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About this example 

The measured material consists of a ~200 nm polycrystalline Fe film made of ~40 nm Fe grains 
(courtesy of John McCloy). This example handles FORC processing aspects related to rectangular 
hysteresis loops shaped by strongly magnetizing internal fields, and how the effects of such fields 
can be corrected so that “intrinsic” properties depending exclusively on applied fields are represen-
ted by the FORC diagram. 

In general, an additional, so-called internal field exists inside the sample being measured. Internal 
fields are produced by the sample itself and can always be expressed as the sum of a local, random 
component (e.g. in disordered magnetic particle dispersions), and a component that is proportional 
to the bulk magnetization (e.g. demagnetizing fields). The latter component is often referred to as 
a mean field. While random internal fields “blur” the intrinsic FORC signature of the material being 
measured, mean fields introduce additional features to the FORC diagram, which are unrelated to 
intrinsic material properties. These features depend on the sign of the proportionality constant 
linking the mean interaction field with the bulk magnetization: positive mean fields and negative mean 
fields are characterized by positive and negative constants, respectively. This example deals with 
positive mean fields, i.e. fields that tend to reinforce existing magnetizations inside the specimen 
being measured. The reinforcement action tend to produce rectangular hysteresis loops, as shown 
in this example. 

FORC measurements 

•  Measuring instrument: PMC MicroMag 2900 VSM. 

•  Specimen preparation: Unknown. 

•  FORC measurement protocol: 
Hc1 = 0      , Hc2 = 0.05 T 

Hb1 = -0.05 T, Hb2 = +0.02 T 

Hsat = 1 T 

Averaging time       = 0.1 s 

Pause at calibration = 1 s 

Pause at reversals   = 1 s 

Pause at saturation  = 2 s 

Smoothing = 1 (adds a 1-point margin to the measured range) 

•  Derived measurement parameters: 
Number of curves: 485 

Calibration measurements at 0.071 T 

Mean size of field steps = 0.25 mT (maximum resolution of the FORC diagram) 

•  Notes on measurements. None 
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About VARIFORC processing options used in this example 

VARIFORC modules are controlled by processing options stored in so-called parameter files. 
Parameter files used to process FORC data related to this example can be find in the folder contai-
ning this document. These are: 

1. Import and correct FORC measurements (ImportFORC module): 

• PolyFe_VARIFORC_ImportFORC_parameters.txt: import FORC data with first-point correc-
tion. Error calculation is disabled (INPUT 10 set to 1), because it would just reflect smoothing 
artifacts on parts of the curves with extremely large slopes. The only effect of this processing 
option is that outliers – which are in any case absent in this set of measurements – cannot be 
detected. The high-field susceptibility (INPUT 19) has been set to 0 because the specimen does 
not contain para- or diamagnetic contributions. 

2. Calculate the FORC diagram (CalculateFORC module): 

• PolyFe-SF1.5_VARIFORC_CalculateFORC_parameters.txt: conventional processing with a 
constant smoothing factor (SF = 1.5). For demonstration purposes only. 

• PolyFe-vari_VARIFORC_CalculateFORC_parameters.txt: optimized variable smoothing with 
smoothing factor limitations along diagonals with maximum first derivatives. 

• PolyFe-mfc-initial_VARIFORC_CalculateFORC_parameters.txt: same as previous, with an 
initial mean field correction (INPUT 17: constant smoothing factor of 1 used for the calculation of 
M, and α = +0.25 mAm2/T) at low resolution (INPUT 06 set to Coarse). 

• PolyFe-mfc-final_VARIFORC_CalculateFORC_parameters.txt: same as previous, with the 
final mean field correction (INPUT 17: constant smoothing factor of 1 used for the calculation of 
M, and α = +0.4 mAm2/T) at full resolution (INPUT 06 set to 0.00025). 
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Low- and high-resolution measurements 

The sample’s hysteresis loop is characterized by extremely steep branches (Plates 1) and repre-
sents a limit example of rectangular hysteresis with associated FORC processing difficulties (see 
VARIFORC example on this topic). An important characteristics of FORC measurements associa-
ted with rectangular hysteresis is the tendency of the measured curve to accumulate near the upper 
and lower branches of the major hysteresis loop, so that the loop area is crossed only by few 
curves. Plates 1a,b show a “typical” FORC dataset with 73 curves measured in steps of ~2 mT: the 
largest gap between consecutive curves is almost as large as the saturation remanence. Poor reso-
lution becomes evident in plots where the lower branch of the hysteresis loop has been subtracted 
from each curve (Plate 1b). In this case, the sharp peaks centered at ~14 mT are covered by only 
4 measurement points. A much higher resolution is required for the correct calculation of corres-
ponding features in the FORC diagram. 

