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Abstract—This paper presents a mechanism that pre-
dicts the future position of a vehicle moving in both
urban and/or highway environments. Based on this
knowledge, it decides on the optimal position of the
VNF and preemptively requests the allocation of net-
work resources, before a cross-domain network service
migration takes place. The objective of this mechanism
is to ensure the uninterrupted, continuous connections
of the vehicles, resulting in minimal or no service in-
terruption time while ensuring an optimal utilization of
Edge Cloud and Mobile Edge computational resources.

Index Terms—Service Orchestration, Operations
Support Systems, 5G networks, MEC, Artificial Intel-
ligence, Deep Learning, Neuroevolution

I. Introduction
Fifth generation mobile networks (5G) promise to en-

able innovative use cases for industries and vertical mar-
kets via numerous groundbreaking approaches that over-
come limitations of legacy mobile networks. For the real-
ization of the emerging 5G architecture, multiple existing
and novel technologies are utilized. Two such technolo-
gies, essential for the realization of low-latency related
use cases, are the virtualization of the network functions
(NFV) composing the network services and the use of
Multi-access edge computing (MEC).

The NFV concept, involves the replacement of the
proprietary hardware used in the past for networking,
with software that performing the same function allow-
ing more efficient and flexible network deployment and
operation [1]. This concept is further enhanced when
combined with modern virtualization technologies such as
containers, leading to some making a distinction between
Virtual Network Functions(VNF) when referring to NFs
hosted in Virtual Machines and Containerized or Cloud-
Native Network Functions (CNF) when referring to NFs
hosted in containers such as Docker [2]. Distributed MEC
technologies combine telecommunications with IT [3]. The
combination of these two technologies can be used to
retain a minimal latency between the user and the in-
frastructure by moving the services the closest possible
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to the user at any given time. The ambition behind
the proposed mechanism is to reach an optimal trade-off
between network performance and deployment complexity
and cost by leveraging Deep Reinforcement Learning that
will be combined with an AI model trained from users’
past mobility preferences to predict the correct placement
of the services. To that end, any services with critical
requirements used by the vehicles will be migrated and
placed proactively, according to their requirements and
the potential direction of the vehicle. In this way, it will
be possible to: i) minimise the latency between the user
and the service, ii) guarantee the service level agreements
(SLAs).

A. Key Contributions
This paper presents a novel approach to optimize the

pre-emptive placement of a 5G network service based on
minimizing Service Delays and preserving needed Quality-
of-Service for services with Latency Requirements, while
taking into account MEC server computational resources.
To achieve this a mechanism composed of two parts both
based on SotA AI algorithms is proposed: the first part
predicts the location of moving vehicles to determine
the need for service reallocation while the second part
determines the optimal service positioning. To the best
of the authors’ knowledge, neither of the AI algorithms
composing the proposed method have been yet applied to
the specific problem; based on their application in other
fields, detailed in II , results beyond SotA are expected.

The remainder of the paper is structured as follows: Sec-
tion II presents a brief review of the relevant literature and
Section III presents the methodology used to formulate the
proposed approach while section IV contains the results of
experiments that were performed to validate the proposed
method. Finally, section V contains the conclusions of this
paper along with future research directions and aims.

II. Related Work
The ultra-low latency and reliability requirements im-

posed by automotive services can be met through the
extensive use of edge resources by deploying components of
the end-to-end services as close as possible to the network
edges. Relevant literature reports that using CNFs can



Fig. 1. Aggregated mean for the number of Quality of Service violations for N=500 experiments.

achieve Service Creation in the range of milliseconds [1], [2]
while experimental results show a CNF service supported
by MEC can be re-allocated with downtime less than 2.5
seconds [4]. However, edge resources are finite. Therefore, a
large body of research leverages Artificial Intelligence (AI)
algorithms to predict and pre-emptively ensure that NFs
affecting V2X services have adequate resources allocated
to perform their tasks.

