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Outline
• Why high beta Spherical Tokamaks? Brief reminder of F. Casson’s talk
• Accessing large β’. Brief reminder of B. Davies’ poster
• An introduction to the TDoTP high-q0 equilibrium.
• Linear microstability analysis. Brief reminder of B. Patel’s poster
• Nonlinear local gyrokinetic calculations.
• Future directions.
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Why High-β Spherical Tokamaks?
• Compact reactors can offer benefits

→ Cheaper and quicker to build.
→ Not without challenge.

• Fusion performance dependent on pressure
→ Aiming for high core pressure.
→ Either large radius, shallow gradient or 

____small radius, high gradient.
• Spherical tokamaks good candidate, more 

efficient use of magnetic field.
→ High elongation
→ Relatively low field, high pressure.
→ High beta.
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Why High-β Spherical Tokamaks?
• Clearly not as simple as just deciding to have steep 

gradients!

• Achievable gradients depends on sources and 
transport processes.

→ Feasibility of compact ST reactor depends   
____crucially on turbulence and confinement.

• Know β and β’ can modify electrostatic instabilities 
as well as driving new ones.

→ What does micro-stability and turbulence look 
____like in such a device?

→ Step change from current devices?

Varenna-Lausanne 16/09/2022 5

GS2 simulations from ST power plant 
study find all electrostatic modes 
stable, different classes of 
microtearing modes (MTM) at all 
scales.
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Compact High β => High β’
• Steeper gradients in compact devices 

to reach same volume averaged β as 
conventional. 

• High β ST reactor needs both high β 
and β’
→ Similar to pedestal conditions.
→ Pressure gradient limits from KBM? 

• Can use to help guide equilibrium 
design to optimise against KBM 
stability.
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Compact High β => High β’
• Steeper gradients in compact devices 

to reach same volume averaged β as 
conventional. 

• High β ST reactor needs both high β 
and β’
→ Similar to pedestal conditions.
→ Pressure gradient limits from KBM? 

• Can use to help guide equilibrium 
design to optimise against KBM 
stability.
  → Maximise 2nd stability access
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Unstable

Stable

Compact ST 
requirement?

[R. Davies et. al Plasma Phys. Control. Fusion 64 105001 (2022) and Poster here]



KBMs as a shaping constraint 
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[R. Davies et. al Plasma Phys. Control. Fusion 64 105001 (2022) and Poster here]

-ve triangularity
(triLCFS = -0.3)
(q0 = 2.58)

+ve triangularity 
(triLCFS = 0.54)

(q0 = 1.38)

+ve triangularity 
(triLCFS = 0.54)

(q0 = 2.71)

Improving KBM 
stability and 
second stability 
access.



The high q0 TDoTP baseline equilibrium
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[H. Wilson et al, Zenodo 
10.5281/zenodo.4641183]

• High q0=2.71 TDoTP baseline 
equilibrium
→ ideal MHD stable
→ β=18.6%
→ βN=5.47
→ 𝛋LCFS=2.8
→ δLCFS=0.54
→ Pfus= 808 MW
→ Paux= 60 MW
→ Pheat= 220 MW
→ J = 16.5 MA
→ JBS=11 MA (67%)



The high q0 TDoTP baseline equilibrium
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Roughly 
constant 
pressure 
length 
scale

Peaked η 
near 
mid-radius

Relatively 
low shear 
across 
core

High q0

Analyse q=3.5, ѱN~0.5 
surface
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Linear stability analysis - dominant modes
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Ion 
scale

Intermediate 
scale (ky⍴i ~ 4)

● At intermediate scale find dominated 
by collisionless MTM.

● No electron scale modes unstable.

● At ion scale dominated by KBM like 
mode (more on this later).



Linear stability analysis - dominant modes
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Ion 
scale

● At ion scale dominated by KBM like 
mode (more on this later).

Importance 
of collisions

Intermediate 
scale (ky⍴i ~ 4)

● At intermediate scale find dominated 
by collisionless MTM.

● No electron scale modes unstable.



Linear stability analysis - what is ion scale mode?
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Unstable

Stable
Equilibrium

● Called the low n mode KBM, but 
equilibrium supposed to be optimised 
against this!

● Ideal ballooning calculation confirms 
surface is far away from ideal stability 
boundary.

● So what is the mode? 



Linear stability analysis - what is ion scale mode?
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● Try scaling β and look at response.

● When done consistently, mode 
continuously tracked back to electrostatic 
limit → Not purely EM.

● Purely electrostatic simulation (with β’≠0) 
stabilised as β increased.

● When β’ held fixed mode stabilised as  β 
dropped → Accessing EM drive.

● Requires B|| to access EM drive.

