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Abstract—In image compression, with recent advances in
generative modeling, the existence of a trade-off between the
rate and the perceptual quality has been brought to light,
where the perception is measured by the closeness of the output
distribution to the source. This leads to the question: how does
a perception constraint impact the trade-off between the rate
and traditional distortion constraints, typically quantified by a
single-letter distortion measure? We consider the compression
of a memoryless source X in the presence of memoryless side
information Z, studied by Wyner and Ziv, but elucidate the
impact of a perfect realism constraint, which requires the output
distribution to match the source distribution. We consider two
cases: when Z is available only at the decoder or at both
the encoder and the decoder. The rate-distortion trade-off with
perfect realism is characterized for sources on general alphabets
when infinite common randomness is available between the
encoder and the decoder. We show that, similarly to traditional
source coding with side information, the two cases are equivalent
when X and Z are jointly Gaussian under the squared error
distortion measure. We also provide a general inner bound in
the case of limited common randomness.

I. INTRODUCTION

In conventional rate-distortion theory, the goal is to enable
the decoder to reconstruct a representation Y n ≜ (Y1, ..., Yn)
of the source signal Xn = (X1, ..., Xn) that is close to the
latter for some distortion measure d(Xn, Y n). Shannon char-
acterized the optimal rate-distortion trade-off under an additive
distortion measure, i.e. d(xn, yn) = (1/n)

∑n
i=1 d(xi, yi). In

[1], Wyner and Ziv generalized this result to the case where
a side information Zn, correlated with Xn, is available either
only at the decoder or at both the encoder and the decoder.
Recently, there has been a renewed interest in compression
algorithms since methods based on deep neural networks
(DNNs) have been shown to outperform traditional image and
video compression codecs [2]–[14] under different distortion
measures. In [15], the authors used generative adversarial
networks (GANs) to push the limits of image compression
in very low bit-rates by synthesizing image content, such as
facades of buildings, using a reference image database. This
allows the receiver to generate images that resemble the source
image semantically, although they may not match perfectly
in details, providing visually pleasing reconstructions even at

The present work has received funding from the European Union’s Horizon
2020 Marie Skłodowska Curie Innovative Training Network Greenedge (GA.
No. 953775). It has also received funding from UKRI (EP/X030806/1) for
the project AIR (ERC-CoG). For the purpose of open access, the authors
have applied a Creative Commons Attribution (CCBY) license to any Author
Accepted Manuscript version arising from this submission.

very low bit-rates. It has been observed ([15]–[18]) that at
such bit-rates the increase in perceptive quality comes at the
cost of increased distortion, and the rate-distortion-perception
trade-off was formalized in [19]–[21].

Motivated by successful results in generative modeling,
where the generated images would exhibit the same statistical
properties of the images in the dataset, the formalism of
distribution-preserving image compression [16] was adopted
in [18], and extended in [19]–[21]. The problem is then to
characterize the optimal rate for which both the distortion
d(Xn, Y n) ≤ ∆, and the perception δ(PXn , PY n) ≤ λ, where
δ is a similarity measure, e.g., the total variation distance or a
divergence. This strong perception constraint can be replaced
by weaker variants [22]. In conventional rate-distortion theory,
it is known that deterministic encoders are sufficient to achieve
the optimal rate-distortion performance. This simplifies both
the analysis and implementation of rate-distortion optimal
codes. However, for the rate-distortion-perception trade-off, it
has been shown in [23] that stochastic encoders can be strictly
better. This is extensively studied in [22].

The characterization of the optimal rate-distortion-
perception trade-off for variable-rate codes and arbitrary
perception measures is given in [24]. See also [20] in the
case of a deterministic decoder and for general information
sources and [22] in the case of weaker perception constraints.
The characterization for fixed-rate codes for the perfect
realism case, i.e., λ = 0, is given in [25] and generalized
in [26] to a larger family of distortion measures and
alphabets. The impact of the amount of available common
randomness on the achievable trade-off is explicitly shown.
The optimal rate-distortion trade-off for perfect perception
is also explicitly characterized [26] for a Gaussian source
and mean-squared error distortion measure. When sufficient
common randomness is available, this result boils down to
the one in [16].

