case of 
torque MBSD , faulty states are detected for ball screw Bs11-
pre by using all feature groups. However, the number of 
detected faulty test cycles depends on the feature group used. 
The highest f1-score of 85.42 is obtained using the peaks of 
the frequency spectrum. No faulty test cycles are detected 

for the Bs7-pre and Bs13-pre ball screws. This is due to the 
fact that no changes in the torque signal occur in the case of 
the Bs7-pre ball screw. In the case of the Acc1−3 accelerom-
eters, no faulty test cycles are detected overall. The result 
indicates that this application method is unsuitable for robust 
monitoring regarding the low number of detected anomalies.

The evaluation mode is changed in the second step. In 
each iteration, only the data of the particular ball screw to 
be tested is considered (separate training mode). The ini-
tial training database represents the first 10 test cycles of 
the tested ball screw. For all remaining test cycles without 
anomalies of the same ball screw, it is iteratively checked 
whether false alarms are issued. After each iteration, the 
tested test cycle is added to the training database. For those 
ball screws without anomalies, the false alarm rate FAR is 
calculated. For all other ball screws containing faulty test 
cycles, the f1-score is applied to determine the monitoring 
quality.

The evaluation results are presented in Table 8. For the 
torque MBSD signals, an f1-score of 98.18 is obtained using 
the peaks of the frequency spectrum for ball screw Bs11-pre. 
In addition, faulty test cycles are also detected for ball screw 
Bs13-pre (f1-score: 72.41). It is recognized that the number 
of false alarms increased significantly compared to the first 
evaluation mode. This is caused by a lower number of train-
ing samples. False alarms are generated in the case of 5 ball 

Table 7   Performance indicators 
overview applying unified 
outlier scores (ball screw cross-
validation, gaussian scaling)

*At the start of the data acquisition, ball screw drive bs12-pre is already in a faulty condition

Ball screw (test) General purpose features Autocov. features Peaks frequency spectrum

Torque
MBSD

Acceleration
Acc1−3

Torque
MBSD

Accelera-
tion
Acc1−3

Torque
MBSD

Accelera-
tion
Acc1−3

f1 FAR f1 FAR f1 FAR f1 FAR f1 FAR f1 FAR
Bs1 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00
Bs2 - 0.00 - 62.59 - 0.00 - 0.00 - 0.00 - 0.00
Bs3 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00
Bs4 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00
Bs5 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00
Bs6 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00
Bs7-pre 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 -
Bs7-post - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00
Bs8 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00
Bs9 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00
Bs10 - 1.32 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00
Bs11-pre 35.82 - 0.00 - 73.56 - 0.00 - 85.42 - 0.00 -
Bs11-post - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00
Bs12-pre* - - - - - - - - - - - -
Bs12-post - 68.97 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00
Bs13-pre 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 -
Bs13-post - 5.00 - 0.00 - 10.00 - 0.00 - 0.00 - 0.00
Mean 5.79 4.81 0.77 0.00 0.00 0.00
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screws (Bs3, Bs5, Bs6, Bs7-post, Bs8). Condition changes 
are detected for the acceleration signals Acc1−3 considering 
the general purpose features for the ball screws BS7-pre, 
Bs11-pre, and Bs13-pre. However, false alarms are issued 
for ball screws Bs2, Bs3, Bs4, Bs5, and Bs8.

Subsequently, gamma scaling is applied to normalize 
the regularized outlier scores. The corresponding results 
are illustrated in Table 9. In comparison with Gaussian 
scaling, the number of false alarms is reduced. Robust 
monitoring results are obtained for the torque signals 
MBSD considering the peaks of the frequency spectrum. 
Condition changes are detected for ball screws Bs11-
pre and Bs13-pre. At the same time, no false alarms are 
produced. No false alarms are generated in the case of 
ball screw bs6 despite signal changes in the frequency 
spectrum of the torque signal. This is due to the fact 
that these signal changes occurred in the first test cycles 
which are part of the initial training database. For the 
acceleration signals Acc1−3 , the features of the auto-
covariance are suitable for monitoring. However, the 
number of detected faulty test cycles is lower than the 
torque for the Bs11-pre (f1-score: 58.97) and Bs13-pre 

(f1-score: 36.36) ball screws. Comparing the results 
between Table 7 and Table 9, it is evident that the moni-
toring quality is significantly increased by the separated 
training of the baseline model. Apart from ball screw 
bs11-pre, condition changes of ball screw bs13-pre are 
also detected in the separate training mode.

In summary, the separate training of the baseline model is 
necessary because the distribution of the sensor data for each 
machine tool shows significant differences. In addition to 
Gaussian and gamma scaling, linear scaling is also applied 
to normalize the outlier scores. However, the number of false 
alarms generated is significantly higher than Gaussian and 
gamma scaling.

