(" ATAM-4SAS

Mestranda: Caiza Fortunato
Professor: lvan Machado

Self-adaptive system

—

’Analyze — Plan
&y N /S A

Monitor 4-’{

Sensor

‘_ Knowledge |

//l

MAPE-K model

4-’ Execute

) 4

Effector

-

—

Problem

What is the Purpose of the ATAM?

1. The ATAM can be
done early in the
software development
life cycle.

2. The ATAM is meant to be
a risk identification method, a
means of detecting areas of
potential risk

within the architecture of a
complex software intensive

system.
y

3. The ATAM will produce
analyses commensurate
with the level of detail of
the architectural
specification.

4

ATAM

Phase 1

Step 1 - Present the ATAM

Step 2 - Present Business Drivers

Step 3 - Present Architecture

Step 4 - |dentify Architectural Approaches

Step 5 - Generate Quality Attribute Utility Tree

Step 6 - Analyze Architectural Approaches

Artifacts Generated

if fail

Phase 2

Step 7 - Brainstorm and Prioritize Scenarios

Step 8 - Analyze Architectural Approaches

Step 9 - Present Results

ATAM-4SAS

Step 7 Brainstorm and Prioritize Scenarios

UPPAAL model-checker m

Formal methods for

MAPE-K

UPPAAL tool

Modeling

UPPAAL
verificador
de modelo

UPPAAL SMC

Monitor the Simulation

D

Satisfies the property

D

Reliability

Applying ATAM-4SAS in the Smart Home Environment
(SHE) project

Fire Sensor

ﬁ Luminosity
/ Sensor
) Water Sensor
Soil Moisture

Sensor 3

Temperature and Presence

Gas Sensor Humidity Sensor Sensor

r, Step 1 - Present the ATAM of ATAM-4SAS

-

The team leader explains to all's lders how
the ATAM works. This stepisi ant for all
the involved to be aligned in terms of the
techniques to be used, how they will be
scrutinized, and to whom they shm‘report;

Step 2 - Present Business Drivers.

.

The | project manager shows ‘an lew of the
business goals and context. It is de trated in a
high level of abstraction: its major | ers, major
QA goals which form the architecture, the most
important Functional Requirements (FR), and
technical, ¥ managerial, economic ¥ or political
constraints: "

Step 2 - Present Business Drivers.

Business Context/Drivers Presentation

1. Description of the business environment.

SHE was designed aimed to reconfigure the system at runtime, according to the environ-
ment where the software is running. To achieve this goal, the system needs to be aware of
the context to which it is embedded. This context awareness is obtained from the sensors
used by the user and the process of installing and uninstalling the features that compose
it. The system adapts according to the set of sensors that were connected by the user.
For this adaptation, the system constructs a screen of presentation based on sensors that
are being used in a certain moment.

2. Description of the technical constraints.

The Context Sensors were developed as a SPL developed in C} +, where each sensor was
developed using the same core. Moreover, the core was developed in Java.

3. Quality attributes desired and what business needs these are derived from.

The set of desired quality attributes and business needs. When either adding or removing
the sensors, we want that SHE follows the QA: performance, availability, cost, scalability,
interoperability, robustness, portability, maintainability, and reliability.

Business Context/Drivers Presentation based on the ATAM template.

Step 4 - Identify Architectural
Approaches.

Apresentacao das abordagens
arquitetonicas usadas para atender
aos requisitos dos atributos de
qualidade e restricbes tecnicas.

Architecture Presentation

1. Driving architectural requirements.

Driving architectural requirements (performance, availability, cost, scalability, and intero-
perability) uses the MAPE-K model to deal with the problem of antomatic reconfiguration
of the software system considering its context at runtime.

2. Description of the business constraints.

The system is able to detect 8 sensors (water/humidity, fire, gas, presence liminosity,
inclination, temperature, and soil moisture). When added to the SHE system, it detects if
the feature has already been installed, otherwise, the system performs the feature down-
load, installs and displays the data on the system screen. If the system has the feature
installed, it only executes the feature. The moment any sensor is removed or some failure
ocenrs, the system detects and removes the corresponding data from the feature ont of
the screen.