FORC difference plots like Plate 1b are part of the standard VARIFORC output and enable 
closer examination of important details that are not visible in conventional plots (e.g., Plate 1a). The 
envelope of curves from which the lower branch of the hysteresis loops has been subtracted coi-
ncides with the even component of the hysteresis loop, i.e. the difference between upper and lower 
branches [Fabian and Dobeneck, 1997]. 

High-resolution FORC measurements (485 curves measured in steps of 0.25 mT) have been 
used to cover the hysteresis loop area with a sufficient number of curves and adequately sample 
sharp magnetization changes (Plates 1c,d). Even so, the maximum gap between consecutive curves 
reaches 10% of the saturation remanence. Persistence of the ~14 mT peaks in Plate 1d in all curves 
is due to the fact that the chosen measurement protocol does not cover the whole hysteresis up 
to saturation: curves starting at larger negative field would display smaller peaks until full disappea-
rance once measurements coincide with the lower branch of hysteresis. 

Close inspection of the measured curves (Plates 1a,c), and, most importantly, of FORC diffe-
rence plots (Plates 1b,d), enables a first verification of the chosen protocol. Insufficient coverage is 
manifested by difference curves that do not approach zero (for this purpose, the INPUT 21 option 
of the ImportFORC must be set to Hysteresis, see the parameter file PolyFe_VARIFORC_Import 
FORC_parameters.txt). On the other hand, characteristic features of the measured curves, such 
as rapid changes in slope and the peaks of Plate 1d should be covered by >10 measurements, and 
even more in case of visible measurement noise. 

As in most VARIFORC examples, the first measurement point of all curves is affected by the 
sudden field sweep reversal preceding each curve. In most cases, first points lie slightly above the 
curve trend defined by the next points (see the VARIFORC example on first-point correction). 
This problem should not be confused with magnetic viscosity effects, which involve more points 
and is most pronounced for curves starting from the negative coercive field [Pike et al., 2001]. First-
point artifacts are corrected by replacing the affected measurements with a polynomial extrapo-
lation of next points. 
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Plate 1. FORC measurements of a polycrystalline Fe film. Left plots show the measured curves after 
drift and outlier correction. Right plots show the same measurements after subtraction of the lower hys-
teresis branch reconstructed from the FORC measurements. (a-b) Low-resolution measurements (73 
curves with ~2 mT field steps). Notice the large gaps between consecutive curves and poor resolution of 
the peaks in (b). (c-d) High-resolution measurements (485 curves with ~0.25 mT field steps). Every 3rd curve 
in (c) and every 2nd curve in (d) are shown for clarity. All plots were generated by ImportFORC with minor 
editing (see the parameter file PolyFe_VARIFORC_ImportFORC_parameters.txt). 
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FORC processing problems related to rectangular hysteresis 

Rectangular hysteresis loops, as the one in this example, are characterized by particular FORC 
signatures requiring high-resolution measurements (see previous section) and special processing 
strategies in order to avoid smoothing artifacts. FORC processing difficulties are caused by rapid 
magnetization changes in proximity of the positive and negative coercive fields (Plate 2a). In FORC 
space, these changes are concentrated along two diagonals characterized by very large first deriva-
tives ∂M/∂Hr and ∂M/∂H, where Hr is the so-called reversal field at which curves begin, and H the 
field applied during measurements (Plate 2b). FORC diagram contributions are almost exclusively 
concentrated along these two diagonals, with the central peak located at the crossing point (Plate 
2c). First derivative peaks along such diagonals, however, are not always associated with correspon-
ding contributions in the FORC diagram, as seen with the VARIFORC rectangular hysteresis exam-
ple based on non-interacting single-domain particles. The FORC signature shown here is caused by 
strongly magnetizing (positive) interactions. 

