Turbulent Dynamics of Tokamak Plasmas (TDoTP) www.tdotp.ac.uk

Microstability and transport in high- β spherical tokamaks

D Dickinson*^{,1}, M S Anastopoulos-Tzanis^{1,3}, A Bokshi¹, R Davies¹, M Giacomin¹, D Kennedy², B S Patel², L Richardson¹, C M Roach², H R Wilson¹

- *1. York Plasma Institute, School of Physics, Engineering and Technology, University of York, Heslington, York, YO10 5DD, United Kingdom*
- *2. Culham Centre for Fusion Energy, UKAEA, Abingdon, OX14 3EB, UK*
- *3. Now at Tokamak Energy Ltd, 173 Brook Drive, Milton Park, Oxfordshire, OX14 4SD, UK*

*d.dickinson@york.ac.uk

Authors of this work are supported via EPSRC Grant EP/R034737/1 and UKAEA's STEP project.

Outline

- Why high beta Spherical Tokamaks?
- Accessing large β'.
- An introduction to the TDoTP high-q₀ equilibrium.
- Linear microstability analysis.
- Nonlinear local gyrokinetic calculations.
- Future directions.

Outline

- Why high beta Spherical Tokamaks? **Brief reminder of F. Casson's talk**
- Accessing large β'. **Brief reminder of B. Davies' poster**
- An introduction to the TDoTP high-q₀ equilibrium.
- Linear microstability analysis. **Brief reminder of B. Patel's poster**
- Nonlinear local gyrokinetic calculations.
- Future directions.

Why High-β Spherical Tokamaks?

- Compact reactors can offer benefits
	- \rightarrow Cheaper and quicker to build.
	- \rightarrow Not without challenge.
- Fusion performance dependent on pressure
	- \rightarrow Aiming for high core pressure.
	- \rightarrow Either large radius, shallow gradient or small radius, high gradient.
- Spherical tokamaks good candidate, more efficient use of magnetic field.
	- \rightarrow High elongation
	- \rightarrow Relatively low field, high pressure.
	- → **High beta.**

Why High-β Spherical Tokamaks?

GS2 simulations from ST power plant study find **all** electrostatic modes stable, different classes of microtearing modes (MTM) at all scales.

[H R Wilson et al, Nuclear Fusion, 44, 917 (2004)]

- Clearly not as simple as just deciding to have steep gradients!
- Achievable gradients depends on sources and transport processes.
	- \rightarrow Feasibility of compact ST reactor depends ____crucially on turbulence and confinement.
- Know β and β' can modify electrostatic instabilities as well as driving new ones.
	- \rightarrow What does micro-stability and turbulence look like in such a device?
	- \rightarrow Step change from current devices?

Outline

- Why high beta Spherical Tokamaks?
- **• Accessing large β'.**
- An introduction to the TDoTP high-q₀ equilibrium.
- Linear microstability analysis.
- Nonlinear local gyrokinetic calculations.
- Future directions.

Compact High β => High β'

- Steeper gradients in compact devices to reach same volume averaged β as conventional.
- High β ST reactor needs both high β and β'
	- \rightarrow Similar to pedestal conditions.
	- \rightarrow Pressure gradient limits from KBM?
- Can use to help guide equilibrium design to optimise against KBM stability.

Compact High β => High β'

- Steeper gradients in compact devices to reach same volume averaged β as conventional.
- High $β$ ST reactor needs both high $β$ and β'
	- \rightarrow Similar to pedestal conditions.
	- \rightarrow Pressure gradient limits from KBM?
- Can use to help guide equilibrium design to optimise against KBM stability.
	- → **Maximise 2nd stability access**
- [R. Davies *et. al* Plasma Phys. Control. Fusion **64** 105001 (2022) and Poster here]

Improving KBM stability and second stability access.

[R. Davies *et. al* Plasma Phys. Control. Fusion **64** 105001 (2022) and Poster here]

The high q₀ TDoTP baseline equilibrium

- High q_0 =2.71 TDoTP baseline equilibrium
	- \rightarrow ideal MHD stable
	- \rightarrow β =18.6%

$$
\rightarrow \beta_N = 5.47
$$

$$
\rightarrow \kappa_{\text{LCFS}} = 2.8
$$

 \rightarrow O_{LCFS}-0.54 \rightarrow P_{fus} = 808 MW

$$
\rightarrow P_{\text{aux}}^{\text{us}} = 60 \text{ MW}
$$

 \rightarrow **P**_{heat} = 220 MW \rightarrow J = 16.5 MA

$$
\rightarrow J_{BS} = 11 \text{ MA} (67\%)
$$

[H. Wilson et al, Zenodo 10.5281/zenodo.4641183]

The high q_0 TDoTP baseline equilibrium

Outline

- Why high beta Spherical Tokamaks?
- Accessing large β'.
- An introduction to the TDoTP high-q₀ equilibrium.
- **• Linear microstability analysis.**
- Nonlinear local gyrokinetic calculations.
- Future directions.

