

Report on the Workshop on
Sustainable Software Sustainability

2021 (WoSSS21)

A workshop organised by: 6-8 October 2021
The Software Sustainability Institute (SSI) Online
The Netherlands eScience Centre
Data Archiving and Networked Services (DANS)

1

Report editors:
Shoaib Sufi University of Manchester
Carlos Martinez-Ortiz Netherlands eScience Center
Peter Doorn Data and Archive Networked Services (DANS)
Jessica Meyerson Educopia Institute
Michelle Barker Research Software Alliance (ReSA)
Daniel S. Katz University of Illinois at Urbana-Champaign

Report authors; speakers and workshop contributors (alphabetical by first
name):
Adam Jackson Science & Technology Facilities Council (UKRI STFC)
Alexander Struck Humboldt University of Berlin
Andrew Sandeman Loughborough University
Andrew Stewart University of Manchester
Andy R. Terrel StoryFit
Ben Companjen Leiden University
Carina Haupt German Aerospace Center (DLR)
Carlos Martinez-Ortiz Netherlands eScience Center
Carly Strasser Chan Zuckerberg Initiative (CZI)
Carole Goble University of Manchester
Christina Von Flach Garcia Chavez Federal University of Bahia
Colin Venters CERN
Daniel S. Katz University of Illinois at Urbana-Champaign
Dianne Dietrich Cornell University
Elena Colón-Marrero University of Michigan
Emma Irwin Microsoft
Euan Cochrane Yale University
Fakhereh (Sarah) Alidoost Netherlands eScience Centre
Fotis Psomopoulos Centre for Research & Technology Hellas (CERTH)
Gerard Coen Data Archiving and Networked Services (DANS)
Hilary Szu Yin Shiue University of Maryland
Ignacio Blanquer Valencia Polytechnic University
Jean-Noël Grad University of Stuttgart
Jesse de Vos Netherlands Institute for Sound & Vision (NISV)
Jessica Farrell Educopia Institute
Jessica Meyerson Educopia Institute
Kelly Rosa Braghetto University of São Paulo
Konstantinos Repanas European Commission
Martin Hammitzsch Helmholtz Centre Potsdam
Meta Keijzer-de Ruijter Delft University of Technology (TU Delft)
Michael Courtney Catholic Diocese of Salt Lake City
Michelle Barker Research Software Alliance (ReSA)
Morane Gruenpeter Inria
Mustafa Doğan University of Göttingen
Neil Chue Hong University of Edinburgh
Nicolas M. Thiéry Paris-Sud University
Otigbu Austine National Archives of Nigeria
Pamela Nye The Westminster Schools
Patricia Falcão Tate
Paula Martinez Australian Research Data Commons (ARDC)
Peter Doorn Data and Archive Networked Services (DANS)
Rachael Ainsworth University of Manchester
Raniere Silva City University of Hong Kong
Scott Kirycki University of Notre Dame

2

Shoaib Sufi University of Manchester
Stian Soiland-Reyes University of Manchester
Tom Honeyman Australian Research Data Commons (ARDC)
Vicky Rampin New York University

3

Table of Contents
1 Introduction .. 5
2 About the Organisers ... 6
3 Methodology ... 7
4 Executive summary and key recommendations ... 8

4.1 Executive summary ... 8
4.2 Key recommendations ... 8

5 Background to the workshop .. 14
6 Sustaining software in cultural heritage ... 15

6.1 Featured .. 15
6.1.1 Software Sustainability as Collective Action ... 15
6.1.2 Software Preservation at the Computer History Museum 17
6.1.3 Preserving our collective documentary heritage in bits, putting a step
forward ... 18

6.2 Summaries .. 19
6.2.1 Software Sustainability in the context of Software-based Art Conservation
 ... 19
6.2.2 Software as a first class research output in a FAIR ecosystem 20

6.3 Discussions ... 21
6.3.1 Software preservation policies .. 21
6.3.2 Software preservation challenges specific to the cultural heritage sector 21
6.3.3 The role of galleries, libraries, archives and museums in software
preservation ... 22
6.3.4 Intellectual property and software preservation; areas needing careful
navigation. .. 24

7 Open Science & applying the FAIR principles to software 26
7.1 Featured .. 26

7.1.1 glimpse at decades of FAIR struggles and practices in computational
mathematics ... 26
7.1.2 FAIR adoption ... 30
7.1.3 FAIR Computational Workflows .. 31

7.2 Summaries .. 36
7.2.1 Research software and beyond - ESMValTool: a community and FAIR
software for evaluations of Earth system models .. 36
7.2.2 Developing the ELIXIR Software Management Plan for Life Sciences 38
7.2.3 The Role of Fiscal Sponsorship in Open Software 39

7.3 Discussions ... 40

4

7.3.1 Setting measures of FAIRness for software ... 40
7.3.2 Why is knowing about FAIR Software important for researchers, research
software engineers, data stewards and others .. 41
7.3.3 How to start your own band and the open source analogies 43

8 Human factors and new development in preserving and sustaining research
software ... 45

8.1 Featured .. 45
8.1.1 The Lost Architectures of Scientific Software and How to Find Them 45
8.1.2 Software preservation is necessary for reproducibility 46
8.1.3 The FLOSS Competence Center as an Enabler of High-Quality Open
Research Software in Brazil ... 48

8.2 Summaries .. 50
8.2.1 Changing our ways: Making Inclusion a Core Feature 50
8.2.2 Reproducibility; Research Objects (RO-Crate) and Common Workflow
Language (CWL) .. 51
8.2.3 On the Sustainability of Academic Software in Software Engineering 51
8.2.4 An Introduction to the UK Reproducibility Network 52

8.3 Discussions ... 53
8.3.1 Engaging communities that proactively manage burnout 53
8.3.2 The state of research software roles ... 54
8.3.3 What should software’s place in the scholarly record be? 54

9 Sustaining the community and promoting (human) infrastructures for software
sustainability. ... 56

9.1 Summaries .. 56
9.1.1 The People Roadmap: Mapping people-related initiatives in the research
software community ... 56
9.1.2 The fundamental part of software: the human infrastructure 56
9.1.3 What we are doing towards software sustainability 57
9.1.4 Research Software Sustainability in the European Open Science Cloud
(EOSC) .. 59
9.1.5 (Inter)National Community Efforts by the German Association of Research
Software Engineers (de-RSE) .. 59
9.1.6 Supporting the creators and maintainers of essential open source software
 ... 60

9.2 Panel on research software infrastructure ... 61
10 References ... 68
11 Appendix A - WoSSS21 Agenda .. 71

5

1 Introduction

This report is based on discussions and presentations that took place at the Workshop
on Sustainable Software Sustainability 2021 (WoSSS21). This edition of WoSSS was
a fully online event due to it taking place during the COVID-191 pandemic.

The WoSSS workshop series aims to bring together participants from a broad range
of communities that are interested in how to deal with software sustainability, primarily
from the perspective of scholarly and scientific research.

WoSSS21 was not only oriented to research software developers, researchers who
code, and specialists in digital preservation and research infrastructure, but also to
policy makers in open science, research funders, and others who wanted to learn
about the issues at stake and who have something to contribute. During WoSSS21
we discussed how we could best organise and support the community and emerging
infrastructure for software sustainability. This year we paid special attention to
software as heritage and compared the challenges of sustaining software in the
domains of cultural heritage and research.

Section 4 contains the key recommendations coming from the workshop. Sections 6
through 9 constitute the core of this report. These sections include fully-featured write-
ups that go beyond summary abstracts, where some authors have gone into more
depth in their writing than others (either prior to or post workshop); these are
categorised under a featured subsection.

The discussion sessions have been curated into Subsections 6.3, 7.3, and 8.3. There
was a variation in the depth of the discussions and subsequent post-workshop
elaboration of the notes, therefore in some cases the discussions are reported as key
bullet points and in others they are reported as prose.

The last session of the event ended with a panel discussion and the key points of this
panel can be found in Section 9.2.

This report is hosted in Zenodo (DOI: 10.5281/zenodo.7951155) and can also be
found on the WoSSS website2.

1 https://en.wikipedia.org/wiki/COVID-19_pandemic
2 https://wosss.org/#reports

6

2 About the Organisers

WoSSS21 was organised by Data Archiving and Networked Services (DANS3), an
institute of The Royal Netherlands Academy of Arts and Sciences (KNAW), The UK
Software Sustainability Institute (SSI4) and the Netherlands eScience Center5.

More information about the WoSSS organisers can be found on the WoSSS website6.

3 https://dans.knaw.nl/en
4 http://www.software.ac.uk
5 http://www.esciencecenter.nl
6 https://wosss.org/partners

7

3 Methodology

The workshop balanced authoritative views in the space of software sustainability with
a strong participatory element.

The workshop was divided into four sessions, covering key topics on software
sustainability:

1. Sustaining software in cultural heritage,
2. Open Science & applying the FAIR principles to software
3. Human factors and new development in preserving and sustaining research

software
4. Sustaining the community and promoting (human) infrastructures for software

sustainability

Each of these sessions featured invited speakers who provided an overview of the
topic. The first three sessions also provided space for discussion while in the fourth
session a Q&A panel was held where panellists shared their views and workshop
participants were invited to participate via an interactive survey. The full programme
for the workshop is available on the WoSSS21 website7.

Some of the discussions are just referenced as key points and related links, whereas
others where the discussion participants contributed text during the session and
followed up with changes to make the text a coherent piece are stated in full.

After the workshop, the transcript from the presentations and the documents from the
discussion sessions were used to produce the first version of this report.

This was then sent for review to the authors and participants to give them an
opportunity to expand their summary text and add to their discussion text. A series of
reminders were sent and then those who had provided updates from their summaries
were classed as ‘Featured’ and the ‘Discussions’ sections are either key points or fuller
prose depending on how much was provided. The wider group of report editors
reviewed the final draft and after updates the final version was prepared.

For each talk, the associated video, a lightly corrected transcript, and any slides are
linked from the full programme on the website.

The report editors then looked at the main themes and recommendations from each
of the talks, the summaries and featured sections, discussion topic and panel Q&A to
put together a list of key points in 4.2 Key recommendations and an associated 4.1
Executive summary.

7 https://wosss.org/wosss21/agenda

8

4 Executive summary and key recommendations

4.1 Executive summary

WoSSS21 focused on software in cultural heritage, open science, the FAIR principles,
human factors, new developments in research software and human infrastructure. The
key recommendations deduced from presentations, discussions, and the panel at the
workshop and some of the reflections of authors after the event. We cover them in
brief in this executive summary and they are in detail below, in Key recommendations.

There are key stakeholders in sustaining software sustainability efforts. The
stakeholders identified include funders, the galleries, libraries, archives and museums
(GLAM) sector, those working on applying FAIR principles to software, the
communities of practice involved in software and related efforts, centres of excellence
in open source and open research as well as organisations. Software sustainability
stakeholders come at all different levels and include individual developers,
researchers, data stewards and then teams, projects, and domains, all play a part in
how software is sustained through their practices and agreed norms and are impacted
by the ongoing support of sustaining efforts to produce more sustainable software.

Sustainability is a complex endeavour requiring collaboration amongst stakeholders
and a multidisciplinary approach that can mix research practices, technical skills,
ethics, and software engineering. Laws can also have an impact on sustainability with
legal exemptions around copyright for archives aiding their preservation work. The
topic of sustainability is also known as “long-lived software” and it’s important to be
cognisant of this body of knowledge to have a full picture of the work done on
sustainable software. Tools such as Reprozip that capture software dependencies,
and Research Object Crate that capture and relate additional metadata for research
workflows are making sustaining software more tractable. The Citation File Format
(CFF) and the Journal of Open Source Software (JOSS) highlight software in research
and move software closer to being a first class research object (alongside publications)
and increase the importance of sustainability.

The FAIR principles of (Findability, Accessibility, Interoperability and Reusability)
originated in the data space but they are now being applied to research software. We
now have the FAIR for Research Software Principles and these aid in the
reproducibility, preservation, and communication of research software and therefore
its sustainability.

9

Human factors are arguably the most important aspect of software sustainability;
without skilled people, who have real career paths working in empowering and safe
environments that guard against burnout software cannot be sustained. Metrics such
as those by Community Health Analytics in Open Source Software (CHAOSS) help
evaluate the health of open source efforts to promote equity and inclusion and can be
used to monitor project to improve the environment for the people involved. The
increase in software oriented roles (e.g., Research Software Engineer, Data Steward,
Information Scientist) are a sign of improving acknowledgement and acceptance of
software as a key part of research. The Research Software Alliance (ReSA)’s People
Roadmap provides an overview of community initiatives in the research software
ecosystem. It’s excellent that new initiatives are also starting such as the UK
Reproducibility Network (UKRN) which promotes open and reproducible research
practices and aims to evaluate organisations' performance in terms of
open/transparent practices, and this includes the human factors (e.g., credit).

4.2 Key recommendations

The following recommendations have been generated by the workshop organisers,
based on the presentations, summaries, discussions in the four sessions, and featured
contributions from presenters after the workshop. They are presented in alignment
with those sessions and their topics.

The key recommendation is followed by a sub bullet point detailing which stakeholders
we believe should lead on this recommendation.

