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Abstract:  

The objective of this paper is to define and study split-complex vector spaces as modules over the 

ring of split-complex numbers. Where we study the elementary properties of this new algebraic class 

in terms of theorems, and we present many examples to clarify the validity of our work. 
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Introduction 

The concept of split-complex numbers (hyperbolic numbers) is considered as a generalization of real 

numbers. These numbers have many applications in mathematics and physics [1-2,4], and they have a 

similar algebraic structure to the neutrosophic numbers [3]. From this point of view, we study the 

structure of vector spaces defined over split-complex numbers, where we find that they are modules in 

the algebraic meaning, with a strict basis can be found from the classical basis of the vector space V. 

First, we recall some elementary definitions. 

Definition 

𝑅𝐷 = {𝑎 + 𝑏𝜀; 𝑎, 𝑏 ∈ 𝑅, 𝜀2 = 1} the ring of hyperbolic numbers. It can be understood as an extension 

of the real field R. 

Main discussion 

Definition.  

Let 𝐾 = {𝑎 + 𝑏𝐽; 𝐽2 = 1; 𝑎, 𝑏 ∈ 𝑅} be the ring of split-complex numbers. 
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Let 𝑉 be a vector space over 𝑅, we define the split-complex space: 𝑉𝐾 = 𝑉 + 𝑉𝐽 = {𝑋 + 𝑌𝐽; 𝑋, 𝑌 ∈

𝑉}. 

Definition. 

Let 𝑋 = 𝑥1 + 𝑥2𝐽, 𝑌 = 𝑦1 + 𝑦2𝐽, 𝐴 = 𝑎1 + 𝑎2𝐽 ∈ 𝐾 and 𝑋, 𝑌 ∈ 𝑉𝐾, we define: 

𝑋 + 𝑌 = (𝑥1 + 𝑦1) + (𝑥2 + 𝑦2)𝐽 

𝐴. 𝑋 = 𝑎1𝑥1 + 𝑎2𝑥2 + 𝐽(𝑎1𝑥2 + 𝑎2𝑥1). 

Remark. 

The operations have the following properties: 

Property 1. 

𝑋 + 𝑌 = 𝑌 + 𝑋, 𝑋 + 0 = 𝑋, 𝑋 + (−𝑋) = 0, and 𝑋 + (𝑌 + 𝑍) = (𝑋 + 𝑌) + 𝑍. 

Property 2. 

(𝐴 + 𝐵). 𝑋 = 𝐴. 𝑋 + 𝐵. 𝑋, 𝐴. (𝑌 + 𝑋) = 𝐴. 𝑌 + 𝐴. 𝑋, (𝐴. 𝐵). 𝑋 = 𝐴. (𝐵. 𝑋), and 1. 𝑋 = 𝑋. 

This implies that (𝑉𝐾 , +, . ) Is a module over the ring 𝐾. 

Definition. 

Let 𝑉𝐾 be a split-complex space over 𝐾, 𝑊𝐾 be a nonempty subset of 𝑉𝐾, we say that 𝑊𝐾 is a subspace 

if and only if 𝑋 + 𝑌 ∈ 𝑊𝐾 , 𝐴. 𝑋 ∈ 𝑊𝐾; ∀ 𝑋, 𝑌 ∈ 𝑊𝐾 , 𝐴 ∈ 𝐾. 

Definition. 

Let 𝑉1, 𝑉2 be two subspace of 𝑉, we define the split-complex AH-subspace of 𝑉𝐾 as follows: 

𝑇𝐾 = 𝑉1 + 𝑉2𝐽 = {𝑥 + 𝑦𝐽; 𝑥 ∈ 𝑉1, 𝑦 ∈ 𝑉2} 

Example. 

Take the vector space 𝑉 = 𝑅4 over 𝑅 we have: 

𝑉1 = 〈(1,0,0,0)〉 = {(𝑥, 0,0,0); 𝑥 ∈ 𝑅}, 𝑉2 = 〈(0,1,0,0)〉 = {(0, 𝑦, 0,0); 𝑦 ∈ 𝑅} are two subspace of 𝑉. 

𝑇𝐾 = 𝑉1 + 𝑉2𝐽 = {(𝑥, 0,0,0) + (0, 𝑦, 0,0)𝐽; 𝑥, 𝑦 ∈ 𝑅} is an AH-subspace. 

Theorem. 

Let 𝑇𝐾 = 𝑉1 + 𝑉2𝐽 be an AH-subspace of 𝑉𝐾, then 𝑇𝐾 is a subspace if and only if 𝑉1 = 𝑉2. 

Proof. 