Linear stability analysis - dominant modes

At **ion scale dominated by KBM** like mode (more on this later).

- by **collisionless MTM**.
- No electron scale modes unstable.

Linear stability analysis - dominant modes

At **ion scale dominated by KBM** like mode (more on this later).

- At **intermediate scale** find dominated by **collisionless MTM**.
- No electron scale modes unstable.

Linear stability analysis - what is ion scale mode?

- Called the low *n* mode KBM, but equilibrium supposed to be optimised against this!
- Ideal ballooning calculation confirms surface is far away from ideal stability boundary.
- So what is the mode?

Linear stability analysis - what is ion scale mode?

- Try scaling β and look at response.
- When done consistently, mode continuously tracked back to electrostatic limit → **Not purely EM**.
- Purely electrostatic simulation (with $β' ≠ 0$) stabilised as β increased.
- When β' held fixed mode stabilised as β dropped → **Accessing EM drive**.
- **Requires B**_{II} to access EM drive.
- Consistent with coupled KBM-ITG, similar behaviour seen in JET [C. Bowman et al 2018 Nucl. Fusion 58 016021]

Linear stability analysis - subdominant modes

- Find highly extended $k_x \rho_e \sim 1$, **collisional MTM** subdominant at ion scales.
- Nothing subdominant at intermediate scales.
- Similar picture across most of core surfaces. Changes in pedestal.
- Very similar to [B.S. Patel et al Nucl. Fusion 62 016009 (2022)].
- Low q_0 case broadly similar but KBM stability worse at low *n*.

Linear stability analysis - sheared flows

016009 (2022) + poster]

Linear stability analysis - sheared flows

Outline

- Why high beta Spherical Tokamaks?
- Accessing large β'.
- An introduction to the TDoTP high-q₀ equilibrium.
- Linear microstability analysis.
- **• Nonlinear local gyrokinetic calculations.**
- Future directions.

- Subdominant MTM pose extreme resolution requirements
	- \rightarrow Define two types of simulation.

- Subdominant MTM pose extreme resolution requirements
	- \rightarrow Define two types of simulation.

- Subdominant MTM pose extreme resolution requirements
	- \rightarrow Define two types of simulation.

- Subdominant MTM pose extreme resolution requirements \rightarrow Define two types of simulation.
- Dominant modes which treats the full range in k_{y} but do not attempt to resolve high k_x ion-scale MTM.

- Subdominant MTM pose extreme resolution requirements \rightarrow Define two types of simulation.
- Dominant modes which treats the full range in k_{y} but do not attempt to resolve high k_x ion-scale MTM.
- Ion scale which only treat the ion scale k y but attempt to resolve subdominant MTM – Come back to this one later.

Nonlinear simulations - Dominant modes

- Simulate dominant modes case with both GS2 and CGYRO.
- Find early phase pseudo-saturation but this is lost after a short time and heat fluxes increase rapidly.
- Fairly good quantitative agreement between codes and very good qualitative agreement, including loss of saturation.
- **Suggests not purely numerical in origin**.

Nonlinear simulations - Dominant modes

See early growth coming from intermediate scale MTM (largest growth rate). Initially dominates.

Ion scale modes growing up and associated with loss of saturation.

Nonlinear simulations - Suppressing KBM

- Loss of saturation thought to be linked to KBM. Try removing this.
- Can remove B_{\shortparallel} , reduced driving gradient or β (all β' fixed).
- Find these **all avoid loss of saturation** (or at least delay it).
- **Qualitative agreement** between codes but ~33% difference.
- $Q_{GB} \sim 2$ MW/m⁻², A \sim 220 m². $Q/Q_{GB} = 5$ → **Power crossing surface ~ 2.2GW, c.f. 220 MW heating**.

Nonlinear simulations - Impact of sheared flow

- Sheared flows expected to linearly impact **intermediate scale MTM**.
- Find **substantial reduction in** Q/Q_{GB} as shearing rate increases.
- **Still ~ 4x heating power for** maximum shearing rate considered (above diamagnetic level, ~0.05 - 0.1).
- **Prediction of flow profiles in such equilibria important** to narrow down predictions.

Nonlinear simulations - Flux tube setup - ion scale

Dominant mode easy to resolve, subdominant much more challenging! Exclude KBM here.

Nonlinear simulations - ion scale

- Focus on ion scale only. Find saturation at ~50x lower level.
- Corresponds to **~ 40 MW crossing**!
- Good agreement between codes.
- Less agreement in particle flux (but very sensitive to sheared flow).