A. Prediction of user mobility
Prediction of user equipment mobility is the first step of

the proposed approach. It is a task already researched in
the context for 3G/4G networks to account for the power
consumption in cells or balance network radio resources
or the number of successful handovers. With the advent
of VNF this problem needs to be reformulated to account
for MEC/edge cloud computational resources and to take
into account the challenges presented by network slicing.
In the case of legacy networks, the problem was solved by
various approaches falling in the following three categories:

• Stochastic Methods such as Markov Models or Dy-
namic Bayesian Networks [5], [6];

• Heuristic Methods, such as the one presented in [7];
• Machine learning or Deep Learning based methods

such as Poisson Regression Trees [8].

These approaches have also been applied in 5G net-
works. A review of the available literature shows that
machine learning and artificial intelligence empowered
approaches are more suitable [9], [10], achieving higher
prediction accuracy scores compared to the other two
methods. Therefore, AI is employed as a suitable tool
for the development of the mechanism described in this
paper. We propose the use of an AI model based on
Dilated Causal Convolutional Neural Networks (DCNN)
[11] trained via Deep Neuroevolution, to predict the in-
coming traffic and subsequently use this result as input
to the resource allocation process. Deep Neuroevolutional
techniques combine two sub-fields of AI, Deep Neural Net-
works (DNN) and Evolutionary Algorithms [12]. Applying



Evolutionary algorithms to determine the optimal archi-
tecture of DNNs has been shown to produce promising
results, often surpassing the typically used gradient-based
methods [13], [14]. Other SotA DNN architectures for
time-series prediction such as the Sequence-to-Sequence
DNN (Seq2Seq) solution presented in [15] and a Long
Short-Term Memory (LSTM) CNN solution will also be
implemented for comparison. Table I presents the Deep
Neural Networks and DNN architectures most commonly
applied to time-series along with a brief presentation for
each one. DCNNs were originally created for applications
in the field of Natural Language Processing. However, they
have been shown to outperform both classic approaches
and other SotA DNN when applied to timeseries data, for
example in [16]–[18] since they effectively model sparse
data, both long-term and short sequence relationships, and
different time resolutions [16].

B. Optimization of service positioning
The second part of the proposed approach involves the

development of AI empowered models that are triggered
when service migration is required, to ascertain proper
positioning of VNFs in the Edge Cloud and MEC network
components. Based on the available literature, different
approaches to solve this problem can be clustered to the
following three categories [25]:

• based on prediction, i.e. adapting the network proac-
tively to meet estimated changes,

• dynamically adapting the network as traffic fluctuates
or

• on-the-fly, i.e. after a certain event occurs such as a
number of requests are denied.

VNF migration is a hot research topic that has gained
a lot of attention over the past years. In [26], Yi et al.
propose an on-the-fly mechanism based on heuristics. In
[25], Sarrigiannis et al. suggest a dynamic/online example
of a process that handles VNF mitigation based on an
iterative method. In [27], a Deep Neural Network archi-
tecture tuned by an Evolutionary Algorithm, is used to
proactively assess the best server for migration, while in
[28] the authors propose a context-aware stateful VNF
migration using a Mixture Density Neural Network. In [29]
a Deep Belief Neural Network is connected to a mechanism
empowered by an Evolutionary Algorithm to handle the
task. In [30] a DRL method is applied to ascertain change
traffic point and avoid resource shortage via migration
whereas in [31], a DRL neural network is used to migrate
chains of VNF. The results presented in the literature,
indicate that AI based methods produce better resource
management schemes compared to other non-AI methods
(such as heuristic methods).

We propose an AI model combining Evolutionary Al-
gorithms with an Actor-Critic Deep Neural Network, em-
ploying Reinforcement Learning for the VNF migration
part is being tested. Actor-Critic DNNs, as the name
suggests, are composed of two parts. The actor part uses

states, i.e. representations of the task environment, as
input. It tries to output the optimal action by learning
a series of optimal policies. The critic part evaluates the
action decided by the actor part by computing a predefined
function [32]. LSTM DNN will be used in internal parts
of the network. This work expands the SotA Deep Rein-
forcement learning method presented in [31] by training
the DRL model using Neuroevolution techniques. Based
on the literature [13], [14], such approaches are expected
to produce results that surpass the SotA.