Sustaining software in cultural heritage

1. Collaboration, knowledge sharing, and enthusiasm are essential for driving
positive changes in the adoption of sustainable software practices.

• These should be actively supported and encouraged by funders and
organisations.

2. Properly resourcing digital preservation and cataloguing is crucial for improving
accessibility and usefulness of historical software code and programmes.

• Funders, organisations, and projects should recognise the value of
these tasks and provide adequate resources to support them (e.g., by
supporting the work of Software Heritage8 archive).

3. Digitisation and data loss are critical issues. They deserve attention, particularly
in low and middle-income countries where resources are often lacking. It must
recognize that a country's historical records are part of our global heritage, that
need preserving for future generations.

• Richer nations need to allocate the necessary resources to address
these issues. International organisations such as the UN and OECD
need to take a proactive role in raising awareness and bridging the gap
between better-resourced nations and those with a global need.

4. Digital art preservation and conservation is a multidisciplinary craft that requires
collecting, organising, and describing both the conceptual and technical
aspects of these works for their artistic and historical value. This effort

8 https://www.softwareheritage.org/

10

necessitates training in scientific practices, technical skills, ethics, software
engineering, and software sustainability.

• Funders, organisations, and professional bodies should support this
work with resources, opportunities to develop curricula, and platforms for
collaboration.

5. When developing policies related to software preservation and sustainability, it
is essential to consider existing organisational policies and identify any potential
overlaps or conflicts (e.g., with data retention policies), to ensure a
comprehensive and consistent approach.

• Memory organisations 9 such as the GLAM (Galleries, Libraries,
Archives, and Museums), universities and public research organisation
need to take this comprehensive approach.

6. Infrastructure built to support software preservation and sustainability, as
demonstrated by EaaSI 10 (Emulations-as-a-Service Infrastructure) should
include GLAM professionals in the conversation to ensure that the infrastructure
developed aligns with their preservation goals.

• Infrastructure developers need to include users and use cases from the
onset and memory institutions need to have capacity to engage in such
conversations.

7. Legal exemptions for copyright for archives are essential in enabling the
preservation and access of software in cultural heritage contexts.

• Memory organisations must lobby governments and policy makers to
maintain them to ensure the continued preservation of software in
cultural heritage contexts.

8. Despite challenges that can arise when publishers seek to distribute software
works, such as codebase contamination (e.g., incompatibly licensed software
being bundled together), rectification is necessary to ensure software
preservation and access for research and educational purposes.

• Publishers need to realise the importance of this and put effort towards
maintaining the ability to distribute code.

Open Science & applying the FAIR principles to software

9. The FAIR4RS Principles [1] provide a crucial standardisation framework to
make software reproducible, preserve it and communication it’s difference to
data.

• Individuals, projects, and organisations need to adopt these principles
10. The adoption of FAIR (Findable, Accessible, Interoperable, and Reusable)

practices in research software are crucial pillar for modern open science; they
can enable increased transparency, collaboration, innovation, and impact.

• Policy makers need to actively support these FAIR practices in the
research community.

11. The risks of developing metrics for FAIR software are software development
projects solely optimising for findability, accessibility, interoperability, and
reusability as a tick-box exercise, potentially neglecting other crucial software
characteristics such as quality, open licensing, modularity, and ease of
contribution.

9 https://en.wikipedia.org/wiki/Memory_institution#Memory_institutions_in_the_Digital_Age
10 https://eaasi-sandbox.softwarepreservationnetwork.org/eaasi/

11

• Individuals, projects, and organisations should avoid evaluating software
based solely on FAIR metrics.

12. Reproducibility is vital for establishing trust in research. There need to be more
opportunities for peer review and career credit for researchers who embrace
the software aspects of reproducibility.

• Publishers, funders, and organisations need to reward such practice.

Human factors and new development in preserving and sustaining research
software

13. "Inclusion bugs" are inadvertently excluding people without realising (e.g.,
ordering meat only for lunch and forgetting about vegetarians), steps need to
be taken to mitigate them. The CHAOSS 11 metrics can help identify and
address issues related to diversity and inclusion in project and organisational
practices.

• Projects and organisations need to be mindful of “inclusion bugs” and
adopt practices and metrics to help avoid them.

14. Toxic behaviours need to be addressed to support a positive culture,
productivity, and a respectful work environment.

• Organisations, projects, and workshops should implement and enforce
codes of conduct.

15. Detecting Burnout in colleagues and community members needs awareness
and realistic options (e.g., allowing people to take a step back) to foster
supportive environments where goals can be met in a more sustainable way.
Individuals who may have fewer safety nets, as they maybe more vulnerable to
the negative effects of burnout.

• Leaders, co-workers, and community members must support and take
care of each other.

16. Community cohesion is important to maintain progress, motivation, and
momentum. Serious differences of opinion can divide communities, diplomacy
and compromise should be the first course of action. In situation where
compromise is leading to stagnation perhaps this is the time to split the
community to allow for different ideas to have the space to grow.

• Individuals in communities need to focus on finding common group to
achieve shared goals with the wisdom to realise when communities
should bifurcate.

17. There is a growing demand for Research Software Engineering, Data
Stewardship, Information Science, and Data Curation in the research sector.
Although the maturity of these roles and career paths may differ across the
world, the UK with along with some countries in Europe are currently leading
the way, followed by the US.

• Policy makers, funders, and organisations should be aware of this
positive trend and take steps to encourage the development of these
roles and career paths, including providing funding and support for
projects and training in these areas.

Research Software (across all sessions)

11 https://chaoss.community/

12

18. Complex software architecture is acceptable but complicated and chaotic

architecture is not sustainable in the long term. To avoid the introduction of
technical debt that cannot be repaid or architectural decay and drift,

• Projects, developers, and technical leads must be mindful of the
architecture they are creating to ensure maintainability and scalability.

19. The software architecture research community has been interested in long-lived
software for a while, which overlaps with software sustainability. Avoiding
duplicating efforts should be a goal.

• The software sustainability community must collaborate with other fields
that are approaching software sustainability from different perspectives.

20. ReproZip12 captures the environment, libraries, and dependencies of running
code to create preservation-ready bundles that enable replay without requiring
extensive expert help.

• Researchers and the creative industries using computation can use such
systems to support reproducibility efforts.

21. Reproducibility in research analysis can be enhanced by integrating different
parts of analysis written in different systems and platforms into one cohesive
whole using workflow languages such as CWL13 or workflow systems such as
Galaxy14.. This should be enriched with additional metadata that links pipelines
to input data, parameters, results, provenance, authorship, experimental
information and more. Metadata and workflows can be combined into Research
Objects (e.g., RO-Crate15) using web technologies such as JSON-LD16 and
Schema.org 17 derived terms to create a bundle that supports active
reproducibility and inspection.

• Project teams, domain, researchers, and developers should consider
taking this approach on the research projects they work on.

22. The use and adoption of Research Objects to support the evaluation and
reproducibility of results should be encouraged.

• Publishers should enable this to allow peer reviewers and readers this
affordance.

23. Researchers should be actively assisted in adopting open and FAIR practices
by being provided with guidance on tools, licenses and best practices.

• The Open Source centres of excellence such as the FLOSS
Competence Center in Brazil 18 serve as an excellent example for
middle-income countries and beyond to support the adoption of more
transparent practices within research communities.

24. Software policies should be given the same level of urgency and importance
as data policies. This is essential in ensuring the secure and efficient
management of software assets.

• Organisations should take note of this to allow the safeguarding of their
software assets.

12 https://www.reprozip.org/
13 https://www.commonwl.org/
14 https://galaxyproject.org/
15 https://www.researchobject.org/ro-crate/
16 https://json-ld.org/
17 https://schema.org/
18 https://ccsl.ime.usp.br/

13

25. Progress towards establishing software on an equal footing with papers such
as the Citation File Format (CFF19) and The Journal of Open Source Software
(JOSS20) should be supported and celebrated.

• Funders, domains, infrastructure providers and organisations should
take note.

Sustaining the community and promoting (human) infrastructures for software
sustainability

26. Establishing grass roots research-led organisations that actively identify and
address gaps in incentives, training, and organisational performance is crucial
to promoting open and transparent research practices.

• Funders should support these; an example of such an organisation is
The UK Reproducibility Network (UKRN21) funded by Research England.

27. Human aspects of software sustainability (human infrastructure) are
fundamental to ensure sustainability of software. The ReSA people roadmap22
provides an overview of the landscape of community initiatives in the research
software ecosystem.

• National and international funders, policy makers and organisations
need to support these infrastructures in the transition to open science.

19 https://citation-file-format.github.io/
20 https://joss.theoj.org/
21 https://www.ukrn.org/
22 https://zenodo.org/record/5633318

14

5 Background to the workshop

The Knowledge Exchange Group (KEG) deserves credits for organising a first
workshop on software sustainability in 2015 in Berlin. The results of this workshop
were published as a report23.

This workshop was followed by the first (WoSSS1724) in the Hague, organised and co-
sponsored by DANS and the Software Sustainability Institute (SSI) in the UK, which
renamed the activity as the Workshop on Sustainable Software Sustainability
(WoSSS).

A third workshop (WoSSS19) was then co-organized and co-sponsored by DANS, SSI
and the Netherlands eScience Center.

WoSSS21 is the fourth in this series of workshops looking at practices in software
sustainability that include representations from memory institutions, research
software, and research infrastructure.

23 https://www.knowledge-exchange.info/event/software-sustainability
24 https://easy.dans.knaw.nl/ui/datasets/id/easy-dataset:75828

15

6 Sustaining software in cultural heritage

This section describes the first session of the workshop. This session includes
featured sections (where the authors have re-visited and expanded the text after the
workshop) and summaries submitted for the workshop that cover the topic of cultural
heritage. The featured sections include topics on software preservation as collective
action, work at the Computer History Museum in the US and preserving documentary
history in Nigeria. There are summaries including how software is sustained in context
of art, and the work of the Software Heritage Archive in France.

The discussions sessions which occurred after the presentation in this session cover
software preservation policies, challenges, the role of GLAM (galleries, libraries,
archives, and museums) and intellectual property.

6.1 Featured

6.1.1 Software Sustainability as Collective Action
Jessica Farrell25 & Jessica Meyerson

As a framing, sustainability does tremendous work for the international community of
stakeholders that care about software as both 1) a dependency to make meaning from
existing data and scholarship, and 2) as an output in its own right, as a cultural heritage
object. It does this work - because sustainability doesn’t just imply the maintenance of
software over the longer term, sustainability is a way of thinking that begs us to see
our relationship to software in multiple dimensions - social, environmental, and
economic - as well as across time26. In the communities that I facilitate, sustainability
frames not just how we preserve software and born-digital records, but also how these
goals can align with those of environmental sustainability27, and how to sustain our
own selves as humans with limited attention and capacity but a desire to relieve the
tensions and barriers to software preservation.

Drawing from information science, software sustainability practitioners operate within
a “records continuum.” The records continuum model (RCM) holds both software’s
active life (fulfilling its originally intended purpose) as well as its potentially long tail of
reuse by resisting the false binary of active and archival in the first place. The
continuum assumes that from the moment of creation, a record (in this case software)
is both an active record and a historical one. Like sustainability, the records continuum
model begs us to approach software as part of larger cultural, environmental, political,
and legal processes.

Additionally (and importantly), the RCM asks us to consider our relationship to
software at different scales of human life including individual, group, community,
organisational, institutional, national, and international scales.

How does the growing landscape of software sustainability specialisations, tooling,
and processes apply across the software continuum? How do we use the continuum

25 Links to slides, video & transcript available at - https://wosss.org/wosss21/S1-JessicaFarrell
26 https://educopia.org/cultivation/
27 https://bitcuratorconsortium.org/workshop-enacting-environmentally-sustainable-digital-
preservation/

16

model to inform software sustainability activities at each scale of human life? What are
the tensions shaping software sustainability activities at the organisational and
international scale?

In the Software Preservation Network, we believe that collective action is necessary
to situate software and other born-digital material at the various scales in the RCM,
and to address the tensions that we see around achieving that goal. But in our work
on Emulation as a Service Infrastructure, we have now begun to map the boundaries
of collective action - the boundary between what a consortia or a service or an
interorganizational community of practice is in the best position to do versus what
really needs to take place locally - informed by local user constituencies and
institutional realities. Now that SPN has gathered model software preservation
workflows/case studies, policies, and advocated for exemptions to US Copyright law -
- and the EaaSI platform is real, wrapping up a pilot with additional cloud hosted
emulation nodes - we are faced with a new challenge - how do we (re) situate these
collective outputs back into the very local, very specific contexts of cultural heritage
institutions in ways that enable those same institutions to provide useful, sustainable
emulation services?

This is where field-level scale is de-emphasized and the local, interrelational scales
come to the forefront. Participatory Archival Research & Development (PAR&D), an
orientation/approach to cultural heritage work that speaks to how these communities
work, emphasises - “There are more general ways and specific strategies/standards
that help to cultivate trust (community archiving, post-custodial stewardship, trusted
repository audit certification) but we sustain trust through reflexive practice, by making
reflexivity business-as-usual: questioning our assumptions/our rationales, and critical
evaluation, of documenting those rationales and making that documentation visible.”

