Universidade Federal da Bahia (UFBA) - BA — Brasil
Orientador: lvan Machado
Discente: Caiza Almeida Fortunato

Preliminary
1.1 ATAM-4SAS

This document aims to present the preliminary concepts that involve the realization
of this focus group. It contains information on the method of analysis to be
addressed during this study. Likewise, the MAPE-K model and the UPPAAL Statistic
Model Checking will be presented. Then, an application of the ATAM-4SAS model is
described, containing 9 phases distributed in two stages.

ATAM-4SAS is an adaptation of ATAM (ATAM - Architecture Tradeoff Analysis
Method) which is a modified architecture Tradeoff analysis method to be used in
self-adapted systems. A self-adaptive system is a closed-loop system capable of
monitoring itself, its context, detecting significant changes, deciding how to react and
taking action to execute those decisions, with as little human interference as
possible. The method consists of 2 phases and 9 steps in total. Steps 1 to 6 make up
phase 1 and steps 7 to 9 are in phase 2. Each step includes the preparation of
documents necessary for the Tradeoff analysis of an ATAM-based architecture.

The first phase is architecture-centric and focuses on extracting information and
analyzing it; the second phase focuses on getting stakeholder views and verifying
the results of the first phase.

To help ATAM deal with trade-offs between quality attributes of self-adaptive
systems, our proposal includes carrying out the MAPE-K modeling, in step 7, using

the UPPAAL SMC tool, as illustrated in the figure. below.

Fase 1

[Etapa 1 - Apresentagido do ATAM adaptado }

[Etapa 2 - Apresentacao do Business Drivers]

[Etapa 3 - Apresentacao da Arquitetura }

[Etapa 4 - Identificacdo da Abordagem Arquitetural]

[Etapa 5 - Geragao da Utility Tree J

Etapa 6 - Analise da Abordagem Arquitetural }

Etapa 7 - Brainstorm e priorizagao dos cenarios]

— Verificador de
- Modelo
(UPPAAL)

[Etapa 8 - Abordagem de Analise da Arquitetura

{ Etapa 9 - Apresentac&o de Resultados J

Documentos

Legenda:

D Etapa do Processo

Artefatos gerado

1.2 MAPE-K model

In the MAPE-K loop, Monitor collects and filters a large amount of data from
managed resources by a touchpoint sensor interface. It correlates them into a
symptom that could be examined. Analyze observes and examines the situation and
decides whether some change needs to be made. Whether a change is required,
Analyze requests a change to Plan. This change request describes the desirable
modification. In its turn, Plan creates or selects a procedure to enable a desired
adjustment in the managed resource. Then, it generates a change plan to Execute,
which performs the procedure that was generated via Plan through a set of actions.
These actions are carried out using the touchpoint effector interface of managed
resources. Finally, Knowledge is an implementation of a registry, dictionary,
database, or another repository that provides access to knowledge according to the
interfaces prescribed by the architecture.

rd
{ Autonomic Elerment
Autonomic Manager
= Analyse Flan -~
H_‘_. S _,.-" -~
., H"-'r.'.'1r':'.-:|nl_e’
Monitorl_ —J ExBrute
| Sensars | Effectors |
r . Sy
Managed Element
Lo —}

e, 4

Fig 1: Monitor-Analyse-Plan-Execute Knowledge (MAPE-K)

1.3 UPPAAL Statistical Model Checking (SMC)

The UPPAAL model-checker is based on the theory of timed automata (TA) and its
modeling language offers additional features such as bounded integer variables.

Besides, UPPAAL is an integrated tool environment for modeling, validation, and
verification of real-time systems modeled as networks of timed automata extended
with data types". Within UPPAAL, a system is modeled as a network of several
timed automata in parallel .

2. Applying the ATAM-4SAS

Next, we will describe the application of each stage of the adapted model through its
application being applied in a smart home project, the SHE. The objective of this
project is to develop a self-adaptive system that works by collecting data from
sensors such as: temperature, water, light, presence, distance, soil moisture, slope
and gas. The SHE must be able to. It has the ability to automatically recognize new
contexts and make the necessary adaptations at runtime.

Phase 1

Step 1 - Present the ATAM: A 30-minute presentation was held to present an
overview of the adapted ATAM to apply to the SHE platform. The list of expected
outputs was also introduced.