III. Proposed Model
To model the trajectory of the vehicles monitored by

the proposed mechanism we propose a mapping between
their position and a predefined partition of the area of
interest. Let L = {(lon1, lat1), ..., (lonn, latn)}, be the
set containing the position using longitude-latitude pairs
for the n vehicles monitored at a certain time-point and
C = c1, c2, ...cm, c ∈ N be the set of cells resulting by
partitioning the area of interest to a grid of equally sized
square cells. Then, a function f : L → C provides the
required mapping.

A. Future Location prediction Module
At any given time point t for a single vehicle, we define

vector at = {ct−1
a , vt

a, t}, where ct−1
a is the cell the vehicle

was in the past location, and v is the speed of the vehicle.
Having defined these variables, the task of predicting the
future user location for time t can be defined as a function
f that takes as input a sequence {at, at−1, ....at−l} and
outputs ct+1

a ∈ C i.e. the cell where the vehicle will be
located in the next time point :

ct+1
a = f({at, at−1, ....at−l}), ∀ct

a ∈ C, (1)

which is learned by the Dilated Causal Convolutional
Neural Network.

B. Optimization of Service Positioning Module
Moving on to the task of optimizing service posi-

tioning: Let M = {m1, m2, ..., mn}, n ∈ N be the
available MECs and C be the Regional Core Cloud
Server. Let us assume that for each MEC a vector
Rmj

= {CPUmj
, MEMmj

, HDmj
, LATmj

} and for the
Core Cloud Server RC = {CPUC , MEMC , HDC , LATC},
are known, representing the number of CPU cores,the
RAM memory, storage and Latency between the MEC and
the switch they are connected respectively. Additionally,
let LATlink be the latency between different switches.

For a given time point t, let S = {s1, s2, ..., sk}, k ∈
N be the number of services tracked by the mechanism.
Each service requires a specific amount of computational
resources Rsk

= {CPUsk
, MEMsk

, HDsk
} from the server

it is deployed to optimally perform and is also linked to a
Quality of Service level Qsk

= {None, Low, High}.
The problem of optimal service placement can be con-

sidered a version of the multi-objective binary bin packing



TABLE I
A comparison of the Neural Network architectures commonly used to handle time-series data.

Deep Neural
Network Type Time Series Application

Recurrent
Neural
Networks
(RNN)

RNNs can learn the relationship between present and past inputs, detecting patterns in sequential information. They have
been shown to have problems capturing long term dependencies [18] due to vanishing gradient. LSTM and Gated Recurrent
Units have been designed to overcome this problem.

Sequence to
Sequence
Networks
(Seq2Seq)

This architecture is comprised by simpler DNN, usually RNN that encode and then decode sequential data.
During the encoding phase the entire prior data is taken into account, effectively capturing long-term dependencies [18].
Additionally, these models generalize better and produce lower error results compared to RNN [15]. Seq2Seq DNN
can be further enhanced by incorporating mechanisms such as ‘Attention’ or ‘Beam Search’ [19].

Convolutional
Neural
Networks
(CNN)

CNN segment the input data using so called filters, which allows them to learn specific patterns. Simple CNN have been
shown to model multi-dimension patterns, such as those in two-dimensional trajectories of vehicle movement more
effectively in comparison to RNN [20]. They can also capture the high spatial and temporal correlation
of movement data [21] providing comparable results to RNN. Additionally, CCN models scale better compared to RNN [22].

RNN and
CNN
Stacks

This architecture combines CNN to capture spatial and temporal correlations and RNN to capture temporal dependencies.
This combination has been shown to outperform simple RNN or CNN [23].