FORC processing problems related to very large first derivatives are clearly identifiable on plots 
of the estimated FORC standard error (Plate 2d): maximum errors partially exceed corresponding 
FORC amplitudes along the diagonals, so that the FORC diagram in Plate 2c is not entirely signi-
ficant. Error peaks raising above the mean measurement error are caused by polynomial regression 
artifacts over regions characterized by rapid magnetization changes, i.e. the two diagonals with 
maximum first-order derivatives. Conventional FORC processing with a constant smoothing factor, 
as in Plate 2c, is intrinsically inadequate, because regression artifacts can be reduced only upon 
decreasing the smoothing factor, at cost less efficient measurement error suppression. In this exam-
ple, even a smoothing factor of 1.5 – which is usually inapplicable to weak natural samples – is not 
sufficiently small to completely eliminate regression artifacts, so that parts of the FORC diagram 
remain intrinsically insignificant. 

FORC processing problems related to rectangular hysteresis can be solved with VARIFORC, as 
explained in the next section. 
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Plate 2. FORC processing problems related to rectangular hysteresis. (a) FORC measurements as 
in Plate 1c. Places with maximum first derivatives (∂M/∂Hr , corresponding to curve separation, and ∂M/∂H, 
corresponding to curve slope) are indicated by arrows. (b) Plot of the total first derivative ∂M/∂Hr + ∂M/∂H 
in FORC space. Contributions of ∂M/∂Hr and ∂M/∂H are concentrated along the ascending diagonal defined 
by Hr = −Hcoerc and the descending diagonal defined by H = +Hcoerc , respectively, where Hcoerc is the coercive 
field. (c) FORC diagram calculated with a constant smoothing factor SF = 1.5 (see PolyFe-SF1.5_VARIFORC 
_CalculateFORC_parameters.txt). (d) Estimated standard error of the FORC diagram shown in (c). The 
color scale is chosen so, that the root mean square error is plotted in white, smaller errors in blue, and 
larger errors in yellow and red. Peak errors along the maximum derivative diagonals partially exceed corres-
ponding FORC amplitudes in (c). 
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VARIFORC processing 

The FORC processing problems discussed in the previous section can be solved with a correct 
choice of measurement point arrays used for local polynomial regression. Usually, such arrays coin-
cide with square [Pike et al., 1999] or circular [Harrison and Feinberg, 2008] selections from the 
original measurement grid, which produce the same isotropic smoothing over the whole FORC 
space. Sometimes, however, different smoothing strengths are required at different places in the 
FORC diagram and along different directions: for example, highest resolution, and therefore mini-
mum smoothing, is needed across the diagonals with large FORC contributions in Plate 3b, while 
the opposite applies along the same diagonals. On the other hand, strong smoothing can be applied 
to the remaining parts of the diagram. 

VARIFORC addresses different smoothing needs by defining the size of measurement point 
selections along directions defined by the upright FORC coordinate system (i.e., along Hc and Hb) 
as well as the 45°-rotated measurement coordinates (i.e., along Hr and H). For example, a linear 
increase of the smoothing factor, proportionally to the distance from Hc = 0 and Hb = 0, respecti-
vely, is justified by Preisach models of the FORC function [Preisach, 1935], and is realized with 
upright rectangular selections of measurement points [Egli, 2013]. On the other hand, smoothing 
requirements along diagonals of the FORC space are handled by rectangular selections that are 
rotated by 45°. The two systems are merged by intersecting upright and rotated selections, as seen 
in Plate 3d. In this example, the size of measurement selections is smallest across the diagonals 
defined by Hr = −Hcoerc and H = +Hcoerc , where, as seen in the previous section, first derivatives 
are maximal. These diagonals are automatically located by VARIFORC, and the user is only required 
to enter the maximum smoothing factor allowed across them, which, in this example, is 1.5 (see 
INPUT 14 in the parameter file PolyFe-vari_VARIFORC_CalculateFORC_parameters.txt). 