Assume that 𝑇𝐾 is a subspace, then: 

For 𝐴 = 𝑎1 + 𝑎2𝐽 ∈ 𝐾, 𝑋 = 𝑥 + 𝑦𝐽 ∈ 𝑇𝐾, we get: 

𝐴. 𝑋 = 𝑎1𝑥 + 𝑎2𝑦 + 𝐽(𝑎1𝑦 + 𝑎2𝑥) ∈ 𝑇𝐾 , thus: 

{
𝑎1𝑥 + 𝑎2𝑦 ∈ 𝑉1

𝑎1𝑦 + 𝑎2𝑥 ∈ 𝑉2
⟹ {

𝑎2𝑦 ∈ 𝑉1

𝑎2𝑥 ∈ 𝑉2
⟹ {

𝑉1 ⊆ 𝑉2

𝑉2 ⊆ 𝑉1
⟹ {𝑉1 = 𝑉2 

The convers is clear. 

Definition. 

Let 𝐿: 𝑉𝐾 → 𝑊𝐾 be a mapping between to two split-complex spaces, we say that 𝐿 is a split-complex 

linear transformation if: 

𝐿(𝑋 + 𝑌) = 𝐿(𝑋) + 𝐿(𝑌), 𝐿(𝐴. 𝑋) = 𝐴. 𝐿(𝑋) for all 𝑋, 𝑌 ∈ 𝑉𝐾 , 𝐴 ∈ 𝐾. 

Now, we will present an algebraic to build a split-complex linear transformation. 
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Theorem. 

Let 𝑓: 𝑉 → 𝑊 be a classical linear transformation between 𝑉 and 𝑊. Let 𝑉𝐾 , 𝑊𝐾 be the corresponding 

split-complex spaces of 𝑉 and 𝑊 over 𝐾, then 𝐿: 𝑉𝐾 → 𝑊𝐾;  𝐿(𝑋 + 𝑌𝐽) = 𝑓(𝑋) + 𝑓(𝑌)𝐽 is a split- 

complex linear transformation. 

Proof. 

Take 𝑋 = 𝑥1 + 𝑥2𝐽, 𝑌 = 𝑦1 + 𝑦2𝐽 ∈ 𝑉𝐾  , 𝐴 = 𝑎1 + 𝑎2𝐽 ∈ 𝐾, we have: 

𝐿(𝑋 + 𝑌𝐽) = 𝑓(𝑥1 + 𝑦1) + 𝑓(𝑥2 + 𝑦2)𝐽 = [𝑓(𝑥1) + 𝑓(𝑥2)𝐽] + [𝑓(𝑦1) + 𝑓(𝑦2)𝐽] = 𝐿(𝑋) + 𝐿(𝑌) 

𝐿(𝐴. 𝑋) = 𝑓(𝑎1𝑥1 + 𝑎2𝑥2) + 𝑓(𝑎1𝑥2 + 𝑎2𝑥1)𝐽 = 𝑎1𝑓(𝑥1) + 𝑎2𝑓(𝑥2) + [𝑎1𝑓(𝑥2) + 𝑎2𝑓(𝑥1)]𝐽 

𝐴. 𝐿(𝑋) = (𝑎1 + 𝑎2𝐽) + (𝑓(𝑥1) + 𝑓(𝑥2)𝐽) = 𝑎1𝑓(𝑥1) + 𝑎2𝑓(𝑥2) + 𝐽[𝑎1𝑓(𝑥2) + 𝑎2𝑓(𝑥1)] =

𝐿(𝐴. 𝑋). 

Example. 

Let 𝑉 = 𝑅2 , 𝑊 = 𝑅2, 𝑓: 𝑉 → 𝑊;  𝑓(𝑥, 𝑦) = (2𝑥, 𝑥 − 𝑦) is a linear transformation. 

Let 𝑉𝐾 = 𝑊𝐾 = {(𝑥1, 𝑦1) + (𝑥2, 𝑦2)𝐽 ;  𝑥𝑖 , 𝑦𝑖 ∈ 𝑅} be the corresponding split-complex space. 

We define 𝐿: 𝑉𝐾 → 𝑊𝐾 such that 𝐿((𝑥1, 𝑦1) + (𝑥2 , 𝑦2)𝐽) = 𝑓(𝑥1, 𝑦1) + 𝑓(𝑥2, 𝑦2)𝐽 = (2𝑥1, 𝑥1 − 𝑦1) is 

a split- complex linear transformation. 

Split-complex Inner products. 

Definition. 

Let 𝑔: 𝑉 × 𝑉 → 𝑅 be an inner product, we define the corresponding split-complex product as follows 

𝑓: 𝑉𝐾 × 𝑉𝐾 → 𝐾 such that: 

𝑓(𝑥1 + 𝑥2𝐽, 𝑦1 + 𝑦2𝐽) = 𝑔(𝑥1, 𝑦1) + 𝑔(𝑥2, 𝑦2) + 𝐽[𝑔(𝑥1, 𝑦2) + 𝑔(𝑥2, 𝑦1)] 

Now, we will discuss some properties of the split-complex inner product (𝑓). 