Collective action got us to where we are with the development of these resources and
development of communities like the Software Preservation Network and BitCurator
Consortium28. But when we re-focus on the local context, that is the work of building
power for future collective actions. Sustaining and preserving the world’s software
requires the commitment of many, many individuals that hold various levels of
influence and power. We build power by building trust, and it’s not a very technical
activity. It’s actually quite simple - from the constant activity of checking in, chatting
with your colleagues, understanding where everyone is coming from, you build trust
and collect the ingredients required for successful collective action later. I also see
power built through sharing knowledge in spaces like this, in training efforts, and in
sharing resources that can be reused.

We must imagine the funding, capacity, and even knowledge that we want ourselves
and our organisations to have in the future, to develop pathways to materialise these
goals. So, we imagine this future, and we are all collectively working to get there in
small ways by sharing knowledge and enthusiasm with our colleagues, and in big ways
by holding public events like this one to amplify that activity many times over.

28 https://bitcuratorconsortium.org/

17

6.1.2 Software Preservation at the Computer History Museum
Elena Colón-Marrero29

The Computer History Museum has collected historic software since the museum’s
founding in 1979 by virtue of collecting computers. In 2017, the Software History
Center was launched with a focus on collecting and interpreting software materials.
The museum’s collection contains everything from paper tape and punched cards to
CD-ROMs, DVD-ROMs, and source code with a heavy emphasis on PC software
totalling over 2,500 linear feet (nearly 800m) of material. The biggest limitation to
CHM’s software preservation work is limited resources: monetary, people, and time.

In 2016, there was very little intellectual control over the software collections. Lack of
intellectual control makes it very difficult to do any work such as disk imaging or
emulation. As you can imagine at 2,500+ linear feet a massive effort is really needed
to describe the collection. Over the course of two years an inventory of the software
collection and cataloguing instructions for describing software were created.

The software inventory focused on the items in the collection that were catalogued in
some level to determine which items needed more focus. The review of those records
informed the creation of an instruction manual for staff and volunteers to use when
cataloguing software materials. The software cataloguing manual had to adapt to the
limitations of the museum’s collections management system, as well as the fields in
use by other object types. Due to these limitations no metadata standards were
followed due to the lack of mapping abilities.

Digital forensics workstations were created to help the collections department image
software materials, but also process any other types of born-digital materials the
museum may receive. Sample workflows, naming conventions for files, and folder
structures to establish a process from cataloguing to final ingestion of images into our
Digital Repository were created.

The collections department created an internal case-study to determine the viability of
disk imaging and software emulation on our collection. It was found that on average
the process of cataloguing and disk imaging a software package took 2-3 hours of staff
time. Software items with significantly less available metadata or number of disks
would take less time but involve at least an hour’s worth of time. We also attempted to
emulate some of our software but found that with limited staff and time it was not
something that we could feasibly do or expand on. It just took too much work when
that time could be better spent on cataloguing, reference, managing our digital
repository, and more.

However, with COVID-19 and the museum closed, a lot of the museum’s software
preservation efforts are placed on hold. Without access to the building or materials it
was difficult to catalogue or image items. Increasing focus of the collection’s staff time
shifted towards building a Digital Asset Management system and a new Collections
Management system, including record clean-up efforts. At the current moment
software preservation efforts at the Computer History Museum are stopped until new

29 Links to slides, video & transcript available at - https://wosss.org/wosss21/S1-ElenaCol%C3%B3n-
Marrero

18

staff and/or the DAM (Digital Asset Management) and CMS (Content management
System) migrations are completed.

6.1.3 Preserving our collective documentary heritage in bits, putting a step
forward
Otigbu Austine30

As the cornerstone of history, Archives are an invaluable national heritage for human
society. With proper storage, preservation and access, such records become veritable
tools for appreciating the past, understanding, and dealing with the present and
projecting for the future. Archives constitute a vital part of the memory of a nation, its
people and institutions for cultural growth and development. As the apex archival
institution in Nigeria, the National Archives continues to make deliberate efforts to
salvage and preserve these records of perpetual value for easy accessibility using
different preservation techniques and methods.

Prior to the Covid-19 pandemic, the National Archives of Nigeria deploys traditional
methods of records management and archives administration which was essentially
paper based in preserving and disseminating information materials to its users.
However, the Covid-19 pandemic has driven the National Archives of Nigeria to rethink
its archiving methods and processes, thus, embracing automation and digital
preservation methods to facilitate records management and archival functions to
ensure a more sustainable, simplified, and time saving process of preserving and
disseminating our national documentary heritage to its local and foreign users who
had limited access to this vital information resource during this pandemic period. While
Automation involves understanding and integrating archival functions/tasks performed
physically into electronic tools or machines, digitization requires the knowledge and
professional use of electronic tools to salvage and preserve the documents in digital
format for as long as necessary. However, both require technological and human
resources to drive the process.

6.1.3.1 Implementation

Saddled with the task to come up with a workable framework to implement this project,
my team and I adopted the Digital Preservation Management Model approach [2,3] to
ensure a robust and inclusive process of implementing the project. The Digital
preservation management model is a 3-legged approach which clearly outlines three
main areas of work (Technology, Organisation and Resources) for the successful
implementation of the automation and digital preservation process.

6.1.3.2 Technology

Technology is an integral part of automation and digital preservation, a good
understanding of the tangible (hardware) and the intangible (software) aspects of
technology to be adopted will be crucial to the success of this exercise. Considering
the scarce resource of the National Archives of Nigeria, a greater consideration was
given to open source software to ensure future sustainability of this project.

30 Links to slides, video & transcript available at - https://wosss.org/wosss21/S1-OtigbuAustine

19

6.1.3.3 Software Deployed - ATOM
T
he Access to Memory (ATOM) 2.4 version was considered suitable for the repository
system. This common information storage and retrieval software package was
specifically developed by Artefactual Systems under the governance of the
International Council on Archives for long-term archiving. It was developed as an open
source web application with an idea to enable standardised and controllable creation
of different levels of description of archival collections, holding all relevant information
about the fonds. Hence, this software program contains general rules for archival
descriptions regardless of the type or form of the archival records. Furthermore, it
provides means for preparing a very detailed description of records as whole and parts
through the following basic entity types and their interactions: Access records, archival
description, authority records and archival institutions. Please visit National Archives
of Nigeria Online31 for a better insight of work done so far. Also, software was deployed
for security encryption and integrity check purposes.

6.1.3.4 Organisation

At the organisational level, management is committed to the success of this project,
to this end; management is drafting a digital preservation policy framework to ensure
legal and regulatory compliance. Resources within the scarce capital resources of the
National Archives of Nigeria a small amount of equipment was procured to start this
project. The equipment constituted: two desktop computers, two scanners, one server,
and one router. Considering the volume of information documentary heritage to be
digitally preserved, the sustainability of this project seems to be in doubt. Therefore,
an alternative source of funding is needed to ensure the continuity of this project and
the Archives are open to exploring this.

6.1.3.5 Conclusion

The immediate focus of this project is to digitise our collective national documentary
heritage for digital preservation as long as necessary, a key focus is on the
endangered archives that may be lost forever if urgent actions are not taken to salvage
them. Amid the funding and human resource shortage crisis faced by the National
Archives of Nigeria over 1000 endangered archives have been digitised and are
waiting to be transferred to the digital repository for easy access by users. Lastly, we
shall rely greatly on friends of the institution for support particularly in the equipment
and financial support where necessary. This transition project is tentatively to last 24
months, after which it will be reviewed.

6.2 Summaries

6.2.1 Software Sustainability in the context of Software-based Art Conservation
Patricia Falcão32

31 https://nationalarchivesofnigeria.org.ng/
32 Links to the video & transcript available at - https://wosss.org/wosss21/S1-PatriciaFalc%C3%A3o

20

Software sustainability and Conservation of software-based art have many similarities
and some key differences. This talk will provide my perspective as a conservator and
researcher working in the conservation of software-based art and explain my view of
the differences and similarities, and where I see space for close collaboration.

Artist’s software is as varied as the artists themselves and their teams. Even a small
collection like Tate’s, that now contains less than 15 artworks, where the earliest is
from 2013, includes works created in and for five different Operating Systems,
applications created using Java, Delphi or C++ and tools such as Director or Unity.
The functions of the software vary between creating randomness in drawings in the
work Becoming (2003) by Michael Craig-Martin and choreographing the movement of
an oversized puppet in Jordan Wolfson’s Colored Sculpture (2016)

A conservator in an institution needs to learn how to preserve both the conceptual and
material aspects of these types of works, for their artistic and historical value. This
includes documenting the systems used and how to run and calibrate the software,
with the aim of ensuring that the artworks that the software creates can be displayed
“in perpetuity”. This implies the preservation of running systems, in a gallery, for the
public. Often there is the need to change the software that runs an artwork, and the
role of the conservator is to understand how those changes may impact a work’s
meaning and ensure that its behaviours are as little changed as possible.

Conservation practitioners are trained within a now fairly long tradition, centred on
scientific practices, technical skill and thorough documentation processes. Underlying
all these aspects is a code of ethics that guides decision-making when intervening in
an object. For more traditional objects, the aim is to prevent change, but contemporary
art practice, not just software-based art, has questioned this aim and for any digital or
media-based work conservators strive to manage change which, given the
dependence of this type of objects on mass-produced technology, is accepted as
inevitable.

The field is new, with the first research in the area happening in the early 2000s, but
the landscape is changing rapidly, with new specialised degrees opening or about to
be opened. The existing practitioners are adopting and adapting practices from Digital
Preservation, Software Engineering and Software Sustainability and ensuring that how
those practices are applied still reflects the conservation code of ethics.

6.2.2 Software as a first class research output in a FAIR ecosystem
Morane Gruenpeter33

Software is a significant and vital component of research. It is integral to all stages of
research and can play the role of a tool, a research result, or a research object. Since
software source code has been recently recognised as an important asset in the field
of scientific research, complementing publications and research data, it is essential to
collect and preserve it.

33 Links to slides, video & transcript available at - https://wosss.org/wosss21/S1-MoraneGruenpeter

21

Software Heritage (SWH 34) is the universal source code archive: collecting,
preserving, and sharing the largest collection of source code. Software Heritage is now
providing the infrastructure for depositing and referencing software source code, in
collaboration with national and international open access portals.

In parallel, the RDA, ReSA and FORCE11 FAIR for Research Software working group
identified divergences between software and data and the crucial need to translate the
FAIR data principles to be relevant for software artefacts. In September 2021 the
working group published [4] after a community review.

Finally, the importance of [5] is a common goal to have better recognition and
interoperability of software in a FAIR ecosystem.

6.3 Discussions

6.3.1 Software preservation policies
Gerard Coen, Michael Courtney, Dianne Dietrich, Elena Colón-Marrero

6.3.1.1 Key points
• Explore how existing organisational policies apply to software.
• Software outputs produced and their priority in an organisation should guide the

production of software specific policies

6.3.1.2 Related resources
Memento Protocol can be.

• Research software sustainability in the Netherlands: Current practises and
recommendations35

• TU Delft Research Software Policy36
• TU Delft Guidelines on Research Software: Licensing, Registration and

Commercialisation37
• A Research Software Agenda for Australia38
• Memento Protocol39 - useful for looking at prior or archived versions of policies

and resources which is useful in this context.

6.3.2 Software preservation challenges specific to the cultural heritage sector
Patricia Falcao, Jesse de Vos, Morane Gruenpeter, Hilary Szu Yin Shiue, Colin
Venter, Carlos Martinez

The cultural heritage sector and scientific research share a common goal of preserving
software for future use. However, there are different needs within these sectors: in

34 https://www.softwareheritage.org/
35 https://doi.org/10.5281/zenodo.4543569
36 https://zenodo.org/record/4629662#.Y4SOWuzP2WY
37 https://zenodo.org/record/4629635#.Y4SOb-zP2WY
38 https://ardc.edu.au/program/research-software-program/
39 http://timetravel.mementoweb.org/

22

some cases, it is desirable to keep the exact code and to be able to reproduce the
original answers; in other cases source code is seen as a means to that end, and what
matters is the visual/experiential result is more important. In the arts, there is also the
Mona Lisas, where you want to know details about the artist’s process, techniques.

Depending on the specific needs of a particular area, different solutions might be
suitable:
In cases where a running copy of the software is necessary, emulation and
virtualisation are perfectly valid ways to ensure reproducibility.

In other cases, documentation can play a big role. For example, rather than preserving
an actual game, recording a video of that game being played, having the authentic
colours, speed and frame rate and other information can be more important and better
than a usable game.

Yet another case is where source code is both an object of research and heritage, an
example of this is the Apollo 11 software 40 . The Software Heritage Acquisition
Process41 aims to recover and curate landmark legacy source code and address
challenges for all codes before ‘Archaeology’ for software/digital forensic are needed
to piece together what the intentions might have been.

These different types of preservation all present a problem: the fact that software
preservation is not always part of current practice. Artists are mostly concerned about
making the software work for the current exhibition and leave the problem of longevity
up to the museum; in science, researchers are mostly concerned about making the
software work for the current experiment and leave the problem of longevity up to the
next researcher. In both cases there is a need to make preservation part of day-to-day
practice (archiving by design).