The FORC diagram obtained with the processing strategy illustrated above (Plate 3e) contains 
much finer details than the conventional counterpart (Plate 3b), and, most importantly, all its fea-
tures are significant at a 95% confidence level (which corresponds to a signal-to-noise ratio >3, see 
Plate 3f). 

Boomerang-shaped, negative FORC amplitudes below the central maximum (Plate 3e) represent 
a characteristic signature of a magnetizing mean internal fields, which reinforce the field applied 
during the measurements. Because such mean fields are proportional to the sample magnetization, 
a nonlinear relation exists between the applied field on one hand, and the total field “seen” by the 
magnetic material inside the specimen on the other hand. Accordingly, the “intrinsic” FORC pro-
perties of the measured material are not necessarily reflected by the measured FORC diagram, as 
it is the case in this example. VARIFORC can correct such effects, as explained in the next sections. 

 



VARIFORC examples: Correction of positive mean fields 11 

 

 

Plate 3. Comparison between conventional and VARIFORC processing. Left plots: Rectangular 
selections (orange, not to scale) of measurement points (shaded blue area) used for polynomial regression. 
The size of these rectangular selection is controlled by a horizontal (sc) and a vertical (sb) smoothing factor, 
and, along diagonals, by an additional pair sr , sd of smoothing factors. Middle plots: FORC diagrams cal-
culated with polynomial regression over measurement point arrays shown in the left plots. Right plots: 
Signal-to-noise (SNR) ratios of the FORC diagrams shown in the middle plots, calculated on the basis of the 
estimated standard error of regression. The color scale is chosen so, that the threshold for significant FORC 
contributions (i.e. SNR ≈ 3 at a 95% confidence level) is plotted in white. Accordingly, significant regions of 
the FORC diagram correspond to yellow, red, and purple regions. (a-c) Conventional processing with a 
constant smoothing factor SF = 1.5 (i.e. sc = sb = 1.5, see the parameter file PolyFe-SF1.5_VARIFORC_Calcu 
lateFORC_parameters.txt). Numbers in (b) show the smallest contour level. Only a small region of the 
FORC diagram around the central peak is significant according the SNR plot in (c). (d-f) Advanced FORC 
processing with smoothing factors increasing towards large Hc - and Hb-amplitudes, and limitations to SF = 
1.5 across the diagonals defined by maximum first derivatives (see the parameter file PolyFe-vari_VARI 
FORC_CalculateFORC_parameters.txt). Numbers in (d) show the smallest contour level. The whole 
FORC diagram is significant, as shown in (f), except for a thin stripe corresponding to places where the 
FORC function changes its sign and is forced to pass through zero amplitudes, which are by definition not 
significant. The smallest contour level in (e) corresponds to 0.5% of the maximum FORC amplitude and is 
still significant. 
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Internal mean fields 

Magnetic hysteresis, including related FORC measurements, is controlled by the total magnetic 
field Htot inside the specimen, rather than the externally applied field H. The total field is the vector 
sum of the applied field and an internal field, Hi , which originates from the specimen’s magnetization 
M(H), i.e. Htot = H + Hi . The relation between internal field and magnetization is very complex. 
Some magnetic configurations with no net magnetic moment (Plate 4a,b) do not produce any inter-
nal field, while volumes carrying a net magnetic moment, such as the homogeneously magnetized 
parallelepiped in Plate 4c, produce a non-zero internal field, as well as an external field, which, at 
greater distance, converge to that of the equivalent dipole moment. 

The internal field of homogeneously magnetized bodies is always opposed to the magnetization 
and is therefore often referred to as the demagnetizing field Hd [Coey, 2010]. Although Hd depends 
in general on the position inside the magnetized body (Plate 4c), it is often conveniently approxima-
ted by the homogeneous demagnetizing field of ellipsoidal bodies (Plate 5). This field is given by Hd 
= −N∙M, where N is the so-called demagnetizing tensor, with principal components Nx , Ny , and Nz 
controlled by the principal axes of the ellipsoid [Osborn, 1945]. In general, the demagnetizing factor 
is largest along the shortest axis and vice-versa, with Nx  = Ny  = Nz = 1/3 for a sphere. 