● Consistent with coupled KBM-ITG, similar 
behaviour seen in JET [C. Bowman et al 
2018 Nucl. Fusion 58 016021]



Linear stability analysis - subdominant modes
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● Find highly extended kx⍴e~1, 
collisional MTM subdominant at ion 
scales.

● Nothing subdominant at intermediate 
scales.

● Similar picture across most of core 
surfaces. Changes in pedestal.

● Very similar to [B.S. Patel et al Nucl. 
Fusion 62 016009 (2022)].

● Low q0 case broadly similar but KBM 
stability worse at low n.



Linear stability analysis - sheared flows
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● At ion scale find KBM very sensitive to 
θ0, MTM insensitive → KBM likely 
suppressed by sheared flows.

● At intermediate scale MTM sensitive 
to θ0 and also find growth rate peaks 
inboard. [B.S. Patel et al Nucl. Fusion 62 
016009 (2022) + poster]



Linear stability analysis - sheared flows
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Might expect sheared flows to be effective at 
suppressing dominant modes, 
but not the subdominant MTM

● At ion scale find KBM very sensitive to 
θ0, MTM insensitive → KBM likely 
suppressed by sheared flows.

● At intermediate scale MTM sensitive 
to θ0 and also find growth rate peaks 
inboard. [B.S. Patel et al Nucl. Fusion 62 
016009 (2022) + poster]
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Nonlinear simulations – Flux tube setup
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● Subdominant MTM pose extreme 
resolution requirements
→ Define two types of simulation.

ky⍴i < 1

ky⍴i ~ 4

ky⍴i ~ 60

kx⍴i ~ 60kx⍴i ~ 1

KBM

MTM

MTM

Too expensive!



Nonlinear simulations – Flux tube setup
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● Subdominant MTM pose extreme 
resolution requirements
→ Define two types of simulation.

ky⍴i < 1

ky⍴i ~ 4

ky⍴i ~ 60

kx⍴i ~ 60kx⍴i ~ 1

KBM

MTM

MTM

Dominant modes



Nonlinear simulations – Flux tube setup
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● Subdominant MTM pose extreme 
resolution requirements
→ Define two types of simulation.

ky⍴i < 1

ky⍴i ~ 4

ky⍴i ~ 60

kx⍴i ~ 60kx⍴i ~ 1

KBM

MTM

MTM

Ion scale modes



Nonlinear simulations – Flux tube setup
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● Subdominant MTM pose extreme 
resolution requirements
→ Define two types of simulation.

● Dominant modes – which treats the full 
range in ky but do not attempt to resolve 
high kx ion-scale MTM.

High ky range
Small kx range



Nonlinear simulations – Flux tube setup
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● Subdominant MTM pose extreme 
resolution requirements
→ Define two types of simulation.

● Dominant modes – which treats the full 
range in ky but do not attempt to resolve 
high kx ion-scale MTM.

● Ion scale – which only treat the ion scale 
ky but attempt to resolve subdominant 
MTM – Come back to this one later.

High ky range
Small kx range



Nonlinear simulations - Dominant modes
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● Simulate dominant modes case with 
both GS2 and CGYRO.

● Find early phase pseudo-saturation 
but this is lost after a short time and 
heat fluxes increase rapidly.

● Fairly good quantitative agreement 
between codes and very good 
qualitative agreement, including 
loss of saturation. 

● Suggests not purely numerical in 
origin.

26



Nonlinear simulations - Dominant modes
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● See early growth coming from 
intermediate scale MTM (largest growth 
rate). Initially dominates. 

● Ion scale modes growing up and 
associated with loss of saturation.

A||

ɸ



Nonlinear simulations - Suppressing KBM
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● Loss of saturation thought to be linked to 
KBM. Try removing this.

● Can remove B||, reduced driving gradient 
or β (all β’ fixed).

● Find these all avoid loss of saturation 
(or at least delay it).

● Qualitative agreement between codes 
but ~33% difference.

● QGB~ 2 MW/m-2, A ~ 220 m2. 
Q/QGB = 5 
→ Power crossing surface ~ 2.2GW, 
c.f. 220 MW heating.



Nonlinear simulations - Impact of sheared flow
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● Sheared flows expected to linearly 
impact intermediate scale MTM.

● Find substantial reduction in 
Q/QGB as shearing rate increases.

● Still ~ 4x heating power for 
maximum shearing rate considered 
(above diamagnetic level, ~0.05 - 
0.1).

● Prediction of flow profiles in such 
equilibria important to narrow 
down predictions.