6.3.3 The role of galleries, libraries, archives and museums in software
preservation
Ben Companjen, Euan Cochrane, Mustafa Doğan, Scott Kirycki, Pamela Nye

6.3.3.1 Sustainability

Sustainability is still an issue, there was a Humanities Data Centre42 in Germany which
ended, it was unclear what happened after.

6.3.3.2 Questions

What software should be preserved and why? At what granularity? What counts as
software? What about software which contains other software? How far do you go

40
https://archive.softwareheritage.org/swh:1:cnt:41ddb23118f92d7218099a5e7a990cf58f1d07fa;origin=
https://github.com/chrislgarry/Apollo-
11;visit=swh:1:snp:206c27c0c031c6aac6b5fedddba8fe082dea9836;anchor=swh:1:rev:3913f198f4383
d4d638c0485d6aa902ff2f35828;path=/Luminary099/BURN_BABY_BURN--
MASTER_IGNITION_ROUTINE.agc
41 https://www.softwareheritage.org/swhap/
42 https://humanities-data-centre.de/

23

down to preserve? Does all software need to be preserved, when is it ok to not keep
something? These are important questions when thinking about what role galleries,
libraries, archives, and museums (GLAM) should play in software preservation. In
addition, it’s important to look at how existing policies around other artefacts map to
software.

6.3.3.3 Analogies

The use of analogies and metaphors similar to the language used for preservation of
physical artefacts can help us to understand the way that digital objects age, for
example digital patinas43 can give the same impression of ageing of digital objects as
physical patinas (e.g., oxidation on an old metal object). The skeuomorph use of
terminology from the physical to the digital may not be consistently applied but still
useful e.g., the look of a physical object vs the impression of a sound of using a digital
object/device.

6.3.3.4 Executability and emulation

The GLAM sector should be pretty capable of storing and preserving bits, but the
‘playability’ or files and older software is not generally something GLAMs can do. There
are some examples of ‘playability that exist, e.g., beyond preserving digital objects
there is a move to experience them as they were originally intended in their original
software environments e.g., as in the Universal Virtual Interactor (UVI44) detailed by
Euan Cochrane45 of the Digital Preservation Coalition46. There is an archives of New
Zealand article on opening objects in different software which is part of this wider report
on rendering47 also from the archives of New Zealand. ‘Executability’ is something that
GLAMs might be encouraged to support. Directing students to begin work on these
types of projects to generate interest in the field as well as building out their skill sets.

The Emulation as a Service Infrastructure (EaaSI48) is an enabling technology which
aims to make the running of preserved software much easier; with pre-configured
software coupled with emulated hardware available and the ability to document, install,
configure, and share software on emulated computers for those who want to publish
an emulated resource. There is also support for exporting disk images and packages
containing all the dependencies to allow preservation in local systems. A friendly
support forum49 is also available as well as a sandbox50, blog51 and other resources52.
It’s interesting to note that EaaSI evolved from EaaS 53 and EaaSI works with

43 https://www.dpconline.org/blog/wdpd/the-emergence-of-digital-patinas
44 https://www.dpconline.org/blog/wdpd/designing-a-uvi-for-digital-objects
45 https://www.dpconline.org/component/comprofiler/userprofile/1363-ecochrane?tab=10
46 https://www.dpconline.org/
47 https://web.archive.org/web/20130207025446/http://archives.govt.nz/resources/information-
management-research/rendering-matters-report-results-research-digital-object-r
48 https://www.softwarepreservationnetwork.org/emulation-as-a-service-infrastructure/
49 https://forum.eaasi.cloud/
50 https://www.softwarepreservationnetwork.org/emulation-as-a-service-infrastructure/sandbox/
51 https://www.softwarepreservationnetwork.org/emulation-as-a-service-infrastructure/news/
52 https://www.softwarepreservationnetwork.org/emulation-as-a-service-infrastructure/resources/
53 https://web.archive.org/web/20200518112558/http://eaas.uni-freiburg.de/

24

openSLX54 which also evolved from that project. EaaSI sustainability plan depends on
the uptake of their services, if enough institutions join them there will always be an
interest in keeping the EaaSI up-to-date. Licensing is an important topic when it comes
to preservation, EaaSI uses the Code of Best Practices in Fair Use for Software
Preservation55; it should be noted that most parts of the world don’t have fair use.

6.3.3.5 Other tooling

The uniform API access afforded by the Preservation Quality Toolkit (PresQT56) will
allow easier integration of different repository systems. Other resources exist which
could be of use to the GLAM sector such as the Wikidata for digital preservation57
which holds technical and descriptive metadata on software and file formats. The
Open Preservation Foundation (OPF) runs several events58 which are relevant to
tooling in this space. Other tools such as ReproZip59 that create a self-contained
bundle of resources (software, data files, libraries, environment variables and options)
can also aid the GLAM sector.

6.3.3.6 Future steps

Research data and software preservation are not the same; additional skills and
investment are needed in GLAMs to improve software preservation. There is a need
for institutions and efforts to come together (e.g., in projects like EaaSI) as individual
institutions cannot provide everything needed to access old software and data.
Community is also very important and the GLAM sector engaging with meetings such
as the ACM reproducibility meetings60 will be mutually beneficial to tool creators and
users in the GLAM software preservation space.

6.3.4 Intellectual property and software preservation; areas needing careful
navigation.
Adam Jackson, Jean-Noël Grad, Neil Chue Hong

In principle, version-controlled codebases are a rich piece of heritage to archive; not
only do they contain the code, but also a history of changes and related metadata.
However, one may not simply be able to look at the code licence to determine the legal
position of the repository. Codebases can easily become contaminated with, for
example:

• Accidental use of copyrighted material in a GPL project
• Use of GPL code samples in BSD licensed code
• Sample code from StackOverflow that is licensed under Creative Commons.

54 https://web.archive.org/web/20201029171201/https://openslx.org/
55 https://www.arl.org/resources/code-of-best-practices-in-fair-use-for-software-preservation/
56 https://presqt.crc.nd.edu/
57 https://wikidp.org/about
58 https://openpreservation.org/events/
59 https://www.reprozip.org/
60 https://reproducibility.acm.org/blog/

25

The legal compatibility of doing this is often overlooked. In practice, heritage is lost by
codebase ‘cleaning’ practices (e.g., copying a snapshot into a new folder and using
‘git init’61 to make a fresh start.)

These incidents aside, there may still be a tension between preserving the history of
the software and complying with licences. It might not be possible to compile (or even
understand) the software without a dependency that cannot be preserved due to
different licensing terms. Such a dependency could be:

• An external library
• A commercial compiler depending on a defunct licence server
• Use of ‘compiler extensions’ that are not compliant with the programming

language standard
• External datasets e.g., for:

o Training a neural network or an unsupervised learning algorithm.
o plagiarism-detection software (the reference material is copyrighted and

accessing many papers from a publisher requires their approval and
comes with bandwidth limitations).

o scripts that analyse medical data (patient data is confidential and cannot
be archived, although synthetic data can be archived).

There are also grey areas around data, databases, and the formatting of data.
Ironically, large/complete datasets may be safer to preserve as creative selectivity
would help them qualify for copyright.

Intellectual Property law varies from country to country, and even though there are
attempts at interoperability, there may be differences that cause issues with software.
An example of this is the international variability in “panorama freedom”: laws around
copyright of picture assets taken in public areas in different countries.

There are legal discussions going on to enable museums and archives to hold
copyrighted works for preservation purposes, but it is unclear whether this would
include Zenodo62.

• Implication that software is uploaded by the author, rather than someone
seeking to preserve (e.g., if the original author dies)

• Are repositories like Zenodo which are principally publishers, not archives, able
to claim protection under exemptions for archives?

Hard to keep track of permissions when people contribute code. Sometimes old code
is not in a version controlled environment, in which case authorship information can
be hard to find (e.g., names in source file header comments or in function
documentation). During pair programming, two individuals contribute code but only
one appears as the author in the version control commit (in git it’s common to write
“Co-authored-by: name <email>” in the commit message to acknowledge co-authors,
and it’s recognised by GitHub and GitLab).

61 https://git-scm.com/docs/git-init
62 https://about.zenodo.org/

26

Contributor licence agreements (CLAs63) cause barriers to new contributions.

While platforms such as Github have made it easy to add a standard licence file, and
resources such as choosealicense.com64 are available to help with selection, there
are still many repositories without an explicit licence. If no licence65 is provided with a
software repository, the default status is no permission to use, modify or share. In this
scenario it is difficult to determine what permission is needed or whose copyright claim
applies, especially when third-party contributions and project forks are involved.
Additional documentation can clear this up.

Some packages have strange complicated/restrictive licences that make things worse
from a general software sustainability perspective (e.g., they cannot be used by some
institutes!). However, this may not be a heritage issue if archiving services have a
suitable legal exemption - if you are exempt from copyright, you should be able to
ignore a lot of other licence terms.

There may, however, be a heritage issue around contaminated codebases in cleaning
up a codebase and making it suitable for distribution, important heritage aspects
around the history of the project may be lost before preservation.

7 Open Science & applying the FAIR principles to software

This section describes the second session of the workshop. This session includes
featured sections (author enhanced and expanded text provided after the workshop)
on the progress of FAIR in mathematics and the EU OpenDreamKit project, FAIR
adoption in the Australian Research Data Commons, and FAIR computational
workflows. The summaries submitted for the workshop cover the evaluation of a FAIR
tool for Earth system models, ELIXIR software management plans and fiscal sponsors
in open source.

The discussion session which followed covered measures of FAIRness for software,
the importance of FAIR software for those working in research and starting an open
source endeavour.

7.1 Featured

7.1.1 glimpse at decades of FAIR struggles and practices in computational
mathematics
Nicolas M. Thiéry66

7.1.1.1 Executive summary

In the last decades, far before their formalisation, Open Science in general and the
FAIR principles in particular have been in effect at the core of the development of Free
Software for Computational Mathematics. Despite constant challenges and struggles,

63 https://en.wikipedia.org/wiki/Contributor_License_Agreement
64 https://choosealicense.com/
65 https://choosealicense.com/no-permission/
66 Links to a video & transcript available at - https://wosss.org/wosss21/S2-NicolasThiery

27

the situation has been continuously improving, notably through the emergence and
propagation of best practices. The recent advances of Open Science, and in particular
the recognition of its importance by institutions and policy makers is a major step
forward. In this section, we will illustrate these elements through the lenses of the
development of computational mathematics software like SageMath.

7.1.1.2 Messages for policy makers

• Given appropriate means, scientists are in general sympathetic to Open
Science, when not enthusiasts. In addition, the appropriate best practices vary
very much from one domain to the other.
Support and foster FAIR practices. However, don't impose them unless
absolutely necessary to counterbalance other higher forces.

• The FAIR ideas have been around for decades for software. Software raises
very specific FAIR challenges; however, it's not just another type of data.
Support FAIR research software as one of the pillars of modern science.

• Public bodies ought to fund basic scientific software development, and in
particular Fund long term software maintenance, at all scales.

• Research software development for-users-by-users can work well; however,
support from Research Software Engineers makes a huge difference to teach
the community base, provide advice and consulting, and achieve highly
technical tasks. Ease access to Research Software Engineers, at all scales.

7.1.1.3 The story

Computing has always been one of the favourite tools in (pure) mathematics to
discover and explore new theories. Thus, as computing devices emerged, they were
naturally adopted to compute examples, test conjectures, or even prove theorems, like
the classic four colour theorem: computers became the telescope of mathematicians.
A telescope made of both general purpose hardware and bespoke software.

At first, it took advanced skills to develop that software, but the scale was limited: for
each project a dedicated program would typically be written by one or two persons.
Starting from the 70's, with computing capacities and computational mathematics
blossoming, the range and the depth of mathematics that could be explored with the
computer increased drastically. There was a price however: the software complexity
and scale also increased drastically. Rewriting software for each occasion was not
sustainable anymore; it had to be Reused.

Many development models were explored in the 80's and 90's to achieve that aim,
with two main archetypes emerging: in the first archetype -- developed by users for
users -- a mathematical community would get together and build a common system
aggregating and structuring the development efforts of the community. Examples of
such systems include, for example, GAP for Group Theory, PARI for Number Theory,
Macaulay for Commutative Algebra, etc. Naturally these systems adopted --
sometimes before they were formalised -- the four principles of Free Software. Indeed,
computer exploration is by nature a handicraft where the needs are ever changing.
Hence the user needs a toolbox that they not only can reuse as is, but observe with a
critical eye, adapt to their own hand and job, with the ability to redistribute their

28

adaptations. A major strength of the by-users-for-users development model is that
codesign is at its root, ensuring that the software meets the user's needs and letting
the user craft the tool to their own hand.

In the other archetype, the development was carried out by a dedicated team, the
obvious challenge being to fund such a team in the long run. Thus, such systems
usually ended up taking the commercial route, hence targeting by necessity a wide
audience susceptible to draw enough revenue. These systems, including e.g., Maple,
MuPAD, or Mathematica, had a major impact by putting computational mathematics
at the fingertips of casual researchers, engineers, teachers, and students. At least
when they could afford the licences.