Another internal field source is found in heterogeneous materials, in particular those consisting 
of magnetic particles dispersed in a non-magnetic matrix. In this case, each particle produces a 
magnetic field that affects the other particles in what is known as magnetostatic interactions. The 
total field produced by all particles at a given point inside the specimen is called magnetostatic inte-
raction field, Hint . For modelling purposes, the interaction field is often divided into a random com-
ponent, which depends on the local configuration of near particles, and a mean component which 
arises from direction-dependent interparticle distances. In isotropic samples (Plate 6a), there is not 
a particular direction with shortest or largest distances, and the mean value of Hint  is zero. In 
textured samples featuring oriented “chains” of magnetic particles (Plate 6b), the mean interaction 
field is parallel to the particle’s magnetic moments and has a reinforcing effect on the existing mag-
netization. It is therefore called magnetizing, or positive interaction field. On the other hand, magne-
tic particles organized in sheets that are perpendicular to the applied field experience the opposite 
effect of a mean interaction field that is antiparallel to the magnetic moments (Plate 6c). This field 
is called demagnetizing, or negative interaction field. In analogy with demagnetizing fields, the mean 
interaction field is given by Hint = S ∙M, where S  is a tensor expressing particle distance anisotropies. 
Unlike the demagnetizing tensor, S  can yield positive as well as negative mean interaction fields, 
depending on the angle between magnetization and the principal axes of S . 

In general, distribution anisotropy imparts a net anisotropy to the whole sample [Stephenson, 
1994], unless the specimen is divided into microscopic sub-volumes characterized by randomly 
oriented distribution anisotropy tensors. In such cases, distribution anisotropy contributions of 
individual sub-volumes do not cancel out completely: magnetic particles arranged in chains will bear 
the signature of a positive net interaction field, while the opposite occurs with sheet arrangements. 
In this case, the mean interaction field is given by Hint = SM, where S is a positive or negative scalar. 
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Plate 4. Magnetizations and internal fields. (a-b) Magnetized bodies with no net magnetic moment, 
which do not generate any internal or external magnetic field. (a) Toroidal magnetic core, whose toroidal 
magnetization M is induced by the electric current I flowing around the core. (b) Four magnetic domain in 
a parallelepiped with cubic magnetocrystalline anisotropy. (c) A homogeneously magnetized plate (magneti-
zation parallel to the black arrow) generates inhomogeneous internal and external fields (blue lines). 

 

Plate 5. Fields produced by homogeneously magnetized ellipsoids. Ellipsoid are rotation-symmetric 
about the vertical. Nz is the vertical principal component of the demagnetizing tensor. (a) Sphere (Nx = Ny 
= Nz = 1/3). (b) Prolate ellipsoid with 2:1 axis ratio. The limit case of a needle yields Nz = 0 and Nx = Ny = 
1/2. (c) Oblate ellipsoid with 1:2 axis ratio. The limit case of a thin sheet yields Nz = 1 and Nx = Ny = 0. 

 

Plate 6. Distribution anisotropy examples. Magnetic particles (gray with magnetic moments indicated 
by arrows) are arranged on prismatic lattices. The interaction field is shown by blue lines, and, at the place 
of the middle particle, by a red arrow. (a) Particles on a cubic lattice have no distribution anisotropy. (b) 
Particle “chains” along z produce a positive mean interaction field. (c) Particle “sheets” perpendicular to z 
produce a negative mean interaction field. 

(a) (b) (c)

(a) (b) (c)Nz = 1/3 Nz = 0.219 Nz = 0.464

(a) (b) (c)Sz = 0 Sz = +0.94 Sz = −0.57
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Mean field correction 

As seen in the previous section, the total field inside a specimen is, on average, given by 

⋅  H H S N M Htot ( ) ( )  (1) 

where H is the applied field, M is the specimen magnetization, N is the demagnetizing tensor 
related to the specimen shape, and S  is the distribution anisotropy tensor related to the texture of 
dispersed magnetic particles. Although Htot is not necessarily parallel to the applied field, its effects 
can be approximated by considering its component parallel to H , in which case equation (1) beco-
mes 