First used in another context, a random coding technique
to construct distribution-matching stochastic encoder-decoder
pairs was developed in [27] and [28]. It involves the soft
covering lemma, and is central in [26] and the present paper.

Here, we further push the understanding of how perception
constraints affect traditional information-theoretic results by
studying the impact of the near-perfect realism constraint, i.e.
λ = 0, on the traditional problem of lossy compression in the
presence of side information. We consider two cases: when the
side information Zn is available only at the decoder or at both
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Fig. 1. The system model. Side information Zn is always available at the
decoder, but not necessarily at the encoder.

the encoder and the decoder. In Section II, after formalizing
the problem, we prove the equivalence between achievabil-
ity between two notions of asymptotically perfect realism,
similarly to [26]. This result, interesting in itself, is key to
handling general alphabets in the rest of this paper. In Section
III, we state our main result: a single-letter characterization
of the rate-distortion region for fixed-rate codes when infinite
common randomness is available between the encoder and the
decoder, and an inner bound for limited common randomness.
The proof is the subject of Sections IV and V. In Section VI,
we show that, similarly to traditional source coding with side
information, the two cases are equivalent when X and Z are
jointly Gaussian.

II. PROBLEM FORMULATION AND A FIRST PROPERTY

A. Notation

Calligraphic letters such as X denote sets, except in pUJ ,
which denotes the uniform distribution over alphabet J . We
denote by [a] the set {1, ..., ⌊a⌋} and by xn the finite sequence
(x1, ..., xn). We denote by ∥p − q∥TV the total variation
distance between distributions p and q. We use I(X;Y ) to
denote the mutual information X and Y, defined for general
alphabets as in [29].

B. Definitions

In this section we formulate the information-theoretical
problem for general alphabets. To have the existence of con-
ditional distribution given a joint distribution, we assume all
alphabets are Polish spaces. This includes discrete spaces and
real vector spaces. We omit measure-theoretic justifications
where reasonable.

Definition 1: Given an alphabet X , a distortion measure is
a function d : X × X → [0,∞) extending to sequences as

d(xn, yn) = 1
n

∑n
i=1d(xi, yi).

As shown in Figure 1, we consider two cases: side information
available at the decoder only or available at both the encoder
and the decoder.

Definition 2: Given two measurable spaces with respec-
tive source alphabet X and side-information alphabet Z, a
(n,R,Rc) D-code (resp. E-D-code) is a privately randomized
encoder and decoder couple (F (n), G(n)) consisting of a
mapping F

(n)
M |Xn,J (resp. F (n)

M |Xn,Zn,J ) from Xn×[2nRc ] (resp.

Xn×Zn× [2nRc ]) to [2nR] and a mapping G
(n)
Y n|Zn,J,M from

Zn × [2nRc ]× [2nR] to Xn.

We choose the total variation distance as similarity measure,
which allows us to use existing proof techniques for general
alphabets, including the soft covering lemma.

Definition 3: Given source and side-information alpha-
bets X and Z and a joint distribution pX,Z on X × Z,
a triplet (R,Rc,∆) is said to be D-achievable (resp. E-D-
achievable) with near-perfect realism if there exists a sequence
of (n,R,Rc) D-codes (resp. E-D-codes) (F (n), G(n))n such
that

lim sup
n→∞

EP [d(X
n, Y n)] ≤ ∆ and (1)

∥PY n − p⊗n
X ∥TV −→

n→∞
0, where (2)

PXn,Zn,J,M,Y n = p⊗n
X,Z · pU[2nRc ] · F

(n)
M |Xn,Zn,J ·G(n)

Y |Zn,J,M
.

If in addition there exists an integer N such that for all n ≥ N,
PY n ≡ p⊗n

X , then (R,Rc,∆) is said to be D-achievable (resp.
E-D-achievable) with perfect realism.

The following notion, appearing in [26], is key to handling
general alphabets and is satisfied by finite ones and by the
normal distribution with squared-error distortion (Section VI).