3. Process/thread.

The core of the system is compesed of a set of threads. Listener, Manager, and presentation
layer components are threads. Data synchronization between data collected from sensors
developed using Arduino and the core installed on a Raspberry Pi.

4. Hardware.

The prototype hardware wses low-cost devices such as Arduino and Raspberry Pi. The
former encompasses the Context Sensors and the latter execntes both the core and the
Feature Area.

5. Architectural approaches or styles employed.

SHE nses the MAPE-K model to support the required information thronghout the activi-
ties. The proposed architecture model employs the styles of the component-and-connector
view-type called Publish-Subscribe to centralize the communication process between the
internal and external environments of the system. Such an architectural style enables the
creation of ohjects that react to events generated by their environment, and in tum, it
may impact other components as a side-effect of their event announcements. The Publish-
Subscribe architecture style capability to completely dissociate participants from commu-
nication, allowing the development of more tolerant asynchronous applications. It deals
with reliability because if the message producer fails the system does not stop. SHE nses
object-ariented design patterns such as polymorphism and inheritance that are recurring
design solutions for object-oriented systems which can improve rensability and maintai-
nability.

Architecture Presentation based on the ATAM template.

Etapa 4: Identificacao da abordagem arquitetural

Context Sensors
{ Sensor 1 } [Sensor 2 } [Sensor 3 } {Sensor n }
. - Feature 1 Feature n
In this step, the focus is on the iﬂﬂe config ||+ Confi O -
analysis of architecture by e A—d e Z £
. = \V/ 8 =)
understanding the approaches that iswilsa derl[Ins}iuer } 5
are used in it. ’ — b
Manager

[Legend: <:> Data Flow |:> Context Data Flow}

Step 5 - Generate QA Utility Tree.

Utility

Tree

—

— Performance {Besm"se -
time

_ (H,L)
When a sensor is added, the
system should display the screen
correctly in < 3 sec.
(H, L)
When nine sensors are added, the
system should display the screen

~ Interoperability { Pata

exchange

correctly in <42 sec.

(H, H)
The fail rate should be < 2 for each

T Sensor | 1999 invocation
—— Adaptability {fa"ure o
The system detects the sensor failure
and it should self-configure in < 3sec.
(H, H)
Cost {Syrsftem Increases memory
perrormance consumption, when nine
-S ¢ sensors are added.
- siem
- Scalability {>Y (M, H)
y performance When nine sensors are
B added there is a reduction in
performance.
(H, L)

The system could exchange
data with external entities.

1

Step 6 - Analyze
Architectural Approaches.

After the architecture team
elicits the utility tree, the evaluation
team might analyze architectural
decisions and identify their potential
risks, sensitivity points, and tradeoff
points through the documentation.

Scenario

Attributes
Stimulus

Response

Architectural
decisions

Risk

Sensitivity
Point

Tradcoff

Reasoning

When the sensor is added, the system performs self-configuration and
the sensor should display the screen correctly when installing the feature.

Performance and Adaptability.
Adding a sensor.

When adding the sensor, the system must detect an unknown sensor, it
is carried out by the identification of which sensor the system verifies
if this sensor is installed. If yes, the sensor starts, if not, the sensor is
downloaded, installed, and started. This response should have a dura-
tion of less than 3 seconds.

1)Install /activate plugins using the MAPE-K model as support, because
its loop support identification of the context change and promote proper
system configuration and reconfiguration; 2) It uses the Publish/Subs-
cribe architecture style for interoperability; 3) It installs the feature and
it builds the data view; The system must comply with the installation
of the feature correctly.

1) When adding the sensor, the system does not detect. Consequently,
the feature is not installed; 2) Installing a feature that is not available
on maven, consequently causing an exception; 3) The non-identification
of context change.

1) Hardware Processing Time; 2) If the transmitted data does not have
the correct formatting, it impacts the adaptation sequence.

The greater the need for adaptation, the lower the system performance.
The MAPE-K model was chosen as the reference model for self-adaptive
systems, as one of the possible mechanisms to identify the change of
context and to promote the adaptations of the system.