Property 1. 

 𝑓(𝑋, 𝑌) = 𝑓(𝑌, 𝑋) (the proof is clear). 

Property 2. 

𝑓(𝑋, 𝑋) = 𝑓(𝑥1 + 𝑥2𝐽, 𝑥1 + 𝑥2𝐽) = 𝑔(𝑥1, 𝑥1) + 𝑔(𝑥2, 𝑥2) + 𝐽[𝑔(𝑥1, 𝑥2) + 𝑔(𝑥2, 𝑥1)]

= ‖𝑥1‖2 + ‖𝑥2‖2 + 2𝐽𝑔(𝑥1 , 𝑥2) 

𝑓(𝑋, 𝑋) = 0 implies that: 

{
‖𝑥1‖2 + ‖𝑥2‖2 = 0

𝑔(𝑥1, 𝑥2) = 0
⟺ {

‖𝑥1‖2 = −‖𝑥2‖2

𝑥1 ⊥ 𝑥2
⟺ 𝑥1 = 𝑥2 = 0 

Thus 𝑋 = 0. 

Property 3. 

𝑓(𝐴. 𝑋, 𝑌) = 𝑓(𝑎1𝑥1 + 𝑎2𝑥2 + 𝐽(𝑎1𝑥2 + 𝑎2𝑥1), 𝑦1 + 𝑦2𝐽) = 𝑔(𝑎1𝑥1 + 𝑎2𝑥2, 𝑦1) + 𝑔(𝑎1𝑥2 +

𝑎2𝑥1, 𝑦2) + 𝐽[𝑔(𝑎1𝑥1 + 𝑎2𝑥2, 𝑦2) + 𝑔(𝑎1𝑥2 + 𝑎2𝑥1, 𝑦1)] = 𝑎1𝑔(𝑥1, 𝑦2) + 𝑎2𝑔(𝑥2, 𝑦1) +

𝑎1𝑔(𝑥2, 𝑦2) + 𝑎2𝑔(𝑥1, 𝑦2) + 𝐽[𝑎1𝑔(𝑥1 , 𝑦2) + 𝑎2𝑔(𝑥2, 𝑦2) + 𝑎1𝑔(𝑥2, 𝑦1) + 𝑎2𝑔(𝑥1, 𝑦1)] =

𝐴. 𝑓(𝑋, 𝑌). 

Property 4. 
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𝑓(𝑋 + 𝑌, 𝑍) = 𝑓(𝑋, 𝑍) + 𝑓(𝑌, 𝑍) 

Remark. 

If 𝑥1 ⊥ 𝑥2, then 𝑓(𝑋, 𝑋) = ‖𝑥1‖2 + ‖𝑥2‖2 = ‖𝑥1 + 𝑥2‖2. 

Definition. 

We define the norm of 𝑋 as follows: 

‖𝑋‖ = 𝑓(𝑋, 𝑋) = ‖𝑥1‖2 + ‖𝑥2‖2 + 2𝐽𝑔(𝑥1, 𝑥2) ∈ 𝐾 

Remark. 

1. If 𝑥1 = 0, then ‖𝑋‖ = ‖𝑥2‖2. 

2. If 𝑥2 = 0, then ‖𝑋‖ = ‖𝑥1‖2. 

3. If 𝑥1 = 𝑥2, then ‖𝑋‖ = 2‖𝑥1‖2 + 2𝜀‖𝑥1‖2. 

4. ‖𝐴. 𝑋‖ = 𝐴2 . ‖𝑋‖2; ∀ 𝐴 ∈ 𝐾. 

Definition. 

Let 𝑋, 𝑌 ∈ 𝑉𝐾, we say that 𝑋 ⊥ 𝑌 if and only if 𝑓(𝑋, 𝑌) = 0. 

Remark. 

𝑋 ⊥ 𝑌 if and only if 𝑓(𝑋, 𝑌) = 0, thus: 

{
𝑔(𝑥1, 𝑦1) + 𝑔(𝑥2, 𝑦2) = 0

𝑔(𝑥1, 𝑦2) + 𝑔(𝑥2, 𝑦1) = 0
 

On the other hand, we have 𝑔(𝑥1 + 𝑥2, 𝑦1 + 𝑦2) = 𝑔(𝑥1, 𝑦1) + 𝑔(𝑥1, 𝑦2) + 𝑔(𝑥2, 𝑦1) + 𝑔(𝑥2, 𝑦2) = 0 

Thus 𝑋 ⊥ 𝑌 if and only if 𝑥1 + 𝑥2 ⊥ 𝑦1 + 𝑦2. 

Conclusion 

In this paper, we have defined and studied split-complex vector spaces as modules over the ring of 

split-complex numbers. Where we have presented the elementary properties of this new algebraic class 

in terms of theorems, and we present many examples to clarify the validity of our work. 
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