Dilated Causal
Convolutional
Neural
Networks
(Proposed
approach)

In this variant of the CNN, also called Wavenet, the filters are applied by skipping certain elements in the input, allowing
the receptive field of the network to grow exponentially [22]. This property allows them to model even sparse data
along with both long-term and short sequence relationships present. The literature suggests that approaches
using DCNN outperform all other approaches presented in this table [16], [17], [22], [24].

problem, where k items i.e. services must be assigned to
n+1 bins i.e. the MEC servers and the Core Cloud server.
It can be formulated in the following manner: Let yj = 1
if MEC/Cloud server j is used, xkj = 1 of service k is
placed on server j , qkj = 1 if server j satisfies the SLA
agreement regarding service k and lkj the latency of service
k is placed on server j.

The the aim is to produce an optimal solution satisfying
the following two objectives a) maximize the number of
services with satisfied QoS:

kpi1 = argmax

n+1∑
k∈S

qkj , ∀j ∈ {1, ..., n + 1}, k ∈ S, (2)

and b) minimize the total service delay

kpi2 = argmin

n+1∑
k∈S

lkj ∗xkj , ∀j ∈ {1, ..., n+1}, k ∈ S, (3)

, while taking into account the available computational
resources i.e.

n+1∑
k∈K

Rsk
∗ xkj ≤ Rmj

, ∀j ∈ {1, ..., n + 1}. (4)

Finally, the two objectives are combined to a single func-
tion by normalizing their values in a range of [0,1], which
is used as the function to be optimized:

kpi3 = kpi1

k
− kpi2

k ∗ max(lkj) , ∀j ∈ {1, ..., n+1}, k ∈ S, (5)

The first task is learned by a Dilated Causal Convolu-
tional network trained using a method based on Evolu-
tionary Algorithms called Population Based training [33]
while in the second task a Deep Reinforcement learning

Fig. 2. High level overview of network model.

Algorithm is applied. The DRL algorithm is trained using
Neuroevolution and more specifically the Particle swarm
Optimization algorithm [34] is applied. A high level archi-
tecture of the proposed mechanism is shown in figure 1
.

IV. Performance Evaluation
A. Experimental Setup

The AI algorithms composing the proposed mechanism
were evaluated using a combination of two different data
sets. The position prediction part is tested using an open
dataset of a Large-Scale Urban Vehicular Mobility Data
set, presented in [48]. This dataset covers the mobility
pattern in a large German City for a day and comprises
the traffic of more than 700,000 individual car trips. Apart
from the model based on the proposed AI algorithm, three
more AI models were trained based on the results of
the literature review presented in II. The models where
trained using 85% of the dataset, while 15% was held for
evaluation. All models were extensively fine-tuned, using
Population Based training.

To train and test the VNF Placement AI part of the
mechanism, a synthetic dataset was created based on the



assumptions presented in [20]. A network architecture and
services as those described in [20] is assumed : Each cell has
a MEC server with known CPU, RAM and HD resources
and is connected to a switch collocated with a Base
station. All the switches are connected to a regional switch,
through which a cloud server that can also accommodate
service requests can be reached. It is assumed that the
latency for all the links in network is known. This network
is used by a number of moving vehicles which use specific
services. We assume that we know the computational
needs for each such service, along with its’ requirements
for Latency and any predefined QoS agreement. For each
time-point the first part of the mechanism predicts the
next cells the vehicles will be located and based on that
prediction, it tries to decide the optimal VNF placement
based on minimizing Resource Utilization and Delay while
satisfying QoS/Latency Requirements.

Table II, presents the various simulation parameters
and algorithm hyper-parameters used in the experiments
presented in section IV-B

TABLE II
Simulation parameters and algorithm hyper-parameters

used for experiments

Variable Values

MEC resources CPU: 4 cores , Memory: 8GB ,
Storage: 32 GB

Cloud resources CPU: 50 cores , Memory: 10 TB ,
Storage: 1000 TB

Mixture of QoS
service level
in used services (%)

Low 40%, High 40% , Critical 20%

Service resource
requirements

All values where randomly sampled
from the following ranges: CPU: [2,3],
Memory: [1,2], Storage: [1,2]