  αtot ( )H H M H  (2) 

with  α S N  being a scalar correction factor and M(H) the measured magnetization. If measured 
magnetization curves are defined by points with coordinates (H, M(H)), intrinsic magnetization curves 
are simply defined through equation (2) as (Htot , M(H)). The calculation of such intrinsic curves is 
called mean field correction, and can be applied to any type of magnetic measurements, including 
FORCs. Depending on the sign of α, a main distinction is made between positive mean field corrections 
(i.e., α > 0), and negative mean field corrections (i.e., α < 0). Because α is generally unknown, mean 
field corrections of FORC measurements are of empirical nature. Typically, a positive or negative 
starting value of α is chosen, depending on suspect mean field signatures recognized in the uncor-
rected FORC diagram. In this example, the FORC diagram is dominated by strong positive mean 
field signatures, in form of boomerang-shaped negative amplitudes below the central maximum 
(Plate 6b). Therefore, a positive α is chosen. 

Because demagnetization and distribution anisotropy tensors are defined on the basis of volume-
normalized magnetizations (SI unit: A/m, cgs unit: emu/cm3) and proper magnetic field units (SI unit: 
A/m, cgs unit: Oe), the initial choice of α depends on conversion of intrinsic tensor values into the 
unit system used for the FORC measurements. If such conversion is not possible – for instance 
because the sample volume is unknown, as in this example –suitable initial choices of α are given 
by fractions of ±Ms/Hsat , where Ms is the saturation magnetization and Hsat is the saturation field, 
i.e. the field in which the hysteresis loop becomes closed. Both Ms and Hsat are expressed in the 
same units of the imported data, as specified in the file header. In this example, Ms ≈ 0.03 mAm2 
and Hsat ≈ 0.06 T (Plate 6a, the magnetization unit of the source data is mAm2 instead of μAm2), so 
that a possible initial guess is given by 50% of Ms/Hsat ≈ 0.5, i.e. α = 0.25. Caution should be used 
with this initial step, in order to avoid overcorrections. 

Once the first mean-field-corrected FORC diagram is calculated, α is adjusted in successive steps 
until the original mean field signatures are completely removed, or signatures from mean fields with 
opposed sign start to appear. For this purpose, FORC diagrams can be calculated at a lower reso-
lution (see INPUT 06 in the parameter file PolyFe-mfc-initial_VARIFORC_CalculateFORC_pa 
rameters.txt), until a satisfactory result is obtained – in this example by choosing α = 0.4 (Plate 
6d). The corrected FORC diagram bears the typical signature of strongly interacting single-domain 
particles [Carvallo et al., 2005], which is compatible with ~40 nm Fe particles. As seen from the 
vertical spread of the diagram, random interaction fields are not removed by mean field corrections. 
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Plate 6. Positive mean field correction. (a) Original drift- and outlier-corrected FORC measurements, 
as in Plate 1. (b) FORC diagram calculated from measurements in (a), as in Plate 3. Boomerang-shaped 
negative amplitudes below the central maximum are a typical signature of a positive mean field. (c) Same as 
(a), after a mean field correction with α = +0.4 mAm2/T. The hysteresis loop formed by the corrected curve 
envelope has now much less steep flanks. (d) FORC diagram calculated from measurements in (c). Smoo-
thing parameters are identical to those used in (b), because the selection of measurement points for local 
polynomial regression is performed in the uncorrected FORC space defined by measurement coordinates. 
The only difference to the parameter file used in (b) is the definition of a smoothing factor used to fit the 
magnetization curves (in this case, 1) and the mean field correction factor (in this case, 0.4). These 
parameters are entered with INPUT 17 (see the parameter file PolyFe-mfc-final_VARIFORC_Calculate 
FORC_parameters.txt). The positive mean field signature is not completely removed, as seen from residual 
contributions along diagonals departing from the central maximum. However, larger values of α produce 
new artifacts corresponding to the signature of negative mean fields, so that α = +0.4 mAm2/T is the best 
mean field correction that can be applied in this case. The persistence of residual mean field signatures can 
be explained by the fact that a proper correction would require vector calculations according to equation 
(1). Furthermore, different mean fields might be applicable to specimen sub-volumes. Nevertheless, the 
typical signature of interacting single domain particles is now clearly visible (random interaction fields are 
not affected by mean field correction). 
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