At this point, it should really be emphasised that this text is no more than a glimpse
into decades of work by hundreds. A proper history should highlight dozens of other
systems of all scales and mixed development models that have supported
mathematics over the years. Not counting that mechanising mathematics goes far
beyond computation: formal proofs, databases, knowledge management, typesetting,
etc.

At the turn of the century there was a growing frustration in the community about the
situation: through web searches, conferences, or hearsay you would Find many
functionality that you would dream to use in your own computations; however, more
often than not, they were not Accessible, either because they were provided by a
system with a licence that you could not afford or that would not run on your computer,
or by a bespoke system that was not Interoperable with yours. To resolve that tension,
many were dreaming of a system that would be simultaneously Free Software and
general purpose.
This was a major technical and social challenge given the very limited resources that
the community could devote to such an endeavour.

There was hope however thanks to the emergence of:

• Adequate general purpose programming language: up to now most systems
had developed their own language to serve the needs of mathematical
programming

• A large ecosystem of specialised free mathematical software
• Tools and practices enabling large scale collaboration on free software
• A crowd of open source enthusiasts among potential users

Finally, SageMath -- based on Python -- was started in 2005, and progressively a
community of hundreds of developers crystalized around that project, proving the
sustainability of the by-users-for-users development model if one Reuses whatever
can be to focus the energy on the core of the project. Later steps included a tight
cooperation with the Jupyter community to outsource the development of the user
interface.

To promote Findability, the community invested a lot of energy in training workshops,
notably dedicated ones for women and minorities, and Question and Answers tools
(mailing lists, Ask Sagemath67). At a lower scale, interactive use and introspection are

67 https://ask.sagemath.org/questions/

29

powerful tools for discovering features, especially when supported by a strong type
system that closely models the business objects, and by tutorials and systematic
documentation with many examples. That documentation could still be considerably
enhanced with a strong network of cross-links; Natural Language Processing might be
able to come to the rescue to automatically generate such a network.

Accessibility has been a continuous challenge due to the scale of SageMath, with
hundreds of dependencies, some dating from decades: making it easy to install
SageMath on personal computers or computing infrastructure required porting to the
main operating systems, modularizing, promoting loose coupling between
components, and standardising the build systems to help packaging (Debian, conda,
pip, ...) of SageMath itself and users' extensions. These efforts and the integration in
the Jupyter ecosystem have considerably reduced the entry barrier for users, in
research, teaching and engineering, notably through collaborative virtual
environments provided by services such as CoCalc 68 or JupyterHub 69 . This in
particular supports basic reproducibility, by letting users make their computational
narratives accessible to anyone online through on-demand virtual environments
hosted by services such as MyBinder70.

Interoperability is at the core of a system with so many dependencies. The challenge
comes from the diversity and richness of objects that one wants to manipulate in
mathematics and rich APIs (thousands of types of objects each with dozens of
methods). Work occurs at many levels:

• Low-level procedure calls, and data handles across components often written
in different languages, ideally in shared memory for performance. Favourite
tools include Cython, pythran, cppyy, ... Recent languages like Julia often offer
helpful facilities in that regard, and the OSCAR Computer Algebra System71
explores how to exploit them for a tight integration between systems

• Adapters, to let objects in a used component behave as native objects of the
calling component

• Data conversion

On the pragmatic side, adaptation and data conversion can be achieved on a case by
case basis between two systems, though this does not scale well. An ongoing research
endeavour is instead to build common ontologies and adapt / convert between any
two components through these common ontologies. For that specific aspect, the FAIR
challenges for data and software are intimately related.

7.1.1.4 Conclusions

Like in many other areas, the development of large scale computational mathematics
systems in the last decades has been strongly correlated with the advancement of
FAIR best practices. These practices enabled a sustainable for-users-by-users
development model which best meets the user’s needs in research, engineering, and
education.

68 https://cocalc.com/
69 https://jupyter.org/hub
70 https://mybinder.org/
71 https://oscar.computeralgebra.de/

30

A major trend supported by the FAIR principles is the evolution from an array of
competing software to a collaborative ecosystem of software. At a low granularity,
such ecosystems offer a fertile ground for innovation, fostering individual ideas and
features to sparkle, live and compete; and die when superseded. Death for software
artefacts is a necessity: otherwise, technical debt takes over; it’s also not so bad
thanks to archival. Meanwhile, collaboration is the key to innovation at the level of
systems, people, and communities.

Implementing the FAIR best practices can involve highly technical long term
investments stretching the limits of the by-users development model. This motivated
the OpenDreamKit72 Horizon 202073 European Research Infrastructure project (2015-
2019; €7.6M) to support the computational maths community. We were pleased to see
that institutions and funding bodies nowadays start to appreciate the importance of
FAIR principles and of research software. This project was the occasion to confirm the
high impact that a few Research Software Engineers can have. It was however also
the occasion to meet the limitations of project-based and novelty-based funding
schemes: how to fund long term software maintenance? How to offer career paths
for the required highly skilled professionals? Inadequate granularity and high
management overhead are also impediments to their efficiency.

7.1.2 FAIR adoption
Tom Honeyman74

The Australian Research Data Commons (ARDC) is a national facility supported by
the federally funded national collaborative research infrastructure strategy (NCRIS)
scheme. In this role the ARDC is a provider or co-investor in several areas of digital
infrastructure, skills development, and guidance, and has national programs in
storage, compute, data, informatics services, skilled workforce, policy, platforms and
software.

In seeking to adopt the FAIR for Research Software (FAIR4RS) principles, the ARDC
is considering action across several of these programs.

Within platforms that include JupyterHub the ARDC is looking for opportunities to
incorporate features or guidance relating to the principles. We are developing an easily
deployable JupyterHub-based platform as a service to be deployed within the national
ARDC Nectar research cloud. We see this as an opportunity to put the guidance and
encouragement to adopt the principles and other best practices relating to research
software authorship close to the authors themselves. Similarly, we are encouraging
the same with our platform's co-investment projects that also incorporate JupyterHub.

Within our own in-house software development, we will make that software FAIR. We
will leverage this as an example of best practice to show partner organisations. Within
our co-investment programs we'll be looking to work with project partners who are

72 https://cordis.europa.eu/project/id/676541
73 https://research-and-innovation.ec.europa.eu/funding/funding-opportunities/funding-programmes-
and-open-calls/horizon-2020_en
74 Links to a video, slides & transcript available at - https://wosss.org/wosss21/S2-TomHoneyman

31

developing research software tools to assist them in applying the principles to the
software they are developing.

Within our skilled workforce program, we are looking at incorporating FAIR4RS into
our training materials, and other guidance materials (used broadly throughout
Australia). Based on the ARDC "FAIR data self assessment tool", we are developing
a similar tool to aid socialisation of what adopting the principles might look like at
different levels. This tool will not be targeting software authors themselves, but rather
support staff, managers, policy makers and other roles that impact upon the authors
of research software.

Consistent with our existing policy advocacy work with relevant national bodies and
research organisations, we will continue to advocate for FAIR outputs (particularly
within our national signatory obligations under the OECD recommendations
concerning data from publicly funded sources), but direct interested parties to the
FAIR4RS principles when considering what actions might apply to research software.
That is, we will advocate for FAIR data and software.

Our own policy regarding outputs from co-investments will be updated to clarify
expectations for future co-investments. Specifically, where reasonable, they should be
applying the FAIR4RS principles to software outputs arising from co-investment,
instead of interpreting and applying the original FAIR principles to all outputs.

Finally, under the software program we will socialise and further assist in adoption of
the FAIR4RS principles amongst the national software authoring communities that we
support or facilitate.

7.1.3 FAIR Computational Workflows
Carole Goble75

The FAIR principles (Findable, Accessible, Interoperable, Reusable) [6] have laid a
foundation for sharing and publishing digital assets, starting with data and now
extending to all digital objects including software [7].

Computational workflows are a special kind of software for handling multi-step, multi-
code data pipelines, analysis, and simulations. Their use has accelerated in the past
few years driven by the need for repetitive and scalable data processing, access to
and exchange of processing know-how, and the desire for more reproducible (or at
least transparent) and quality assured processing methods [8]. COVID-19 pandemic
has highlighted the value of workflows [9].

Computational workflows encode the methods by which the scientific process is
conducted and via which data are created, by capturing precise descriptions of the
multiple execution steps and data dependencies needed. Workflow Management
Systems and execution platforms handle the definition and set-up of the multi-step
specification and the heavy lifting of dependency management, code execution, data,

75 Links to a video, slides & transcript available at - https://wosss.org/wosss21/S2-CaroleGoble

32

and control flow, reporting and monitoring. Over 300 workflow systems are currently
available76, although a much smaller number are widely adopted [10].

As first class, publishable research objects, it seems natural to apply FAIR principles
to workflows [11]. The FAIR data principles themselves originate from a desire to
support automated data processing, by emphasising machine accessibility of data and
metadata. Workflows are special kinds of software, but they're also a precise
description of a process. As workflows are digital objects that have a dual role as
software and explicit method description, their FAIR properties draw from both data
[6] and software principles [1,7].

Workflows create unique challenges such as representing a complex lifecycle from
specification to execution via a workflow system, through to the data created at the
completion of the workflow. As workflows are chiefly concerned with the processing
and creation of data they have an important role to play in ensuring and supporting
data FAIRification.

7.1.3.1 Properties of workflows that impact FAIR

Although workflows are inherently software, workflow management systems have
additional properties that impact how we might apply FAIR principles.

• Method abstraction. Workflows have a specification, which is a description of
the steps with parameters and inputs and guidance - offering FAIR
transparency, and metadata descriptions. We can consider these almost to be
like FAIR data because they're descriptive artefacts. On the other hand, we
have software, including workflow management systems themselves, as well
as the tools and the infrastructure that the individual codes that they're
orchestrating and chaining together. Like all software this is related to
reproducibility; of being able to run those pipelines and reuse those pipelines.
The descriptions refer to method preservation, but software reproducibility is
more about software preservation. Alongside these two perspectives of method
abstraction and the software that implements the method are the associated
objects around workflows: logs of their execution, example data, test data, and
services associated with them in order to be able to check whether these
workflows are FAIR.

• Method modularization and composability. Workflows expect to take

various different components in different languages from different third parties
and be able to put them together and port them and then to recombine them
and port them to yet more hosts. Workflows are compositions of components,
including other workflows that can be broken down, versioned, recycled and so
on. This requires FAIR to apply at the different levels of abstraction at the
description level and the software level, and for the different components that
make up the workflows. There are multiple workflow systems in the landscape,
which typically are used in an intertwined kind of way. People use a workflow
management system, which is a dedicated infrastructure that does that neat

76 https://github.com/common-workflow-language/common-workflow-language/wiki/Existing-Workflow-
systems

33

separation of concerns with respect to modularization, but also abstraction, and
execution. But these are typically used also with interactive notebooks, and
scripting environments, which perhaps are less clean in this regard, but still
running multiple steps.

7.1.3.2 Steps towards FAIR Workflows

The work on defining and improving the FAIRness of workflows has already started.
An ecosystem of tools, guidelines and best practices are under development to reduce
the time needed to adapt, reuse and extend existing scientific workflows.

The EOSC-Life77 Project is the European Open Science Cloud Life Sciences cluster,
which brings together European Research infrastructures dedicated to building a
collaborative space for digital biology. EOSC-Life is building a FAIR data and workflow
Commons, not unlike what Tom was talking about earlier about the Bio Commons,
and other Commons in Australia. The Life Science infrastructures extensively use
computational workflows for preparing, analysing, and increasingly sharing large
volumes of data. They have very different kinds of workflow management systems but
are all effectively building multi step pipelines and multi step processes to coordinate
and execute multiple codes, codes that they may not have developed themselves.
Those workflow systems are handling data and processing dependencies and doing
other kinds of heavy lifting, typically data pipelines. Alongside the many workflow
management systems in use there are dedicated registers and repositories that work
with dedicated workflow services. The EOSC-Life Commons must honour this diversity
and legacy.

7.1.3.3 Machine processable metadata
A fundamental tenet of FAIR is the universal availability of machine processable
metadata.
EOSC-Life has developed a metadata framework for FAIR workflows based on
Schema.org 78 , RO-Crate 79 [12] and Common Workflow Language (CWL 80) [13],
EOSC-Life have made great efforts to on-board community workflow platforms such
as Galaxy81, snakemake82, nextflow83 and CWL to carry and use FAIR metadata for
discovery and reuse. Auto harvesting FAIR metadata from different workflow
management systems means their onboarding is essential. We use this metadata
framework to move workflows around FAIR workflow systems, services and registries.
The workflow metadata framework covers:

• Canonical description and common metadata about what the workflows are
about using Bioschemas, Common Workflow Language and EDAM. CWL
provides a canonical workflow description of the steps of the workflow. The
Bioschemas Computational Workflows 84 provides a schema.org metadata

77 https://www.eosc-life.eu/
78 https://schema.org/
79 https://www.researchobject.org/ro-crate/
80 https://www.commonwl.org/
81 https://galaxyproject.org/
82 https://snakemake.readthedocs.io/en/stable/
83 https://www.nextflow.io/
84 https://bioschemas.org/profiles/ComputationalWorkflow/1.0-RELEASE/

34

profile about a workflow. The EDAM ontology85 types the inputs and outputs of
the steps of the workflow.