Nonlinear simulations – Flux tube setup
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● Subdominant MTM pose extreme 
resolution requirements
→ Define two types of simulation.

ky⍴i < 1

ky⍴i ~ 4

ky⍴i ~ 60

kx⍴i ~ 60kx⍴i ~ 1

KBM

MTM

MTM

Ion scale modes



Nonlinear simulations - Flux tube setup - ion scale
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Small ky range 
High kx range Small ky range 

High kx range

Exclude KBM

Subdominant mode

● Dominant mode easy to resolve, subdominant 
much more challenging! Exclude KBM here.

Dominant mode



Nonlinear simulations - ion scale
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● Focus on ion scale only. Find saturation 
at ~50x lower level. 

● Corresponds to ~ 40 MW crossing!

● Good agreement between codes.
● Less agreement in particle flux (but very 

sensitive to sheared flow).



Nonlinear simulations - ion scale

Varenna-Lausanne 16/09/2022 33

● If we run for longer find saturation lost.
● GS2 suffers numerical issue 
● CGYRO more physical? Sees Q/QGB > 30

● More work required to diagnose loss of 
initial saturation in CGYRO. Q remains 
dominated by A|| → Still MTM related?
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Summary and next steps
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● High β concept ST (high q0 TDoTP) studied with local gyrokinetics.

● Linearly find:
→ Dominated by KBM (hybrid) at ion scale ky, collisionless MTM at intermediate scale.
→ Subdominant collisional MTM with ion scale ky but electron scale kx.
→ No purely electron scale instability.

● Nonlinear simulations resolving only dominant modes:
→ Pseudo-saturates at early time, dominated by intermediate MTM.
→ Saturation quickly lost due to KBM.
→ If KBM removed saturation persists for a long time, but ~10x heating power.
→ Saturation sensitive to sheared flows - role for integrated modelling, momentum 
transport, higher order GK (see H Wilson poster) to make predictions of shearing rate.

● Nonlinear simulations resolving only ion scale MTM:
→ Saturates with power less than/equivalent to heating power but saturation lost at late t.
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Summary and next steps
Varenna-Lausanne 16/09/2022 

● Attempted to optimise for IBM/KBM stability in equilibrium design
→ KBM less unstable, but still present (hybridises) and drives large heat flux.
→ Can we further optimise KBM and do we have all required physics (global)? 

● Intermediate scale MTM drives significant flux. How do we optimise against this?
→ Peaking density gradient should help [B.S. Patel et al Nucl. Fusion 62 016009 (2022)] 
but what about wider impact? 

● Looks like high β ST reactor designs could have consistent transport at high gradient. 
Even if these targets points are consistent can we get there? Integration [F. Casson talk]

● Power plant and scenario development need reliable reduced models for rapid design 
iteration but new parameter regimes naturally poses challenges for existing models
→ Pursue first principles approaches - guide development of appropriate reduced models.

● Much more to do!
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Thank you for your attention
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Backup slides

Varenna-Lausanne 16/09/2022 38



Code comparisons and pyrokinetics
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• Predictions from turbulence simulations must be reliable

• It helps to identify numerical issues (is this a physical or numerical instability?)

• Different numerical methods: strengths and bottlenecks

• Codes considered here: CGYRO and GS2 (local linear and nonlinear 

simulations)

• Use of pyrokinetics python library to facilitate input file conversion between 

codes (https://github.com/pyro-kinetics/pyrokinetics) 

https://github.com/pyro-kinetics/pyrokinetics


The high q0 TDoTP baseline equilibrium
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[H. Wilson et al, Zenodo 
10.5281/zenodo.4641183]

• High q0=2.71 TDoTP baseline 
equilibrium (STEP SPR 46 - from 
F Casson talk)
→ ideal MHD stable
→ β=18.6%
→ βN=5.47 (4.1)
→ 𝛋LCFS=2.8
→ δLCFS=0.3
→ Pfus= 808 MW (1.77 GW)
→ Paux= 60 MW (154 MW)
→ Pheat= 220 MW (508 MW)
→ J = 16.5 MA (22 MA)
→ JBS=11 MA (67%) (78%)



Nonlinear simulations - Dominant modes
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● Dominated by A|| channel → MTM?
● Breakdown of transport channels 

perhaps in less good agreement.

● See loss of saturation coincident with 
increase in electrostatic contribution. 



Nonlinear simulations - Dominant modes
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● Dominated by A|| channel → MTM?
● Breakdown of transport channels 

perhaps in less good agreement.

● See loss of saturation coincident with 
increase in electrostatic contribution. 

● Particle flux also increases → KBM?



Nonlinear simulations - Sheared flow
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● Sheared flows expected to linearly 
impact intermediate scale MTM.

● Find substantial reduction in Q/QGB 
as shearing rate increases.

● Still ~4x heating power for 
maximum shearing rate considered.

● Prediction of flow profiles in such 
equilibria important to narrow 
down predictions.

● Sheared flow strongly reduces 
particle transport observed.