Step 2 - Present business drivers: The architect carried out a presentation about the
SHE and the business needs driven by QA goals at a high level of abstraction, e.g.,
driving architectural requirements, and the set of functional requirements the system
should meet. As an output, we created a document containing all the information
related to the business context collected in this step. Table \ref{fig:business}
illustrates this output.

Output Artifact - Step 2: Business Context / Motivators Presentation document

Business Context/Drivers Presentation

1. Description of the business environment.

SHE was designed aimed to reconfigure the system at runtime, according to the environ-
ment where the software is running. To achieve this goal, the system needs to he aware of
the context to which it is embedded. This context awareness is obtained from the sensors
used by the user and the process of installing and uninstalling the features that compose
it. The system adapts according to the set of sensors that were connected by the user.
For this adaptation, the system constructs a screen of presentation based on sensors that
are being used in a certain moment.

2. Description of the technical constraints.

The Context Sensors were developed as a SPL developed in C+ -+, where each sensor was
developed using the same core. Moreover, the core was developed in Java.

3. Quality attributes desired and what business needs these are derived from.

The set of desired quality attributes and business needs. When either adding or removing
the sensors, we want that SHE follows the QQA: performance, availability, cost, scalahbility,
interoperability, robustness, portability, maintainability, and reliability.

Business Context /Drivers Presentation based on the ATAM template.

Step 3 - Present the architecture.

In this step, we could elaborate on an architectural presentation, as Table shows.
Figure shows an activity diagram representing the activities of the proposed
approach, emphasizing the message exchanges among each architectural element.
The diagram comprises a set of activities, numbered in the order they are executed.
It illustrates a scenario in which a new physical sensor is connected to the system,
as explained next:

Artif - : Archi re Pr ntation men

Architecture Presentation

1. Driving architectural requirements.

Driving architectural requirements |performance, availability, cost, sealability, and intero-
perability) uses the MAPE-K model to deal with the problem of automatic reconfipuration
of the software aystem considering its context at runtine.

2. Description of the business constraints.

The system is able to detect 8 sensors (water/homidity, fire, gas, presence himinosity,
inclination, temperature, and soil moisture). When added to the SHE system, it detects if
the feature has already been installed, otherwise, the system performs the feature dowm-
load, installs and displays the data on the system sereen. If the system has the feature
inatalled, it only executes the feature. The moment any sensor is removed or somse failore
ooenrs, the aystem detects and removes the corresponding data from the feature ont of
the acreen.

3. Process/thread.

The core of the syatem is composed of & set of threads. Listener, Manager, and presentation
layer components are threads. Data synchronization between data collected from sensors
developed using Arduino amd the core installed on a Raspherry Pi.

4. Hardware.

The prototypse hardware wes low-cost devices such a8 Arduino and Raspberry Pi. The
former encompasses the Context Sensors and the latter executes both the core amd the
Featnre Area.

H. Architectural approaches or styles employed.

SHE nses the MAPE-K model to support the required information thronghont the sctivi-
tied. The proposed architecture model employs the styles of the component-and-conmector
view-type called Publish-Subseribe to contralize the communication process between the
internal and external environments of the gystem. Such an architectural style enables the
creation of objecta that react to events penerated by their environment, and in turn, it
may impact other components as a gide-effect of their event announcements. The Puoblish-
Subscribe architecture style capability to completely dissociate participants from commn-
nication, allowing the development of more tolerant asynchronows applications. 1t deals
with reliability becanse if the message producer fails the aystem does not stop. SHE nses
ohject-oriented design patterns such as polymorphism and inheritamee that are recurring
design solutions for object-oriented syatems which can improve rensability and maintai-
nahility.

Architecture Presentation based on the ATAM template.

Step 4 - Identify architecture. In this step, the focus is on the analysis of architecture
by understanding the approaches that are used in it. Then, the architect identified the
set of details of the SHE architecture. As a result, we could provide the DSPL
architecture model of the SHE.

The SHE Architecture Model is based on the MAPE-K, and it was designed to
support DSPL engineering. The proposed architecture handles changes in context
and enables dynamic adaptations of the system behavior at runtime. The SHE
Architecture Model comprises a set of features: (i) Context Sensors, (i) DSPL Core,
and (iii) Feature Area. Figure shows the architecture overview, which is detailed next.