• Packaging all of the different disparate components around workflows
using RO-Crates [12], called a Workflow-RO-Crate86 profile. RO-Crate is an
implementation of FAIR Digital Objects87, a key concept in the European Open
Science Cloud (EOSC) and the EOSC Interoperability Framework. Packaging
the logging and data lineage results of running a particular workflow is to be
captured in a further specialised RO-Crate: Workflow-Run-RO-Crate 88 .
Workflows produce superfluous noise and detecting signals is hard. A great
deal of workflow provenance is fine grained metadata about execution that is
easy to collect but actually not useful. Distilling the lineage of critical data
products and cleaning out the rest is much harder. The T7 ProvWeek 202189
highlighted the discrepancy between workflow provenance [14] and
transparency.

EOSC-Life has also developed services to support FAIR workflows using the metadata
framework to exchange workflow objects between services, workflow management
systems, registries, and repositories.

• Findability: The WorkflowHub 90 , a registry of workflows, links into and
leverages different workflow management systems, their different deployments
and their different repositories. The Hub has a focus on rich metadata using the
framework that supports findability and reuse requirements, for example,
licensing and provenance of the workflows. Facilities support Workflow RO-
Crates, registration processes from Git, curated libraries of workflows, lifecycle
support around versioning with git support, and communities of practice
curating and sharing workflows.

• Accessibility: Once found, workflows need to be accessed - WorkflowHub
uses the GA4GH TRS91 API for a standardised communication protocol to
launch workflow executions. As the FAIR principles for decree that metadata
are accessible even when the workflow is no longer available, the metadata
framework, when completed, yields enough metadata that a workflow is read-
reproducible as a method description even if it no longer runs. The RO-Crate
packaging means that every workflow in WorkflowHub can be deposited in
other long term repositories like Zenodo. The software might not exist, but the
description still will.

• Interoperability: This principle is the hardest to unpack for both data and
software. For workflows, interoperability follows two threads: (i) supporting
workflow system interoperability through workflow descriptions independent of
the underlying system (e.g., Common Workflow Language and WDL92) and (ii)
workflow component composability. Workflows are ideally composed of

85 http://edamontology.org/page
86 https://about.workflowhub.eu/Workflow-RO-Crate/
87 https://fairdo.org
88 https://www.researchobject.org/workflow-run-crate/
89 https://iitdbgroup.github.io/ProvenanceWeek2021/t7.html
90 https://workflowhub.eu/
91 https://ga4gh.github.io/tool-registry-service-schemas/
92 https://openwdl.org/

35

modular building blocks like Lego, and these and the workflows themselves are
expected to be reused, refactored, recycled and remixed. Thus, FAIR applies
"all the way down": at the specification and execution level, and for the whole
workflow and each of its components.

• Reusability: Composability relates to reuse – that is, adapting [7], a workflow
or its component “can be understood, modified, built upon or incorporated into
other workflows”. Reuse challenges also include being able to capture and then
move workflow components, dependencies, and application environments in
such a way as not to affect the resulting execution of the workflow. Independent
components operate through API's and metadata standards requiring
programmatic access to the metadata of those particular tools, the making of
workflow ready tools [15] and being able to create canonical and recyclable
workflow blocks. Workflow developers can be both data-FAIR, by using and
making identifiers, licensing data outputs, tracking data provenance and so on,
and workflow-FAIR by managing versions, providing test data, and sharing
libraries of composable and reusable workflow “blocks” [16]. Communities such
as BioBB and nf-core are working on reviewing, validating, and certifying
canonical workflows. Interoperability and reusability present important
obligations on software developers to ensure that tools and datasets have clean
I/O programmatic interfaces, no usage restrictions, use of community data
standards and identifiers, and that they are simple to install and designed for
portability. The components need to be designed as FAIR units that can be
FAIR unit tested, FAIR data production and as FAIR workflows for reuse in other
workflows.

• Usability: As FAIR software needs to be usable and not just reusable; EOSC-
Life has also developed services for, e.g., workflow testing (LifeMonitor93),
execution and benchmarking, using the metadata framework to exchange
workflow objects. Packaging using containers, execution standards and API's
such as the GA4GH standard for running workflows all feeds into usability, as
does dependency management and FAIR unit testing of workflow components.

7.1.3.4 Workflows as functions for FAIR data

As workflows are instruments of data generation, typically dealing with data flow, they
should be supporting FAIR data. Thus, we need to test that workflows actually produce
FAIR data. Are they licensing data outputs? Do they use community data formats?
What usage restrictions do they require? Do they handle identifiers correctly, which is
critical for the detailed provenance of the data that goes through those workflows?
Again, good design for FAIR data, and reuse and the development of canonical
workflows and libraries of validated and curated workflows by communities, as well as
best practice and golden examples of workflows, which go through a reviewing
process. That really requires training and stewardship and sustainability activities.

7.1.3.5 Challenges

Many challenges remain for describing, annotating, and exposing scientific workflows
so that they can be found, understood, and reused by other scientists. Further work is
required to understand use cases for reuse and enable reuse in the same or different

93 https://crs4.github.io/life_monitor/

36

environments. The FAIR principles for workflows need to be community-agreed before
metrics can be considered to determine whether a workflow is FAIR, whether a
workflow repository or registry is FAIR, and whether it is possible to automatically
review whether a workflow’s dataflow is FAIR.

Ecosystem citizenship means that “FAIR takes a village” [17]. Workflows have a
community of practice as opposed to all of the software community. Community
activism, led by the platforms and registries coming together in a community group like
the Workflow Community Initiative94, is needed to define principles, policies, and best
practices for FAIR workflows and to standardise metadata representation and
collection processes. Communities of workflow developers are building well curated
and canonical workflows that we can address directly in order to be able to improve
their practices. There are those working in building the standards and communities for
building sustainability and policy around FAIR workflows in our FAIR Commons.

As software developers there are many different challenges to deal with, with FAIR
workflows. We still have to define the principles, particularly considering their complex
lifecycle of specification and execution and data products, and metrics around the
FAIRness of workflows. We need to include the folks that develop the codes that are
incorporated into workflows, to code to become workflow friendly, with clean
interfaces, avoiding usage restrictions and so on, as well as FAIR workflow making.
We need to work on how we can automate the FAIRness in workflows and check the
way that those workflows have been developed, so that they adhere to FAIR principles,
not just for the workflow, but also for the data that flows through them. It is important
for workflow platforms to enable FAIR outputs, like citing correctly the input data and
the used software The FAIR Digital Object approach - using RO-Crate and a metadata
framework - means we can package links to data and cleanly reference the used
software too. When we have ubiquitous PIDs we can begin to build citation metrics
too.

We should not forget the FAIR workflow user. We want to encourage people to use
well documented, FAIR enabling and FAIR workflows and to credit the makers of them
because this is a non-trivial and expensive activity. I really liked the term that was used
before, on.

7.2 Summaries

7.2.1 Research software and beyond - ESMValTool: a community and FAIR
software for evaluations of Earth system models
Fakhereh (Sarah) Alidoost95

Let’s imagine I want to analyse a time series of 50 years of air temperature in the past
and in the future generated by 10 climate models and visualise the results. So, I
developed some lines of code implementing the analysis. The code includes running
several tasks: finding and downloading data, checking the data for completeness and
correctness, processing the data, and finally storing the results. Also, it creates some

94 https://workflows.community/about
95 Links to a video & transcript available at - https://wosss.org/wosss21/S2-FakherehAlidoost

37

plots that can be used for figures in my publications. It took me some time and effort
to develop the code that performs the analysis in an efficient way concerning
computational costs. You need to implement a similar analysis in your research, for
example analysing air temperature and precipitation simulated by 5 other different
models. You can re-use my code instead of re-implementing it from scratch because
it is FAIR (Findable, Accessible, Interoperable and Reusable). This is the world where
our research is efficient, and our code is sustained as it is usable by others for their
own research.

Generally speaking, the first step in using software is to find it. Then, we need to know
how to access it. Finally, we can execute the software. However, implementing these
steps is not straightforward since the research software is made to run a specific
experiment in a scientific domain. Also, developing software can be a challenging task
because as researchers, we might not have all the skills needed to write well-described
and well-structured code during our research. Therefore, it is impossible to define one
solution that fits everyone in all research disciplines. To facilitate this, research
communities promote best practices and recommendations around elements related
to software. These elements are mainly public repositories, version control systems,
licences, community registries, and software quality tools. As implementing FAIR
principles changes the way we do science, guidelines on how to treat those elements
are often tailored towards our own research field/community. It is also common that
best practices of developing software cover other aspects of the research like data
and papers.

In my talk, I will introduce a community-driven software: Earth System Model
Evaluation Tool (ESMValTool96). I will also explain how this software makes it possible
to reuse code easily and ensures transparency and reproducibility of research output.
Here is a summary:

The World Climate Research Programme (WCRP) provides a platform for international
collaborations to better understand climate phenomena and develop useful climate
information. The core projects of WCPR explore models that show how our climate
system works, how it changes, and what impacts are. Climate and Earth system
models are very complex codes that project future climate. Outputs of the models are
used as the basis for climate research around the world. To analyse the output
collectively, WCRP organises and leads the activities in the Coupled Model
Intercomparison Project (CMIP) involving thousands of researchers. CMIP sets
standards and experimental protocols and facilitates sharing codes and comparing
models’ results. ESMValTool is a software that facilitates the assessments of Earth
system models in CMIP. The software is built and maintained by a community of
scientists and software engineers. The community includes technical and scientific
teams that review contributions mainly in the form of codes in climate-related domains.
Also, the community is supported by principal investigators and a user engagement
team. Discussions, developments, maintenance, and collaborations mostly take place
in public on GitHub97. The software processes data and runs analyses efficiently
regarding computational resources. It also stores provenance and citation information
in a user-friendly way. Automated testing through unit tests and review processes

96 https://www.esmvaltool.org
97 https://github.com/esmvalgroup

38

safeguards the quality of research data, codes and publications. In addition, the
software is a collection of publicly available scripts with extensive documentation.
Moreover, there is an online tutorial that shows not only how to run an experiment but
also how to develop your own scripts. In this way, ESMValTool helps others to
understand our analyses, makes the results reproducible and facilitates collaborations.

7.2.2 Developing the ELIXIR Software Management Plan for Life Sciences
Fotis Psomopoulos98

Data Management Plans (DMPs) are a key element of good data management and
are now considered a key element of Open Science practices. A DMP describes the
data management life cycle for the data to be collected, processed and/or generated
within the lifetime of a particular project or activity. Conversely, a Software
Management Plan (SMP) can help to formalise a set of structures and goals that
ensure your software is accessible and reusable in the short, medium, and long term.
Although it has a management perspective, the main advantage of an SMP is that it
provides clear context to the software that is being developed. In that sense, it
addresses several aspects of the software development process such as (a)
supporting reproducibility and reusability of the software, (b) allowing funding agencies
to have a better grasp of the envisioned development process (as well as the achieved
milestones), (c) increasing the awareness of the existing community standards that
can/should be used, and (d) ensuring that the software can be easily accessed by the
wider community.

There are several flavours of SMPs already available in one form or another. The
Software Sustainability Institute (SSI) offers a very detailed checklist99 that is further
complemented by an online sustainability evaluation service (SES 100). Several
journals (such as SoftwareX and the Journal of Open Source Software) have
checklists that are expected to be filled in by the software authors before any
submissions addressing most of the points of an SMP. Finally, there are funding
agencies (such as the Wellcome Trust) that expect a research outputs management
plan101 submitted during any application.

A key downside of the SMPs is that they tend to be rather complex, occasionally
requiring deep technical knowledge of the software development process. To address
these drawbacks, ELIXIR has put together a simplified version of an SMP, tailored for
Life Science oriented projects but still general enough to be more widely applicable.
The primary goal of the ELIXIR SMP was to encourage wider adoption by Life Science
researchers, and be as inclusive as possible to the various levels of technical
expertise, while also having an explicit connection to the FAIR principles for Research
Software (FAIR4RS WG102, [18]). A common theme in Life Science researchers is the
wide differences in background expertise, with most researchers being self-taught
research software developers. Having an SMP with a relatively low barrier in technical
knowledge, while maintaining all the best practices expected in research software

98 Links to a video & transcript available at - https://wosss.org/wosss21/S2-FotisPsomopoulos
99 https://www.software.ac.uk/software-management-plans
100 https://www.software.ac.uk/resources/online-sustainability-evaluation
101 https://wellcome.org/grant-funding/guidance/how-complete-outputs-management-plan
102 https://www.rd-alliance.org/groups/fair-research-software-fair4rs-wg

39

development, may both encourage wider adoption of these practices as well as
increase the awareness of the multiple aspects involved in research software
development.