6 � Conclusion

This paper presents machine learning approaches for ball 
screw drive monitoring in machine tool fleets. The data 
set originates from test cycles of thirteen identical 5-axis 
machine tools used in series production. The results are as 
follows:

Table 8   Performance indicators 
overview applying unified 
outlier scores (separate training, 
gaussian scaling)

*At the start of the data acquisition, ball screw drive bs12-pre is already in a faulty condition

Ball screw (test) General purpose features Autocov. features Peaks frequency spectrum

Torque
MBSD

Acceleration
Acc1−3

Torque
MBSD

Acceleration
Acc1−3

Torque
MBSD

Accelera-
tion
Acc1−3

f1 FAR f1 FAR f1 FAR f1 FAR f1 FAR f1 FAR
Bs1 - 0.00 - 0.00 - 0.79 - 0.00 - 0.00 - 0.00
Bs2 - 0.78 - 3.10 - 6.20 - 0.78 - 0.00 - 0.00
Bs3 - 2.33 - 0.78 - 1.55 - 1.55 - 0.78 - 0.00
Bs4 - 0.78 - 1.55 - 2.33 - 0.78 - 0.00 - 0.00
Bs5 - 1.59 - 3.17 - 3.97 - 3.17 - 0.79 - 0.00
Bs6 - 2.36 - 0.00 - 3.15 - 0.00 - 1.57 - 0.00
Bs7-pre 20.00 - 60.00 - 18.18 - 0.00 - 0.00 - 0.00 -
Bs7-post - 4.00 - 0.00 - 0.00 - 0.00 - 4.00 - 0.00
Bs8 - 6.14 - 1.75 - 3.51 - 1.75 - 1.75 - 0.00
Bs9 - 2.83 - 0.00 - 2.83 - 0.00 - 0.00 - 0.00
Bs10 - 3.55 - 0.00 - 2.13 - 0.00 - 0.00 - 0.00
Bs11-pre 90.00 - 82.98 - 86.87 - 65.85 - 98.18 - 0.00 -
Bs11-post - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00
Bs12-pre* - - - - - - - - - - - -
Bs12-post - 0.00 - 0.00 0.00 - 0.00 - 0.00 - 0.00
Bs13-pre 0.00 - 40.00 - 0.00 - 43.48 - 72.41 - 0.00 -
Bs13-post - 10.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00
Mean 2.64 0.80 2.04 0.62 0.68 0.00
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1.	 Challenges in ball screw drive monitoring consist of the 
limited amount of fault data and changes in the monitor-
ing signals in the normal state.

2.	 The data analysis reveals that the internal control data 
(torque) evaluation is insufficient for detecting condition 
changes in all ball screw drives.

3.	 Supervised machine learning methods are suitable for 
data-based ball screw anomaly detection in case the 
condition labels are given. In this context, a monitor-
ing approach based on automated machine learning is 
developed to detect condition changes. Several strate-
gies are examined to split the data to achieve the highest 
possible generalizability and robustness. The proposed 
approach achieved better classification results compared 
to literature approaches. Taking into account external 
sensors (acceleration data), condition changes are cor-
rectly detected for all ball screw drives. However, the 

available data are not sufficient to learn the transition 
phase between normal and faulty states.

4.	 In addition, a semi-supervised anomaly detection 
approach based on uniform outlier scores is applied. A 
baseline model is used to learn the normal state of the 
ball screw drives. Condition changes are detected using 
an outlier score of the baseline model. By using unified 
outlier scores it is possible to build robust ensembles 
of acceleration signals to prevent false alarms. Robust 
results are obtained applying the k-nearest neighbor 
outlier score and gamma scaling. It is found that a base-
line model should be trained specifically for each ball 
screw separately. In addition, the sensor signals should 
be evaluated separately in the semi-supervised anom-
aly detection mode. The presented approach achieves 
a better monitoring quality than signal threshold-based 
approaches such as tolerance bands and fixed limits.

Table 9   Performance indicators 
overview applying unified 
outlier scores (separate training, 
gamma scaling)

*At the start of the data acquisition, ball screw drive bs12-pre is already in a faulty condition

Ball screw (test) General purpose features Autocov. features Peaks frequency spectrum

Torque
MBSD

Acceleration
Acc1−3

Torque
MBSD

Acceleration
Acc1−3

Torque
MBSD

Accelera-
tion
Acc1−3

f1 FAR f1 FAR f1 FAR f1 FAR f1 FAR f1 FAR
Bs1 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00
Bs2 - 0.00 - 1.55 - 0.00 - 0.78 - 0.00 - 0.00
Bs3 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00
Bs4 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00
Bs5 - 0.00 - 0.79 - 0.00 - 0.79 - 0.00 - 0.00
Bs6 - 0.79 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00
Bs7-pre 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 -
Bs7-post - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00
Bs8 - 0.88 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00
Bs9 - 0.00 - 0.00 - 0.94 - 0.00 - 0.00 - 0.00
Bs10 - 2.13 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00
Bs11-pre 87.76 - 0.00 - 73.56 - 58.97 - 98.15 - 0.00 -
Bs11-post - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00
Bs12-pre* - - - - - - - - - - - -
Bs12-post - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00
Bs13-pre 0.00 - 24.39 - 0.00 - 36.36 - 72.41 - 0.00 -
Bs13-post - 10.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00
Mean 1.06 0.18 0.07 0.12 0.00 0.00
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