Definition 4: Given a probability space (Ω,B,P), an al-
phabet X , a probability distribution p on X and a distortion
measure d, we say that (d, p) is uniformly integrable iff for
every ε > 0 there is a τ > 0 such that

sup
X,Y,B

E[d(X,Y )1B ] ≤ ε,

where X and Y represent all variables on (Ω,B) with law
PX ≡ PY ≡ p and B represents all events in B s.t. P(B) ≤ τ.

C. Equivalence of the perfect / near-perfect realism problems

To prove inner and outer bounds we use (Sections IV, V) the
uniform integrability in conjunction with the following results.

Theorem 5: Given Polish source and side-information al-
phabets X and Z, a joint distribution pX,Z on X × Z and
a distortion measure d on X such that (d, pX) is uniformly
integrable, then a triplet (R,Rc,∆) is D-achievable (resp. E-
D-achievable) with near-perfect realism if and only if it is
D-achievable (resp. E-D-achievable) with perfect realism.

Remark 6: In Section V, we use a slightly stronger result:
achievability with perfect realism is implied by the existence
of codes satisfying (2) and at vanishing total variation distance
from a sequence of distributions satisfying (1).

The proof of Theorem 5 and its variant in Remark 6 is the
same as that of [26] in the absence of side information.

III. MAIN RESULT

Our main result is the full characterization of the region of
D-achievable triplets assuming infinite common randomness.
We also prove an inner bound for finite common randomness.

Theorem 7: Consider Polish source and side-information
alphabets X and Z, a joint distribution pX,Z on X ×Z and a
distortion measure d such that (d, pX) is uniformly integrable.
Then, assuming infinite common randomness, the closure of



the set AD,∞ of D-achievable tuples with perfect or near-
perfect realism is the closure of the following set SD,∞ :

(R,∆) ∈ R2
≥0 : ∃ pX,Z,V,Y ∈ DD s.t.
R ≥ Ip(X;V |Z)
∆ ≥ Ep[d(X,Y )]

, (3)

where DD is defined as pX,Z,V,Y : (X,Z) ∼ pX,Z , pY ≡ pX
Z −X − V, X − (Z, V )− Y

Ip(Z;V ) < ∞

, (4)

where the alphabet of V is constrained to be Polish. Moreover,
in the case of finite common randomness, the closure of the set
AD of D-achievable triplets (R,Rc,∆) with perfect or near-
perfect realism contains the closure of the following SD :

(R,Rc,∆) ∈ R3
≥0 : ∃ pX,Z,V,Y ∈ DD s.t.
R ≥ Ip(X;V |Z)

R+Rc ≥ Ip(Y ;V )− Ip(Z;V )

∆ ≥ Ep[d(X,Y )]

. (5)

When the side information Z is independent from the source
X, it is independent of (X,V ) due to the first Markov chain
property. Therefore I(X;V |Z) = I(X;V ) and the second
Markov property implies X − V − Y. Thus, we recover the
result of [24] where no side information is present.

Corollary 8: The same result applies for E-D-achievability,
where DD is replaced by DE-D, defined as pX,Z,V,Y : (X,Z) ∼ pX,Z , pY ≡ pX

X − (Z, V )− Y
Ip(Z;V ) < ∞

. (6)

Remark 9: The region of [26], taken with Rc = ∞, includes
the translation of SE-D,∞ by a rate +I(X;Z).

Corollary 8 follows from applying Theorem 7 with source
(Xn, Zn) instead of Xn and choosing a suitable distortion
measure.
We prove Theorem 7 in Sections IV and V.

IV. CONVERSE

We prove that AD,∞ ⊂ SD,∞ by proving that AD,∞ ⊂
SD,∞. This converse proof builds on the approach of
[30], where the same Markov chains as in (4) are stud-
ied. Let (R,∆) be D-achievable with near-perfect realism
with infinite common randomness. Then, by Theorem 5,
it is D-achievable with perfect realism. Fix ε > 0. Then
there exists a (n,R,∞) code inducing a joint distribu-
tion P such that EP [d(X

n, Y n)]<∆+ ε and PY n ≡ p⊗n
X .