Artif. - 4: Sm home proj rchi re m |

Context Sensors

{ Sensor 1 } { Sensor 2] (Sensor 3 J { Sensor n J

2 b

Feature 1 Feature n -
« Config. * Config. “ <:> =
Feature 1 Feature n Listener = 5
et
o 2
93
]
Installer } &
PN N AN
\V Y% AV
Manager

[Legend: <:> Data Flow |:> Context Data FIOW]

Step 5 - Generate and prioritize the QA scenarios:} Alike in a brainstorming session,
we elicited and documented the scenarios for each function of the SHE, and
associated them with a proper QA. After that, we voted the priority of each scenario.
The index establishes a priority value ranging from \textit{Low} to High.

Based on our stated concerns and on our elicitation task, we could generate the
Utility Tree. Through the Utility Tree construction process, we observed that five QA
were the major architectural drivers for the overall system quality: performance,
adaptability, cost, scalability and interoperability. As part of our elicitation process, we
ensured that each of the Utility Tree scenarios had a specific stimulus and response
associated with it.

Figure utility shows a sample Utility Tree. In the Figure, performance, adaptability,
cost, scalability, and interoperability are the high-level nodes. Under each of these
QA there are specific sub-factors. For example, performance is refined in response
time. In its turn, response time is broken down into: “*(i) When a sensor is added, the
system should display the screen correctly in $<$ 3 sec"; and (ii) “"When nine
sensors are added, the system should display the screen correctly in $<$ 42 sec".
These are the key stimuli. Notice that these sub-factors are related to the QA
characterizations.

The prioritization of the Utility Tree is carried out along two dimensions: by the
importance of each node to the success of the system and to the degree of the
perceived risk posed by the achievement of this node (i.e., how easy the architecture

team feels this level of performance, adaptability, or other attributes will be
achieved). Both importance and risk could be High, Medium or Low. For example,
“When a sensor is added, the system should display the screen correctly in $<$ 3
sec" has priorities of (H,L), which means it is of high (H) importance to the success
of the system and pursues a low (L) risk to achieve. Meanwhile, “"When nine
sensors are added there is a reduction in performance" has as priorities the values
(M,H), which means that the success of the system is of \textit{medium (M)
importance} and the achievement of this scenario is perceived to be as a high (H)
risk.

GRS

When a sensor is added, the

— Performance BesPonse -1 system should display the screen
time correctly in < 3 sec.

(H, L)
When nine sensors are added, the
system should display the screen
correctly in <42 sec.

1000 invocation.

—— Adaptability {

The fall rate should be < 2 for each
Sensor
. failure
(H, M)
Utlllty_ The system detects the sensor failure
Tree and it should self-configure in < 3sec.
(H, H)
Cost Sy:sftem Increases memory
pe ormance consumption, when nine
Svst sensors are added.
_— stem
Scalabilit y (M, H)

y performance When nine sensors are
added there is a reduction in
performance.

ays (H,L)
— Interopera blllty{ Dat‘; The system could exchange
exchange data with external entities.

Output Artifact - Step 5: Utility Tree

Step 6 - Analyze architectural approaches: This step aims to analyze the location of
the risks, non-risks, sensitivity points, and tradeoff points of each scenario.

Sconario

Attributes
Stimulus

Response

Architectural
decisions

Sensitivity
Point
Tradeoff

Reasoning

When the sensor is added, the system performs self-configuration and
the sensor should display the screen correctly when installing the feature.

Performance and Adaptability.
Adding a sensor.

When adding the sensor, the system must detect an unknown sensor, it
is carried out by the identification of which sensor the system verifies
if this sensor is installed. I yes, the sensor starts, if not, the sensor is
downloaded, installed, and started. This response should have a dura-
tion of less than 3 scoonds.

1)Install/activate plugins using the MAPE-K model as support, becanse
its loop support identification of the context change and promote proper
system configuration and reconfiguration; 2) It uses the Publish/Subs-
cribe architeeture style for interoperability; 3) It installs the feature and
it builds the data view; The system must comply with the installation
of the feature correctly.

1) When adding the sensor, the system does not detect. Consequently,
the feature is not installed; 2) Installing a feature that is not available
on maven, consequently causing an exception; 3) The non-identification
of context change.

1) Hardware Processing Time; 2) If the transmitted data does not have
the correct formatting, it impacts the adaptation sequenee.

The greater the need for adaptation, the lower the system performance.

The MAPE-K model was chosen as the reference model for self-adaptive
systems, as one of the possible mechanisms to identify the change of
context and to promote the adaptations of the system.

Sample SHE Usage Scenario 1.

Scenario
Attributes
Stimulus

Response

Architectural
decisions

Risk

Sensitivity
Point

Tradeoff

Reasoning

The system is working and the sensor fails.
Availability, Robustness and Maintainability.
The system detects the failure and uninstalls the faulty feature.