The starting point for the creation of the SMP was the four recommendations for Open
Source Software [19]. These recommendations are meant to encourage best practices
in research software development. To incorporate the feedback of the ELIXIR
community and the best practices used there, interviews were conducted during a
dedicated project within the Europe BioHackathon 2019. The common practices and
ideas collected from the interviews were structured around the four FAIR Research
Software principles (Findability, Accessibility, Interoperability and Reusability), based
on the area they were more relevant. Additional care was given towards ensuring that
the main low-effort high-gain actions were captured, to ensure that the resulting
questions had a low knowledge barrier for the expected users. The first version of the
SMP, grouping the practices as described above, was presented in a dedicated
webinar organised by ELIXIR in July 2020. Following that, two iterations of revision by
the ELIXIR community were conducted. Specifically, developers from the ELIXIR
community were invited to review and comment on the questions and corresponding
options, ultimately leading to a consensus version of the SMP that incorporated all
proposed changes. Currently available as a survey, future plans of the ELIXIR SMP
include a human- and machine-readable version, that can be automatically queried
and connected to relevant tools and metrics within the ELIXIR Tools ecosystem and,
hopefully, beyond.

7.2.3 The Role of Fiscal Sponsorship in Open Software
Andy Terrel103

Open source software is very often a work of passion to scratch the author's itch. What
happens when that passion goes stale? Just as a pair of young lovers, the software
community must evolve its relationship, i.e., someone has to do the dishes.

While early open source projects could organise around a few people with not many
resources, today's projects often include hundreds of contributors working for
numerous companies. Additionally, the people of the project are spread across dozens
of countries complicating many legal issues. To meet this need of maturing software
projects numerous fiscal sponsor organisations have been formed. Fiscal Sponsorship
manages the project's financial, legal, and organisational resources. It also allows
projects with similar organising principles to come together and produce common
goods.

In this presentation, we use NumFOCUS104 as a case study to show the various
aspects of the Fiscal Sponsor. NumFOCUS founded in 2012 has grown to sponsor
over fifty scientific software projects with a vibrant educational program to help a
growing community learn and build new tools.

103 Links to a video, slides & transcript available at - https://wosss.org/wosss21/S2-AndyTerrel
104 https://numfocus.org/

40

7.3 Discussions

7.3.1 Setting measures of FAIRness for software
Michelle Barker, Raniere Silva, Adam Jackson, Peter Doorn, Tom Honeyman, Nicolas
M. Thiéry

When a researcher says “I want to keep my research alive. How do I do it?”, it is
important to consider that all digital outputs should be made FAIR, including research
software. Who will be responsible for ensuring that research software is FAIR?

Emulation is an interesting approach to keep research software alive in the GLAM
(Galleries, Libraries, Archives, and Museums) sector, and for e.g., arcade computer
games. It might be suitable for some types of research software, such as prototype
tools (demonstrating new ideas, methods, and models) and analysis code (capturing
one-off analytical decisions and use of methods), which might need to be “preserved”
rather than maintained.

There are existing approaches that measure some aspects of the FAIRness of
software, although they have some shortcomings:

• The Journal of Open Source Software (JOSS) is quite successful in using a
checklist to establish a baseline over a wide range of research areas. But this
is not suitable for all types of research software.

• Wellcome Trust is developing a “FAIRware 105 ” tool for funders to assess
grantee data, but there is not yet an equivalent for software. There are a range
of FAIR evaluation tools for measuring data FAIRness, but they are not
consistent in how they analyse FAIRness.

With the development of the FAIR for Research Software Principles, there is the
potential for future requirements requiring research software to be FAIR. When
measuring that FAIRness, there is a danger that the demands are set too high or that
they become too complex for researchers to obey, and that may result in less FAIR
software instead of more FAIR. It is important to measure things that are meaningful.

Measuring FAIRness shouldn’t be binary because some software is “allowed” to be
less FAIR and the FAIR for Research Software Principles framework can be used to
have a sensible discussion around these cases.

There is not just one type of “Research Software”, there is an enormous diversity. Not
all FAIR criteria make sense for everything, e.g., prototype tools are a valid category,
which are not made to demonstrate a new idea, method, or model. Most prototypes
emerging from research do not go on to become maintained software.

FAIR principles are “aspirational”, not absolute. It is possible to “measure” (or
describe) in what respects software is FAIR, and in which respects not (or less). There
are many possible tiers of interoperability, and some fundamental limits to what is
possible.

105 https://fairware.metadatacenter.org/

41

Funding requirements are useful for driving behaviour change, but funders don’t only
care about FAIR, other criteria matter as well. So, incentives not to set those
requirements too high where it might reduce output of useful software. Communities
will have different expectations, so top-down requirements are problematic.

There is a general wariness around boiling things down to a single metric. (Goodhart’s
Law 106 : metrics cease to be useful when they are targets.) A checklist plus
commentary is probably useful to funders in most practical scenarios.

Such checklists are useful to initiate discussions within projects, leaving to projects
and communities to decide for each item whether it is impossible/relevant/etc in their
context.

There is a danger in being too ambitious with the requirements on the FAIRness of
research software. The danger is that it will not be obeyed if it is made too complicated
for researchers to comply with. Those who set the FAIRness criteria set by funders (or
domains, institutions, etc) should be aware of the possibility that it will not be adhered
to. The emphasis should be on having a sensible basic and practical baseline.

7.3.2 Why is knowing about FAIR Software important for researchers, research
software engineers, data stewards and others
Ben Companjen, Carina Haupt, Paula Martinez, Rachael Ainsworth, Fotis
Psomopoulos, Sarah Alidoost, Carole Goble, Meta Keijzer-de Ruijter, Andrew
Sandeman

It is often stated that we want reproducible science! However, researchers care more
about transparent and reusable science, and trusted science not reproducible
science. The IEEE eScience panel on open science raised these points, as does the
NASEM NIH workshop [20].

Reproducibility does not resonate with researchers as much because there is less
perceived value in publishing reproduction (the focus of journals being on novel
science). Researchers usually want to reuse in a different context.

Reproducibility107 (same data + same methods → same results) is a means to an end,
not the end itself. The main goal of reproducibility is to generate trust. Reproducibility,
transparency, and trust are not defined by FAIRness, but can be facilitated by FAIR.
FAIR Software may not lead to reproducibility but can lead to trust.

106 https://en.wikipedia.org/wiki/Goodhart%27s_law
107 https://www.nationalacademies.org/our-work/reproducibility-and-replicability-in-
science

42

R*108

The intention of FAIR principles was to get a conversation going; it is meant to be a
spectrum/journey towards improving things. It was not expected to be policed or to
become a cult. Unfortunately, it has become dogmatic, and it is perceived that “75%
of FAIR is air”. The interpretation of the principles became too abstract.

FAIR principles should provide context on how things should be done, make them part
of community norms - not something to be “enforced”.

As a community, we need to stop positioning FAIR as labour and burden and stick
with benefits outside the researcher and more about the carrot and benefits for them
and their scientific workflow, and personal “productivity” - “FAIR is a love letter to
yourself109”.

7.3.2.1 Conclusions:

• Transparency and trust for reviewing works (pre and post publication)
• Reproducibility, transparency, and trust are not defined by FAIRness, but can

be facilitated by FAIR
• “75% of FAIR is air”
• What is the value to those who you are trying to get to work in a FAIR way?

Focus on benefit, do not add burden - there is a real danger of FAIR fatigue
(where you won’t be listened to at all) if you become too dogmatic about FAIR.

o Focus on improving the efficiency of the workflow, conversation on how
we are conducting research and how we can do it better, impact

• Unexpected side effects/ramifications on careers, repositories, and institutions
that enforcing and policing FAIRness can have

108 https://www.slideshare.net/carolegoble/what-is-reproducibility-the-r-brouhaha-and-how-research-
objects-can-help-236725062
109 https://www.nature.com/nature-index/news-blog/what-scientists-need-to-know-about-fair-data

43

• FAIR principles are the start of a conversation about how we can improve
research

o Organise their work
o Use shared vocabularies
o Make more efficient workflows (i.e., ways of working)
o Increasing the impact of work done
o How to improve trust in results

7.3.3 How to start your own band and the open source analogies
Andy Terrel, Carlos Martinez-Ortiz, Shoaib Sufi

Following Andy Terrel’s talk (see 7.6), the analogy of starting a band and starting an
open source software project is a very interesting one.

It is very easy to focus on the technical aspects of starting an open source project,
such as what type of licence you should use. There are great resources available for
educating people in how to pick a licence, such as Choose a License 110 and
TLDRLegal111.

However, it is important to keep in mind that software (just like music bands) has a
social aspect. It is important to consider what is the social mission of your software.

There are ethical implications that are involved in developing software, which are easy
to overlook. As a hypothetical example, imagine a piece of software that can assess
the chance of survival of animals in a shelter: this software could be misused to decide
which animals to kill! On a more realistic example, interpretation of weather models -
can be misused to deny climate change. Another example is software which might find
use in military applications: the original developers of the software might have
concerns about such applications.

7.3.3.1 Take home message:

• “Sit down and think about the end of your journey, at the beginning of your
journey.”

o Main book recommendation - (claims, success, had achieved things:
allows you to think about problems/issues up front) - The Founder’s
Dilemmas112.

o Other books
§ Section on ethics - Things a Computer Scientist Rarely Talks

About113
• Choices you make early will define your culture (e.g., how shareable /

integratable your code is)
o There is a move beyond just open source licences
o Increase in ethical clauses

§ Used for good (e.g., non-military use; some will applaud)

110 https://choosealicense.com/
111 https://tldrlegal.com/
112 https://press.princeton.edu/books/paperback/9780691158303/the-founders-dilemmas
113 https://web.stanford.edu/group/cslipublications/cslipublications/site/1575863278.shtml

44

§ Used for bad (e.g., racist clauses)
o Increase in economic clauses (to help sustain the initiating projects)

• Three axes to think about
o Technical, Legal, Ethical

• Original reasons for getting into open source
o Advocacy, Openness, Transparency

• Times changed - more complex issues needed to be dealt with114 115
o Societal issues (e.g., inclusion - beer and pizza is exclusionary to gluten

free people) and technical & legal choices are shaped by the society they
are part of.

• Important about being intentional about the communities that we build -
although there are no easy answers when it comes to societal factors - one has
to take those onboard.

114 https://osaos.codeforscience.org/
115 https://discover-cookbook.numfocus.org/

45

8 Human factors and new development in preserving and sustaining
research software

This section describes the third session of the workshop. This session includes
featured sections (author enhanced and expanded text beyond a summary) on
discovering the architecture of scientific software, how software preservation is
necessary for reproducibility and how Open Source Center’s are supporting open
research in Brazil. The summary sections covered making inclusion a core feature of
our work, reproducibility with the RO-Crate standard and Common Workflow
Language, how to measure sustainability of academic software and concluded with
an introduction to the UK reproducibility network.

The discussion session which followed covered how communities could handle
burnout, research software roles and the place of software in the scholarly record.

8.1 Featured

8.1.1 The Lost Architectures of Scientific Software and How to Find Them
Colin Venters116

Modern scientific and engineering research is highly dependent on software. Its
importance in driving forward advances in research in the field of computational
science and engineering has resulted in calls for it to be classified as a first-class
experimental scientific instrument. However, software as a research instrument has
not reached a level of maturity compared with the conventional tools of empirical and
theoretical science [21]. Why? Research software is principally developed by end-user
developers who have a limited understanding and application of fundamental software
engineering concepts, principles, and techniques, combined with a "code-first"
approach to development, which is in part driven by the complexity and uncertainty of
the problem. This results in research software with suboptimal software design, if any,
leading to accidental complexity, technical debt, code smells, and an increase in the
risk of software entropy. Similarly, while Research Software Engineering aims to
facilitate the creation of well-designed, reliable, efficient software to solve research
problems there is little empirical evidence to demonstrate that the research software
created is well designed, if at all, understandable, maintainable, and extensible. The
consequences of accidental software complexity lead to a range of rotten symptoms,
including software rigidity, fragility, immobility, and viscosity that are a pathway to
stagnation, decay, and the long-term decline of essential research software
investment [22].

Sustainability is generally understood as the capacity of a socio-technical system to
endure [23]. While several communities have attempted to address the challenges of
achieving sustainability from their different perspectives, there is a severe lack of
common understanding of the fundamental concepts of sustainability and how it
relates to software systems. As a result, there is no agreed definition of software
sustainability or how it might be achieved. While there have been several contributions
to formalise a definition of software sustainability, the concept remains an elusive and

116 Links to a video and transcript available at - https://wosss.org/wosss21/S3-ColinVenters

46

ambiguous term with individuals, groups and organisations holding diametrically
opposed views [24]. This lack of clarity ultimately leads to confusion, and potentially
to ineffective and inefficient efforts to develop sustainable software systems.