Let T be a uniform random variable over [n]. Define
V =(M,J,XT+1:n, Z1:T−1, T ). For an i.i.d. vector such as
(Xn, Zn) ∼ p⊗n

X,Z , the distribution of (XT , ZT ) is pX,Z

Similarly, we have pYT
≡ pX . Markov chains in DD hold

as proved in [30]. Moreover, we have

I(V ;ZT ) = I(M,J,XT+1:n, Z1:T−1;ZT |T )

= 1
n

∑n
t=1 I(M,J,Xt+1:n, Z1:t−1;Zt)

= 1
n

∑n
t=1 I(M ;Zt|J,Xt+1:n, Z1:t−1) < ∞,

where the first two equalities use the independence of T
from all other variables and are true for discrete alphabets.
A quantization argument based on [29] yields the same result
for general alphabets. Since the product of Polish spaces is
Polish, the alphabet of V is. Thus pXT ,YT ,ZT ,V ∈ DD. Using
the independence of T from all other variables, we have

E[d(XT , YT )] =

n∑
t=1

E[1T=td(Xt, Yt)] =

n∑
t=1

PT (t)E[d(Xt, Yt)].

Therefore, we have ∆+ ε ≥ E[d(XT , YT )]. Moreover,

nR ≥ H(M) ≥ I(M ;Xn|Zn, J)

= I(M,J ;Xn|Zn) (7)
=

∑n
t=1 I(M,J ;Xt|Zn, Xt+1:n)

=
∑n

t=1 I(M,J,Xt+1:n, Z[n]\t;Xt|Zt)

≥ ∑n
t=1 I(M,J,Xt+1:n, Z1:t−1;Xt|Zt)

= nI(M,J,XT+1:n, Z1:T−1;XT |ZT , T ) (8)
= nI(V ;XT |ZT ), (9)

where (7) follows from the independence between the com-
mon randomness and the sources and equations (8) and (9)
hold similarly to the above computation of I(V ;ZT ). Hence
(R,∆+ ε) ∈ SD,∞, which concludes the proof.

V. ACHIEVABILITY

A. Informal outline

We introduce a virtual message M ′ with rate R′ generated
and used by the encoder, but not be transmitted. The decoder
will then guess it. We start with a distribution Q(1), analyzed
using the soft covering lemma of [27], then change it little by
little to obtain intermediate distribution Q(2) and a distribution
P (1) corresponding to a coding scheme. In order to obtain a
final distortion bound, we use the uniform integrability in con-
junction with the equivalence between achievability with near-
perfect and perfect realism. For joint distributions, we use,
with abuse of notation, QX,Y (x, y) = QX(x)ρ(y|x), which
defines QX,Y by marginal distribution QX and conditional
probability kernel ρ.

B. Random codebook indexed by a virtual message

Here, we prove that SD ⊂ AD by proving that SD ⊂ AD.
This will also yield that SD,∞ is contained in the projection
-along the two coordinates R and ∆- of AD, which is
contained in AD,∞. Let (R,Rc,∆) be a triplet in SD. Fix
some ε > 0. Let pX,Y,Z,V be a corresponding distribution
from the definition of SD. Then, we have Ip(Z;V ) < ∞, and

R ≥ Ip(X;V |Z) (10)

R+Rc ≥ Ip(Y ;V )− Ip(Z;V ) (11)

∆ ≥ Ep[d(X,Y )]. (12)

By (4), we have

Ip(X;V |Z) = Ip(X;V )− Ip(Z;V ). (13)
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Fig. 2. Graphical model for Q(1).