Sample SHE Usage Scenario 1.

Step 7 - Brainstorm and Prioritize Scenarios.

No Quality Attributes Scenario

Pucossssiie wnd Adsptali: When the sensor is added, the system performs sell

lity configuration and the sensor should display the screen

correctly when installing the feature.
Cost, Availability, Perfor-

= The system is running without sensors. Then, nine sen-
2 mance, Interoperability, Sca-

sors are added in the system.

lability.
Robustness and Adaptabi- ; ; 2
3 lity 4 The system is working and the sensor fails.

The system is running with nine sensors. And the sensors

4 Performance
are removed.

High priority scenarios.

MAPE-K behaviors on the SHE platform

Start

! startSensor! .

started!

p_ ADD |

o<

Waiting
p_FAIL

failed!

' 1::‘0
6 Done

Sensor behavior.

Fail

Waiting DetectSensor Start
x=0 : x=0

1 startSensor? x<2 feedbackloopCompieted? i

SHE platform behavior.

MAPE-K behaviors on the SHE platform

‘Faneo execute!
failed?
event= FAILED

updateKnowledge()

started? Start execute!
Waiting event = STARTED,
updateKnowiedge()

analyze!
(c) Plan
(a) Monitor =
Wamng StartExecute
execute?
feedbackLoopCompleted!

Waiting

(b) Analyze

(d) Execute

MAPE-K behaviors on the SHE platform

File Edit View Tools Options Help

EE&slaaq e < 7Y
Editor Simulator ConcreteSimulator Verifier

Overview

A[] (deadlock imply (Sensor.Done and System.Waiting and Monitor.Waiting and Analyze.Waiting and Plan.Waiting and Execute.Waiting)) Pl
E<> Analyze.InstallVerification imply Plan.Download P2

Plan.Download-->Execute.StartExecute P3

Plan.NoDownload-->Execute.StartExecute P4

E<> Sensor.Start imply System.DetectSensor P§

E<> Sensor.Fail imply Monitor.Failed PG

E<> Sensor.Start imply Monitor.Start P7

Pr[<=1l] (<> Monitor.Failed) P8

[0.0125218,0.112309] 1 Get Trace |

Pr[<=1] (<> Sensor.Fail) Pg [0-085612'0-135254] i' 71”&"(1

Pr[<=10] (<>Sensozr.Start) P10 [0.901085,0.59953118 - —
simulate [<=10]{Sensor.Start} | Remove
Comments

Query

simulate [<=10]{Sensor.Start}

Comment

Status

simulate [<=10]{Sensor.Start}

Verification kernel/elapsed time used: Os / Os / 0,002s.
Resident/virtual memory usage peaks: 9.524KB / 30.244KB.
Property is satisfied.

MAPE-K behaviors on the SHE platform

?‘{5 Pr{<=1](<> Sensor.Fail) - O X
Probabilty Density Distribution
0,18
0,17
0,16
0,15
0,14
0,13
0,12
20,11
w
£ 0,10
> 0,09 Il density
[0.08 = average
B 0,07
© 0,06
20,05
0,04
0,03
0,02
0,01
0
0,15 0,24 0,33 0,42 0,51 0,60 0,69 0,78 0,87 0,96
-1
Parameters: a=0.05, £=0.05, bucket width=0.20918, bucket count=4
Runs: 155in total, 15 (8.6774%) displayed, 140 (90.323%) remaining
Span of displayed sample: [0.158, 0.934]
Mean from displayed sample: 0.583 % 0.159 (35% CI)

Propriedade de estimativa de probabilidade de falha.