Latency
requirements Low: 20 ms, High: 10 ms, Critical: 1ms

Connection
Latency

Cloud: 22ms,
Vehicle to same Cell MEC: 1ms,
Switch to switch: 6 ms

DCNN
hyper-parameters

Learning Rate: 1.54429e-07,
Weight Decay : 0.280425,
Optimizer : RMSprop,
Activation: LeakyRelu,
Weight initilization : k normal,
Dilation Layers: 3,
Layer size : 512

PSO
hyper-parameters

public coefficient : 1.5,
private coefficient: 1.5,
inertia: 0.2

A2C LSTM
hyper-parameters Hidden Layers: 128, Hidden Layer Size: 64

B. Experimental Results
For the task of the prediction of the vehicle location,

apart from the proposed algorithm (Dilated Causal Con-
volutional NN), three more algorithms (Seq2Seq, CNN,
LSTM) where chosen for evaluation based on literature

Fig. 3. Aggregated mean for service delay for N=500 experiments.

Fig. 4. Aggregated mean for the number of Quality of Service
violations for N=500 experiments.

SotA. The Proposed model outperforms other models in
terms of Accuracy for at least 2%. As shown in table IV-A,
similar results occur for the other metrics commonly used
to evaluate classification tasks i.e. the proposed algorithm
produces results with at least 1% better Precision, 2%
better Recall and 0.4% F1-Score.

For the task of service placement, apart from the pro-
posed algorithm (RL-PSO), four RL algorithms Asyn-
cronous Actor-to-Critic (A2C), Proximaly Policy Op-
timization (PPO), Trust Region Policy Optimization
(TRPO), Augmented Random Search (ARS) and a Evo-
lutionary Algorithm named Multi-objective Ant Colony
Optimizer (MACO) where chosen for evaluation based on
literature SotA. For this task, multiple experiments were
performed to account for the random factor introduced
from the data creation process described in section IV-A.
In these experiments, the number of services was scaled up
from 25 to 200 instances. Each experiment was repeated
N=500 times and the aggregated results for the mean
Service Delay and number of QoS service violation are
shown in table IV. Table IV presents the aggregated mean
and standard deviation of the two objectives of interest for
all the experiments. The proposed method outperforms all
others, both in terms of minimizing the occurrence of QoS



TABLE III
Results for the task of the prediction of the future location of moving vehicles.

Model Accuracy (%) Precision(%) Recall (%) F1-Score(%)
Dilated Causal Convolutional NN (Proposed) 97.22 97.44 97.22 97.26

Seq2Seq 95.1 96.48 95.09 96.86
Simple CNN 94.98 96.22 94.98 96.46

CNN-LSTM stack 93.85 95.87 93.85 94.65

Service Violations and the mean Service Delay. Figures 3
and 4 show the aggregated mean and present these results
in a visual manner.

V. Conclusions and Further Challenges
In this paper, a smart mechanism for the optimal Re-

source Allocation of V2X related Services is presented. It
operates on two levels: Initially, it provides a prediction
for the future location of moving vehicles that utilize
the tracked services. Then, based on this prediction, it
provides a mapping between services and their placements
in either the MEC or Cloud servers available, taking into
account both Quality of Service Agreements and Latency
Requirements. The mechanism proposed, is based on two
SotA Deep Learning Algorithms: the first one is called
Dilated Causal Convolutional Neural Networks and is
tuned using a method called Population Based Training
while the second mechanism is based on Neuroevolution
which combines Evolutionary Algorithms with Deep Neu-
ral Networks.

Experimental results showcase that the proposed ap-
proach outperforms similar SoA approaches, commonly
used in the literature for the same task. As follow-up work,
the proposed mechanism will be packaged in a docker
container form and will be integrated with an Open Source
MANO System [35]. Additionally, we plan to modify and
extent the objectives currently used in the Reinforcement
Learning algorithm to expand the aspects of the services
taken into account for the optimization. Finally, following
the integration with the MANO stack, we plan to inte-
grate,test and demonstrate the mechanism in an actual
5G network implementation and apply it to automotive
and railway related use-cases. The experiments performed
in real life results will stress the proposed mechanism and
validate its’ effectiveness.
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