We introduce a rate R′ corresponding to a virtual message M ′,
as follows. If Ip(Z;V ) = 0 then set R′ = 0. Otherwise, fix
R′ in

(
Ip(Z;V )− ε, Ip(Z;V )

)
∩
(
0,+∞

)
, which is possible

since I(Z;V ) < ∞. Then, by (10), (13), (11), we have:

(R+ ε) +R′ > Ip(X;V ) = Ip(X,Z;V ), (14)
(R+ ε) +R′ +Rc > Ip(Y ;V ). (15)

For every n ≥ 1 we generate a random codebook C(n) with
⌊2n(R+ε)⌋ × ⌊2nR′⌋ × ⌊2nRc⌋ i.i.d. codewords sampled from
p⊗n
V . The codewords are indexed by triples (m,m′, j). We

denote this random codebook distribution by QC(n) .

C. Distribution Q(1) and soft-covering lemma

For every positive integer n, we define the distribution Q(1),
described in Figure 2, by the following density:

Q(1) (c(n),m,m′, j, vn, xn, yn, zn) = QC(n)(c(n))

· 1
⌊2n(R+ε)⌋⌊2nR′⌋⌊2nRc⌋

1
vn=vn(c(n),m,m′,j)

n∏
t=1

p(xt, yt, zt)
X,Y, Z|V = vt

(16)

Then, by the definition of QC(n) , we have Q
(1)
V n ≡ p⊗n

V , and
therefore, from (16) we have Q

(1)
Xn,Y n,Zn ≡ p⊗n

X,Y,Z . Hence,
from (12) and the additivity of d, we have

EQ(1) [d(Xn, Y n)] ≤ ∆. (17)

We can use the Markov property Z −X − V to show that

(M,M ′)− (Xn, J)− Zn under Q(1). (18)

1) Marginals of Y n and (Xn, Zn) knowing a codebook:
We start by stating a standard lemma regarding the total

variation distance.
Lemma 10: Let Π be two distributions on the product of two

Polish spaces W and L, and let ΠL|W ,ΓL|W be two channels.
Then, we have

∥ΠWΠL|W −ΠWΓL|W ∥TV = EΠW

[
∥ΠL|W − ΓL|W ∥TV

]
.

We use the soft covering lemma for general alphabets [27,
Corollary VII.4] in its memoryless case, and get, as in [27] :

EC(n)

[
∥Q(1)

Y n|C(n) − p⊗n
X ∥TV

]
−→
n→∞

0 (19)

EC(n)

[
∥Q(1)

J,Xn,Zn|C(n) − pU[2nRc ]p
⊗n
X,Z∥TV

]
−→
n→∞

0. (20)

2) Decoding of M ′:
The virtual message M ′ is to be decoded as M̂ ′, condition-

ally independent from M ′, Xn, Y n knowing M,J,Zn, C(n) :

Q(1) (m̂′)
M̂ ′|C(n)=c(n),M=m,J=j,Zn=zn

is a joint pV,Z-typicality decoder for subcodebook
(vn(c(n),m, a, j))a. By the typical random coding argument
for channel coding (see, e.g., [31]), we get

Q(1) (M̂ ′ ̸= M ′)
M̂ ′,M ′

−→
n→∞

0 (21)

in the case of finite alphabets. It can be proved that the same
holds for general sources, using a joint typicality decoder
with respect to a quantized distribution p[V ],[Z] of mutual
information close enough to Ip(Z;V ). The probability in
(21) can be rewritten as an expectation over C(n). Since the
convergence towards zero in expectation implies a convergence
in probability for a non-negative variable, we get:

Q(1)
(
M ′ ̸= M̂ ′

∣∣ C(n)
) P−→

n→∞
0. (22)

3) Choosing a codebook:
From (17), Lemma 10, and the Markov inequality we get

QC(n)

(
E[d(Xn, Y n)|C(n)]

)
≤ ∆+ ε) ≥ ε/(∆ + ε). (23)

In addition, similarly to (22), we get convergence in probabil-
ity from (19) and (20). Combining this with (23) gives that
for a certain N0, ∀n ≥ N0 there is a codebook c

(n)
∗ such that

E
Q

(1)

Xn,Y n|C(n)=c
(n)
∗

[d(Xn, Y n)] ≤ ∆+ ε, (24)

∥Q(1)

Y n|C(n)=c
(n)
∗

− p⊗n
X ∥TV ≤ ε. (25)

∥Q(1)

J,Xn,Zn|C(n)=c
(n)
∗

− pU[2nRc ]p
⊗n
X,Z∥TV ≤ ε. (26)

Q(1) (M̂ ′ ̸= M ′)
M ′,M̂ ′|C(n)=c(n)

∗
≤ ε. (27)

In the following sections we shall omit the conditioning on
C(n) = c

(n)
∗ , which will be implicit.