Nonlinear simulations - ion scale

- If we run for longer find saturation lost.
- **GS2 suffers numerical issue**
- CGYRO more physical? Sees Q/Q_{GB} > 30
- More work required to diagnose loss of initial saturation in CGYRO. Q remains dominated by $A_{\parallel} \rightarrow$ Still MTM related?

Outline

- Why high beta Spherical Tokamaks?
- Accessing large β'.
- An introduction to the TDoTP high-q₀ equilibrium.
- Linear microstability analysis.
- Nonlinear local gyrokinetic calculations.
- **• Future directions.**

Summary and next steps

- \bullet High β concept ST (high q₀ TDoTP) studied with local gyrokinetics.
- Linearly find:
	- \rightarrow Dominated by KBM (hybrid) at ion scale k_{y} , collisionless MTM at intermediate scale.
	- \rightarrow Subdominant collisional MTM with ion scale k_y but electron scale k_x.
	- \rightarrow No purely electron scale instability.
- Nonlinear simulations resolving only dominant modes:
	- \rightarrow Pseudo-saturates at early time, dominated by intermediate MTM.
	- \rightarrow Saturation quickly lost due to KBM.
	- \rightarrow If KBM removed saturation persists for a long time, but ~10x heating power.
	- \rightarrow Saturation sensitive to sheared flows role for integrated modelling, momentum transport, higher order GK (see H Wilson poster) to make predictions of shearing rate.
- Nonlinear simulations resolving only ion scale MTM:
	- \rightarrow Saturates with power less than/equivalent to heating power but saturation lost at late t.

Summary and next steps

- Attempted to optimise for IBM/KBM stability in equilibrium design
	- \rightarrow KBM less unstable, but still present (hybridises) and drives large heat flux.
	- \rightarrow Can we further optimise KBM and do we have all required physics (global)?
- Intermediate scale MTM drives significant flux. How do we optimise against this? \rightarrow Peaking density gradient should help [B.S. Patel et al Nucl. Fusion 62 016009 (2022)] but what about wider impact?
- Looks like high β ST reactor designs *could* have consistent transport at high gradient. Even if these targets points are consistent can we get there? Integration [F. Casson talk]
- Power plant and scenario development need reliable reduced models for rapid design iteration but new parameter regimes naturally poses challenges for existing models \rightarrow Pursue first principles approaches - guide development of appropriate reduced models.
- Much more to do!

Thank you for your attention

Backup slides

Code comparisons and pyrokinetics

- Predictions from turbulence simulations must be reliable
- It helps to identify numerical issues (is this a physical or numerical instability?)
- Different numerical methods: strengths and bottlenecks
- Codes considered here: CGYRO and GS2 (local linear and nonlinear simulations)
- Use of *pyrokinetics* python library to facilitate input file conversion between codes (<https://github.com/pyro-kinetics/pyrokinetics>)

The high q₀ TDoTP baseline equilibrium

- High q_0 =2.71 TDoTP baseline equilibrium (STEP SPR 46 - from F Casson talk)
	- \rightarrow ideal MHD stable

$$
\rightarrow \beta = 18.6\%
$$

$$
\rightarrow \beta_{N} = 5.47(4.1)
$$

- $\rightarrow \kappa_{LCFS}$ =2.8 $\rightarrow \delta$ _{LCFS}=0.3
- \rightarrow P_{fus} = 808 MW (1.77 GW)
- \rightarrow P_{aux}= 60 MW (154 MW)
- \rightarrow **P**_{heat} = 220 MW (508 MW)
- \rightarrow J = 16.5 MA (22 MA)
- \rightarrow J_{BS}=11 MA (67%) (78%)

[H. Wilson et al, Zenodo 10.5281/zenodo.4641183]

• Dominated by A_{\parallel} channel \rightarrow MTM?

perhaps in less good agreement.

• Breakdown of tränsport channels

Nonlinear simulations - Dominant modes

● See **loss of saturation** coincident with **increase in electrostatic** contribution.

• Dominated by A_{\parallel} channel \rightarrow MTM?

perhaps in less good agreement.

• Breakdown of tränsport channels

Nonlinear simulations - Dominant modes

- See **loss of saturation** coincident with **increase in electrostatic** contribution.
- Particle flux also increases \rightarrow KBM?

Nonlinear simulations - Sheared flow

- Sheared flows expected to linearly impact i**ntermediate scale MTM**.
- Find substantial reduction in Q/Q_{GB} as shearing rate increases.
- Still $-4x$ heating power for maximum shearing rate considered.
- **Prediction of flow profiles in such equilibria important** to narrow down predictions.
- Sheared flow strongly reduces particle transport observed.