When adding the sensor, the system must detect an unknown
sensor, it is carried out by the identification of which sensor
the system verifies if this sensor is installed. If yes, the sensor
starts, if not, the sensor is downloaded, installed, and started.
This response should have a duration of < 3 seconds. And, the
fail rate should be less than 2 for each 1000 invocation.

1)Install/activate and uninstall/deactivate plugins using the
MAPE-K model as support, because its loop support identifi-
cation the context change and promote proper system config-
uration and reconfiguration; 2) It uses the Publish/Subscribe
architecture style for interoperability; 3) We used OSGI frame-
work:

The system does not recognize the sensor failure.

1) If the transmitted data does not have the correct formatting
it impacts on the sequence of the adaptation.

n/a

The MAPE-K model was chosen as the reference model for self-
adaptive systems, as one of the possible mechanisms to identify
the change of context and to promote the adaptations of the sys-
tem. Also, we chose an OSGI framework due to it gives support
to failure exception at runtime.

Table 4: Sample SHE Usage Scenario 2.

Scenario

Attributes
Stimulus

Response

Architectural
decisions

Risk

Sensitivity
Point

Tradeoff

Reasoning

The system is running without sensors. Then, nine sensors are added
in the system.

Cost, Availability, Performance, interoperability, scalability.
Nine sensors are to add to system at the same time.

Each feature has to respond in less 3 seconds. Then, the system has 45
sec for installation and configuration of the 9 sensors. Evaluate storage
and processing capacity to be defined.

1)Install /activate and uninstall/deactivate plugins using the MAPE-K
as support, because its loop support identification the context change
and promote proper system configuration and reconfiguration; 2) It
uses the Publish/Subseribe architecture style (via MQTT Broker); 3)
It installs the feature and it builds the data view; The system must
comply with the installation of the feature correctly.

The greater the number of sensors, the higher the impact of Raspberry
PI's processability. Then, installing the feature reduces storage capacity.

1) The higher the number of sensors, the greater the risk of degradation
of the process, reducing performance.

Increased performance, hence, increases cost.

The MAPE-K model was chosen as the reference model for self-adaptive
systems, as one of the possible mechanisms to identify the change of
context and to promote the adaptations of the system. Also, we used
MQTT Broker to support to interoperability.

Table 5: Sample SHE Usage Scenario 3.

Scenario The system is running with nine sensors. And the sensors are
removed in the system.

Attributes Performance and interoperability.

Stimulus Uninstalling nine sensors.

Response The system returns to the initial version and has to have the
core of the SIE in less than 24 seconds.

Architectural 1) Uninstall/deactivate plugins using the MAPE-K as support,

decisions because its loop support identification the context change and
promote proper system configuration and reconfiguration; 2) It
uses the Publish/Subscribe architecture style for interoperabil-
ity; 3) It uninstalls the feature and it removes the data view; The
system must comply with the uninstall of the feature correctly.

Risk The system does not detect the removal of the sensor.

Sensitivity 1) Hardware Processing Time. 2) If the transmitted data does

Point not have the correct formatting it impacts on the sequence of
the adaptation.

Tradeoff The greater the need for adaptation, the lower the system per-
formance.

Reasoning The MAPE-K model was chosen as the reference model for self-

adaptive systems, as one of the possible mechanisms to identify
the change of context and to promote the adaptations of the
system.

Table 6: Sample SHE Usage Scenario 4.

Output Artifact - Step 6: Scenarios

Phase 2

Step 7 - Brainstorm and Prioritize Scenarios:

After collecting the scenarios, we prioritize them and rank all of the QA. Next, we
modeled the MAPE, by following the scenarios 2 and 3 in the UPPAAL tool. We
next delve into details about the design of the MAPE behaviors within the SHE
platform.

We used a set of formal models for self-adaptive components to use in the UPPAAL
SMC tool. We differentiate between the Monitor, Analyze, Plan and Execute
components as the main components of a MAPE control loop.

No Quality Attributes

Scenario

lity

Cost, Awailability, Perfor-
2 mance, Interoperability, Sca-

lability.

lity

4 Performance

Performance and Adaptabi-

Robustness and Adaptabi-

When the sensor is added, the system performs self-
configuration and the sensor should display the screen
correctly when installing the feature.

The system is running without sensors. Then, nine sen-
sors are added in the system.