D. Construction of a code
In this subsection, we show how distribution Q(1) can be

modified, in a way that is minor in terms of total variation
distance, to lead to a code. The latter inherits the realism for
Y n and the small error for decoding M ′. Regarding expected
distortion, we use the uniform integrability in conjunction with
the equivalence between near-perfect and perfect realism.
1) Some lemmas on the total variation distance:
We start by citing some lemmas from [27] and [28].

Lemma 11: [27, Lemma V.1] Let Π and Γ be two distribu-
tions on an alphabet W ×L. Then

∥ΠW − ΓW ∥TV ≤ ∥ΠW,L − ΓW,L∥TV .

Lemma 12: [27, Lemma V.2] Let Π and Γ be two distri-
butions on an alphabet W × L. Then when using the same
channel ΠL|W we have

∥ΠWΠL|W − ΓWΠL|W ∥TV = ∥ΠW − ΓW ∥TV .

Lemma 13: [28, Lemma 2] Let PUWL be a distribution on
an alphabet of the form U × U × L and let η ∈ (0, 1). If
P (U ̸= W ) ≤ η we have∥PUL − PWL∥TV ≤ η.
2) Construction of Q(2) and comparison to Q(1):
Using definition (16) of Q(1) and the Markov property X −



Z, V − Y from (4) we get:

Q(1) (xn, yn, zn)
Xn,Y n,Zn|V n=vn =

n∏
t=1

p (xt, zt)
X,Z|V = vt

p (yt)
Y |V =vt, Z=zt

.

With this in mind, for every positive integer n we define the
following distribution which differs from Q(1) in that Y n is
sampled using M̂ ′ instead of M ′ :

Q(2) (m,m′, j, vn, xn, yn, zn, m̂′)

= Q(1) (m,m′, j, vn, xn, zn, m̂′) p (yn)
Y n|Zn=zn, V n=vn(m, m̂′, j)

By construction, we have

Q
(2)

M ′,M̂ ′,M,J,V n,Xn,Zn
≡ Q

(1)

M ′,M̂ ′,M,J,V n,Xn,Zn
.

Using Lemma 13 on this joint distribution with U = M ′,W =
M̂ ′, L = (M,J, V n, Xn, Zn) we have by (27)∥∥Q(1)

M ′,M,J,V n,Xn,Zn −Q
(2)

M̂ ′,M,J,V n,Xn,Zn

∥∥
TV

≤ ε.

As a consequence and by construction of Q(2) and its simi-
larity to that of Q(1) we have by Lemma 12 with L = Y n :∥∥Q(1)

M ′,M, J, V n, Xn, Y n, Zn −Q
(2)

M̂ ′,M, J, V n, Xn, Y n, Zn

∥∥
TV

≤ ε. (28)

Since Q
(2)
J,Xn,Zn ≡ Q

(1)
J,Xn,Zn we also have by (26):

∥Q(2)
J,Xn,Zn − pU[2nRc ]p

⊗n
X,Z∥TV ≤ ε. (29)

3) Finalizing the code construction:
We define the distribution P (1) achieving near-perfect realism
and from which a distribution P (2) with perfect realism will
be derived. The former differs from Q(2) in having the correct
marginal for (Xn, Zn) as follows

P (1) (m,m′, j, vn, xn, yn, zn, m̂′)

= 1
⌊2nRc⌋

n∏
t=1

p (xt, zt)
X,Z

Q(2) (m,m′, vn, m̂′, yn)
M,M ′, V n, M̂ ′, Y n|J=j,Xn=xn, Zn=zn

Then by Lemma 12 comparing P (1) with Q(2) reduces to
comparing marginals, i.e. to equation (29):∥∥P (1)