Modelo de Simulacao

CONNECT
SENSOR NO FEATURE INSTALLED

»! DOWNLOAD
q 0.80
%ad 0.5
L8

FEATURE INSTALLED

SHE START
0.20

UNINSTALL FEATURE

DISCONNECT
SENSOR

Modelo de Simulacao

-
(sensorinSolution +
$ss[indexSSS))=
MAX_SENSOR (sensorinSolution +
sss[indexSSs])<= AddSensor ProcessingAdd
MAX_SENSOR = 2
sensorinSolution = sensor_in!
3 sensorinSolution +
p_ADD/,’ $ss[indexSSS]
7
Waiting <3 5%
- o
t<1 updatelndexSSS(indexSSS) \\ (sensorinSolution -
REMOVE ~~. $ss[indexSSS])>=
P X MIN_SENSOR sensor_out!
sensorlnSqut!on = RemovedSensor ProcessingRemove
sensorinSolution -
(sensorinSolution - sss[indexSSS]
sss[indexSSS])<
L MIN_SENSOR
§ end?
t=0

SHE - Environment model.

Modelo de Simulacao

DetectSensor
sensor_in? . installSensor!
Start
f@) WaitingForRequest @

\
sensor_out?

uninstallSensor!

serviced! DetectSensorOut

done? invocations++
A
\ g

n

SHE - Managed System model.

Modelo de Simulacao

Verify
instaliSensor?

Start
uninstallSensor?

fRate = getINSTFR()

p_DOWNLOAD .

Download p_NODOWNLOAD

fRate = fRate +
(1-fRate) * getDOWNFR()

Waiting

O

I}

done!

TotalFR =

TotalFR + fRate,
avgFRate =
TotalFR/invocations

Uninstall

fRate = getUNISFR()

-©

Install

~-©-

FrateCalculated

SHE - Assistance Feature model: Failure rate.

Modelo de Simulacao

Verify Start
installSensor? uninstallSensor?

O

M

Uninstall

¥

TotalCost =
TotalCost + getiNSTCost()

done!

avgCost = TotalCost/invocations

p_DOWNLOAD .

TotalCost =
TotalCost + getUNISCost()

Download p_NODOWNLOAD

TotalCost =
TotalCost + getDOWNCost()

Waiting

Install CostCalculated

SHE - Assistance Feature model: Cost.

Modelo de Simulacao

TotalST = TotalST +
getiNSResponseTime()*
getiNsQLen()

installSensor?

Start
uninstallSensor?

Verify

TotalST = TotalST +
getiNSResponseTime()

p_DOWNLOAD

DownloadQueued

O

done!

avgSTime =
TotalST/invocations

) UninstallQueued

TotalST = TotalST +
getUNIResponseTime()*
getuUNIQLen()

©

TotalST = TotalST +
getUNIResponseTime()

TotalST = TotalST + : p_NODOWNLOAD
getDOWResponseTime()* |
getbowaLen() |
| Waiting
Download @ @ @
TotalST = TotalST + Install ResponseTimeCalculated
getDOWResponseTime()

SHE - Assistance Feature model: Response Time.

Step 8 - Analyze Architectural Approaches.

In this phase, the architecture starts the process of mapping the most
Important scenarios raised in step 7. It is considered as a testing
activity. If there was a lack of information that should be collected in
the previous steps the team needs to go back to step 4 and work

through it.

Step 9 - Present Results.

All the gathered information is organized and presented to all the
stakeholders. The presentation includes all important decisions taken, i.e.,
the business context, driving requirements, constraints, and the
architecture. In addition, the outputs of the ATAM, such as: the architectural
approaches/styles documented, the set of scenarios and their priorities, the
set of attribute-based questions, the utility tree, the risk discovered, the
non-risks documented, the sensitivity points and tradeoff points found.

RESULT

Presentation of business needs driven by the objectlves o)
high-level quality attributes;

A presentation of the architecture;

A Utility Tree that presented a priority list of quality attributes, such
as performance, adaptability, cost, scalability and interoperability;

Preparation of scenarios;

Verification of quality attributes.

Results

®
<

Identified Risks

% Sensitivity points

% Tradeoff

Adaptability
Scalability
Cost

Performance

Do you think that ATAM-4SAS gives supports in the
architectural assessment of a self-adaptive system?

Do you think that the ATAM-4SAS supports a strategic choice
in the objectives of the attributes of qualities of a
self-adaptive system?

Could ATAM-4SAS be used in industry?

Do you think the proposed method is easy to implement?

Would you change any steps? In other words, would you add
or remove something from the proposed method?