The system is working and the sensor fails,

The system is running with nine sensors. And the sensors
are removed.

start startSensort!

failed!

Sensor behavior.

High priority scenarios.

started!

Waiting

==10

Done

Waiting DetectSensor Start
x=0 X <5 x=0
startSensor? <2 feedbackLoopCompleted?

SHE platform behavior.

Failed B execute!
1 - Waiting
event= FAILED,
updateKnowiedge()

started?

Start

start execute!

Waiting event = STARTED Download
updateKnowiedge()

(c) Plan

Waiting _ StariExecute
execute?

feedbackLoopCompleted!

Vailing

(b) Analyze (d) Execute

File Edit View Tools Options Help

DEalceaCame< sV
Editor Simulator ConcreteSimulator Verifier

Overview

ACl (deadiook 1mply (Sensor Dome and System Waiving and Moniter Waiting and Analyse Waiving and Plan.Waiting and Srecuve Waitingl) P1 O
E<> Anal Install £ t: imply E1 D load P2 4
Plan.Download-—+Execute . StartZzecute P3 4
£ P4 4
oy case imply Syme Ps 1
o> Sensor_zail smply Menitor.zailea PG

o> sensor_Scarc irply Monitor Scart P7]
Prlemil (o> Monivor sailed P8 f0.0125215,0. 1123051
Pal<ml] (<> Semscz.Fail) P9 10.0856122,0. 10525419
De[<=10] (c>Semsor Seazt) P10 [0 3010550, 59553114

similate [<=10] {Se tarc)

Query

simalave [<=10](Semsox.Stazt}

Comment.

Status

[smulate [<=10]{Sensor.Start}
Verification/kernel felapsed time used: 0 / 05 /0,003s.
Resident/uirtual memory usage peaks: 9. 5248 / 30.244E
[Property is satisfied.

?4 Pri<=1](<> Sensor.Fail) - O X

Frobabilty Density Distribution

Il density
B average

o o o o Y o e e

[e o B B el i i el el i el =
O s 00 W0 O = P L s i O =) GO

probability density

L]
[
(53]

0,04
0,03
0,02
0,01
U]
0,15 0,24 0,33 0,42 0,51 0,60 0,69 0,78 0,87 0,9%
-1
Parameters: o=0.05, £=0.05, bucket width=0,20913, bucket count=4
Runs: 155in total, 15 (9.6774%:) displayed, 140 (30.323%%) remaining
Span of displayed sample: [0.158, 0.994]
Mean from displayed sample: 0.583 £ 0,159 (95% CI)

Through the scenarios and the QA leveraged by ATAM, we were able to perform the
MAPE modeling. We could verify the robustness and performance when nine
sensors are added, as it was described in Scenario 2 and Scenario 3, by the
UPPAAL SMC. As result, the simulation presented a failure rate of less than 2
percent per 1000 simulations.

Furthermore, we used the Weyns (2016) study to analyze the average cost, failure
rate and response time by UPPAAL SMC. The result of a series of 10000 invocations
of the feature with simulation queries of RSEM 5% and 10%:(a) average failure rate
in the RSEM 5% and (b) average failure rate in the RSEM 10% most simulations had
values less than 0.1 units (this is less than avgFRate 2 (x 10(-3)); (c) average cost in
the RSEM 5% shows most simulations between 4.0 to 4.5 and (d) average cost in
the RSEM 10% shows most simulations between 5.5 to 6.0 units (this is less than
avgCos 8 (x 10-3)); (e) average response time in the RSEM 5% most simulations
between 5.5 to 6.5 units of time and (f) average response time in the RSEM 10%
most simulations between 3.5 to 4.0 units of time (this is bigger than
avgResponseTime 3s (x 10-3)).

Output Artifact - Step 7: Scenario prioritization table, formal MAPE-K model,
verification of quality attributes (robustness, performance and cost)

Step 8 - Analyze Architectural Approaches: In this phase, we analyzed whether we
could find new information that has not been documented yet (e.g. a given scenario
or QA which has not been previously elicited and documented). However, in our

study, we did not find any new relevant information we forgot in the previous steps.
Then, we moved on to the next step;

Step 9 - Present the results: In the last step, we performed a meeting where we
presented the stakeholders all the gathered information (from the previous steps),
the results of the analysis.

Output Artifact - Step 9: The documented architectural approaches/styles, the

set of scenarios and their priorities, the set of attribute-based questions, the

utility tree, the discovered risk, the documented non-risks, the sensitivity
points and points of compensation found