M,M ′, J, V n, Xn, Zn, M̂ ′, Y n −Q
(2)

M,M ′, J, V n, Xn, Zn, M̂ ′, Y n

∥∥
TV

=
∥∥P (1)

J,Xn,Zn −Q
(2)
J,Xn,Zn

∥∥
TV

≤ ε. (30)

Therefore by Lemma 11 with W = (Xn, Y n) and the triangle
inequality and (28) we get∥∥P (1)

Xn,Y n −Q
(1)
Xn,Y n

∥∥
TV

≤ ε. (31)

Due to (18), it can be easily checked that P (1) defines a
(n,R+ε,Rc) D-code. The entire construction layed out in this
Section V is valid for any ε > 0 (which was fixed in Section
b). The blocklength N0 after which (24) and (25) hold depends
on ε > 0. Consider a sequence of codes associated to some
vanishing sequence (εk)k. For any ε′ > 0, the achievability of
(R+ε′, Rc,∆+ε′) then follows from Remark 9 with Q(1) and
P (1) and from (24), (25) and (31). Hence, (R,Rc,∆) ∈ AD

as desired.

VI. THE GAUSSIAN CASE

Interestingly, similarly to standard source coding with side
information, when the source and side information form a bi-
dimensional Gaussian then D-achievability is equivalent to E-
D-achievability in the following sense.

Theorem 14: Consider the setting of Theorem 7 in the case
of infinite common randomness with d : (x, y) 7→ (x− y)2

and pX,Z = N
(
0,

(
1 η
η 1

))
.

For any ∆ in (0, 2 − 2η], and denoting ρ = 1 − ∆/2, the
infimum of rates such that (R,∆) is D- or E-D-achievable
with (near-)perfect realism is:

RD(∆) = RE-D(∆) =
1

2
log

(1− η2

1− ρ2

)
, (32)

The numerator is the same as in standard source coding with
side information (see e.g. [31]) and the denominator is the
same as in [16], which we recover when the side-information
Z is independent from X. We now prove Theorem 14.
We know that RD(∆) ≥ RE-D(∆). Moreover, by Remark
9 the region SE-D,∞ translated by a rate +I(X;Z) =
− 1

2 log((1 − η2)) is included in the region of [16], [24].
Therefore, by [16, Proposition 2] we have

RE-D(∆) ≥ 1
2 log((1− η2)/(1− ρ2)). (33)

We upper bound RD(∆). Fix a ∆ in (0, 2− 2η]. Let

(Z,X, V ) =
(
ηX̃ +

√
1− η2Z̃, X̃, bX̃ +

√
1− b2Ṽ

)
, (34)

where (Z̃, X̃, Ṽ ) is standard Gaussian. Since ρ ≥ η, with

b =
√
(ρ2 − η2)/(1 + η2ρ2 − 2η2) we find (35)

E
[
E[X|Z, V ]2

]
= ρ2, and therefore (36)

Ip(X;V |Z) = h(X|Z)− h(X|Z, V ) = 1
2 log((1-η2)/(1-ρ2)). (37)

Define Y = ρ−1E[X|Z, V ]. One can check that pX,Z,V,Z ∈
DD, that E[d(X,Y )] = ∆ and (d, pX) is uniformly integrable,
then by Theorem 7, we have

RD(∆) ≤ 1
2 log((1− η2)/(1− ρ2)).

VII. CONCLUSION

We have considered the traditional problem of source coding
of a memoryless source Xn in the presence of correlated
side information Zn, studied by Wyner and Ziv, with the
additional requirement of perfect realism on the reconstruction.
We have characterized the rate-distortion-perception trade-
off for sources on general alphabets when infinite common
randomness is available between the encoder and the decoder,
in two cases: when Zn is available only at the decoder or at
both the encoder and the decoder. We showed that, similarly to
traditional source coding with side information, the two cases
are equivalent when Xn and Zn are jointly Gaussian. We also
provided a general inner bound in the case of limited common
randomness.
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