The future of scientific and engineering enterprise requires a resilient ecosystem of
software [25]. Software design is a key component of sustainable software, which
starts with software architecture [26]. Software architectures represent the set of
structures required to reason about the system, which comprises both software
elements, their properties, and relationships [27]. Software architecture is fundamental
to the development of technically sustainable software as they lay the foundation for
the successful implementation, maintenance and evolution of sustainable software
systems in a continually changing execution environment by providing a mechanism
for reasoning about core software quality requirements that contribute to sustainability
as a first-class, composite software quality [28]. By addressing software sustainability
at the architectural level, it allows the inhibiting or enabling of systems quality
attributes, reasoning about and managing change as the system evolves, predicting
system qualities, as well as measuring architecturally significant requirements.
However, the ability to determine sustainability as a core software quality of a software
system from an architectural perspective remains an open research challenge, and
existing architectural principles need to be adapted and novel architectural paradigms
devised. In addition, there is a pressing need for new tooling to fit today's emergent
and dynamic environments, where essential research software is explicitly designed
for continuous evolvability and adaptability without incurring prohibitive architectural,
technical debt [29].

This micro-talk argues that sustainable software is that which is explicitly designed for
continuous maintainability and evolvability without incurring prohibitive technical debt
and a negative impact on the dimensions of sustainability and presents the results of
a case study on the technical sustainability of the MERLIN++ particle accelerator
tracking library originally developed in 2000 at Deutsches Elektronen-Synchrotron.

8.1.2 Software preservation is necessary for reproducibility
Vicky Rampin117

As supporting research reproducibility continues to take shape throughout various
scholarly communities, we’ve seen several tools arise to help. However, most if not all
the current tools for reproducibility were made for short-term replay of research, relying
on container technology and having researchers manually configure their
computational environments. This is problematic for long-term access to research in
many ways, particularly because it’s often incredibly difficult (neigh on impossible) to
uncover all the dependencies that computational research touches, and even harder
to make sure those persist in the long-term (and we know that the computational
environment where research takes place directly affects its analytical result; see the
case of the Willoughby-Hoye118 scripts). The more that we care about reproducibility,
the more it becomes clear that we rely on software preservation in several ways to
enable that reproducibility.

117 Links to a video, slides, and transcript available at - https://wosss.org/wosss21/S3-VickyRampin
118 https://arstechnica.com/information-technology/2019/10/chemists-discover-cross-platform-python-
scripts-not-so-cross-platform/

47

In this talk, I’ll go over ReproZip 119 , which adds automation, extensibility, and
preservation of reproducible research to the current landscape of tools. ReproZip has
been in development at New York University since 2013, and ReproZip bundles that
were created back then are still fully rerunnable and reproducible today, which few
other tools can boast (if any).

ReproZip helps researchers make long-term reproducible bundles of their work in two
steps:

1. the tracing step: researchers run ReproZip at the same time they run some
analyses, program, pipeline, etc., and ReproZip detects and captures the
source of everything that the process touches (input data, source code,
environment variables -- everything!).

2. the packing step: researchers bundle all that information in a .rpz file. The

bundle is generalizable enough to be able to be viewed and reused by several
other tools (which improves the sustainability of ReproZip bundles).

ReproZip bundles can then be used to automatically set up the original researchers’
computational environment and project workflow on someone else’s computer, which
is ideal for computational reproducibility. Secondary users can verify the original
researcher's work, but also extend it by using their own input data. Because ReproZip
packs all the source of every dependency of a script, workflow, etc., as well as the
provenance information (for instance, the order in which the original researcher runs
multiple scripts), it allows for high fidelity and long-term reproducibility at low cost to
the user (in terms of time, resources, and labour).

Among the many benefits of ReproZip, sustainability and preservation is the most
unique in the landscape of existing tools. The rpz file generated by ReproZip is
preservation-ready from the time it is created, for a few main reasons:

• Flexibility: the rpz file is completely agnostic to the unpacking technology being
used, and this has allowed ReproZip to be leveraged in many preservation
contexts. ReproZip itself also uses a plugin model such that unpackers can be
added and removed as the march of time goes on. This has already resulted in
ReproZip being used widely for many use cases.

• Completeness: the rpz file contains all the necessary files to reproduce the

packed research, as well as a highly detailed metadata file (config.yml) that lists
all the technical and administrative metadata about the computational
environment being used, the workflow steps, and other dependencies packed.
If for some reason there are no containers or virtual machines in the future, then
someone could use this metadata file to rebuild the computational environment
and use the files in the bundle itself to reproduce the work.

119 https://www.reprozip.org/

48

Reprozip is already integrated in several systems and workflows to support many
different use cases, again adding in valuable automation, sustainability, and
preservation capabilities. Some of these include:

• Computational science tools (NeuroDocker120 to minify docker containers, Spot
[30] to reconstruct provenance graphs, Model Insertion Checker121 (part of
DARPA’s World Modelers program) to trace and pack model execution)

• Peer review (e.g., SIGMOD122)

• Querying metadata at scale (e.g., WholeTale [31], explore web archives123)

• Reproducibility component of other platforms (Cloud of Reproducible

Records124)

• Digital preservation infrastructure (e.g., Emulation as a Service
Infrastructure125, ReproZip-Web126)

ReproZip clearly adds value in long-term access to reproducible research, as well as
providing a pathway for the preservation of boutique research software and
environments.

8.1.3 The FLOSS Competence Center as an Enabler of High-Quality Open
Research Software in Brazil
Kelly Rosa Braghetto127

The Free/Libre Open Source Software (FLOSS) Competence Center (CCSL128) of the
University of São Paulo (USP 129), Brazil, encompasses activities related to
undergraduate and graduate education, research, development, and publicising of
free and open-source software. It is composed of formally established centres at the
Institute of Mathematics and Statistics in the city of São Paulo and at the Institute of
Mathematics and Computer Science in the city of São Carlos, both in São Paulo state.
The centre’s primary goal is to foster the development, research, and adoption of
FLOSS both inside and outside the university, by providing for users and developers
high-quality resources and expertise on the various topics related to open-source
software.

120 https://github.com/ReproNim/neurodocker
121 https://mic-cli.readthedocs.io/en/latest/overview/#step-2-trace-your-model-execution
122 https://reproducibility.sigmod.org/#process
123 https://twitter.com/anjacks0n/status/1323719989313048579
124 https://github.com/usnistgov/corr-reprozip
125 https://twitter.com/euanc/status/1143966909421019136
126 https://reprozip-web.readthedocs.io/en/latest/
127 Links to a video, slides, and transcript available at - https://wosss.org/wosss21/S3-
KellyRosaBraghetto
128 https://ccsl.ime.usp.br/en
129 https://www5.usp.br/

49

Since its creation in 2008, the centre has been performing a fundamental role in
supporting the Brazilian scientific community to embrace openness. The centre offers
training, consulting, and hosting to researchers from any field of science, to support
the production of high-quality open research software. It aids researchers not only on
tools, platforms, and licences but also on methodologies, studies, and best practices
in software development. The FLOSS Competence Center team groups some of the
main researchers on Software Engineering and FLOSS of the country.

Despite its importance and high impact, the FLOSS Competence Center’s scope of
action is too small, considering Brazil’s large extension and inequalities. There is a
lack of country-wide open science practical initiatives and incentives of funding
agencies and research institutions, which should provide physical infrastructure,
information, and human resources to assist researchers.

Brazil started formal initiatives to adopt open government data in 2011 by creating the
Law on Access to Information and co-founding the Open Government Partnership
(OGP), which now has 77 other signatory countries. The biennial Open Government
National Action Plans have raised awareness and commitments to open science. But
it is worth mentioning that Brazil became a leader of the open access movement much
before that. The Scientific Electronic Library Online (SciELO130), recognized as one of
the most important open-access programs in the world, was established in 1997.
SciELO’s publication model has been adopted by 15 other countries, in a network that
contains 1200 open access journals, which publish an average of 50 thousand papers
per year.

Concerning the management of open research data, coordinated actions started to
take shape only more recently. In 2018, the Brazilian Ministry of Science, Technology,
Innovation and Communication (MCTIC) created a Working Group to draft the National
Policy for Open Science, to give the guidelines for the national policy for research data
management in Brazil. At the end of the same year, Brazil adhered to the GO FAIR
initiative through the creation of the GO FAIR Brazil Office, hosted by the Brazilian
Institute of Information in Science and Technology, a research branch of the MCTIC.
It is one of the first GO FAIR national offices established outside Europe. The first
active implementation network in operation in Brazil is in the health domains; other
fields are in the process of adherence negotiation.

A few distributed efforts stand out while the national policy is not implemented, mainly
on the biggest public research institutions (such as USP) and wealthiest state funding
agencies (such as FAPESP 131). The State of São Paulo Research Foundation
(FAPESP) is one of Brazil’s main funding agencies for scientific and technological
research. FAPESP has been defining policies and fostering initiatives towards open
science aligned with what other countries practise, aiming to increase the
dissemination and the scientific, social, and economic impact of the Brazilian research
it funds.

Since 2017, FAPESP requires from researchers Data Management Plans upon
submission of project proposals. The data produced in projects funded by FAPESP

130 https://www.scielo.br/
131 https://fapesp.br/

50

must be stored in institutional repositories, preserving them, and making them openly
accessible (subject to the applicable standards and constraints).

Also in 2017, FAPESP started a workforce to develop a state network of open research
data repositories, formed by the São Paulo state’s six public universities (including
USP), the Aeronautics Institute of Technology (ITA), and the Brazilian Agricultural
Research Corporation (EMBRAPA). The repository that gathers research data
metadata 132 from the network institutions was launched in 2019. The network’s
infrastructure is also being used to share pseudonymized data of Covid-19 patients
(~800K) from collaborating health institutions, contributing to essential research in
several countries.

In 2019, FAPESP formalised its open access policy for publications, under which all
journal papers that result from FAPESP-funded research must be made publicly
available in institutional open access repositories (if this does not violate copyright
rules).

Some funding lines at FAPESP already require that all software developed within a
funded project be licensed as free software. However, differently from the case of
research data, there are no institutional supporting resources (such as guidelines and
metadata repositories) to help researchers appropriately develop, preserve, and
disseminate their research software. Until now, the sustainability of research software
seems to be out of the official working groups’ radar.

This scenario highlights the importance of reinforcing and replicating the work that the
FLOSS Competence Center is doing. Moreover, it exposes the urgent need for the
Brazilian government, research institutions, and funding agencies to finance and
cooperate to build appropriate infrastructure and establish models, skills, and policies
to sustain the Brazilian research software, along with the ongoing initiatives on
research data.

8.2 Summaries

8.2.1 Changing our ways: Making Inclusion a Core Feature
Emma Irwin133

As we look to technology to solve some of the world's biggest challenges it's critically
important that we understand how the history of racism, sexism, ableism, casteism
and other biases has shaped the technology we use today; that while the small steps
being made to increase diversity, to address hate and harm online are encouraging,
the true potential lies in our ability to move from 'having good intentions' to
systematically evaluating, evolving and changing how we build software.

Open source software, which is less diverse than tech overall (despite the notion of
openness) sadly, has as many stories of toxicity, exclusion, and harm as it does
innovative success stories. There is plenty of research, and storytelling that tells us
why. We even have a set of metrics being developed both by a cross-community effort

132 https://metabuscador.uspdigital.usp.br/
133 Links to a video and transcript available at - https://wosss.org/wosss21/S3-EmmaIrwin

51

called CHAOSS134 and work by the UN to define a framework for digital inclusion.
What's still lacking is a way to apply this knowledge and associated actions into our
everyday engineering and community practices.

In this talk, I'll share some of my research, the CHAOSS project metrics and early work
to embed metrics for inclusion into the everyday with the hope to inspire new ideas to
ensure that the solutions we're building for the world, reflect the challenges and
potential of everyone in it.

8.2.2 Reproducibility; Research Objects (RO-Crate) and Common Workflow
Language (CWL)
Stian Soiland-Reyes135

The use of digital methods and computational analysis is now ubiquitous across
sciences and research disciplines. However, there is a growing concern that while
modern computing accelerates scientific development and progress, it can come at
the cost of reduced reproducibility and a difficulty of communicating the methodology
to other researchers, particularly through traditional scholarly articles as text and static
figures. Research Objects [32] have been proposed as a unit of scholarly
communication, gathering raw data, software, results, figures and documents,
described and inter-related using Linked Data, and as an aggregation cited by its own
persistent identifier.

RO-Crate136 is a realisation of Research Objects using off the shelf Web standards
(JSON-LD) and vocabularies (schema.org), with a developer-friendly lightweight
approach and a set of best-practice guides for capturing “just enough” structured
metadata, being interoperable with Linked Data technologies, and extensible for
domain-specific needs. RO-Crate is being developed as a community-led project,
supported by open source tools, and is being adapted for a wide range of different
scientific domains and use cases.

8.2.3 On the Sustainability of Academic Software in Software Engineering
Christina Von Flach Garcia Chavez

The increasing adoption of academic software has made modern Science dependent
on the technical sustainability of software. Unsustainable development of academic
software hinders reproducibility, one of the Science pillars. In addition, according to
Howison and colleagues, the non-sustainable development of academic software can
lead to a “dysfunctional chaotic churn”, characterised by the existence of several
similar projects, with disconnected communities, few users, and a short life cycle,
among other anomalies.

134 https://chaoss.community/
135 Links to a video, slides, and transcript available at - https://wosss.org/wosss21/S3-StianSoiland-
Reyes
136 https://www.researchobject.org/ro-crate/

52

There are few studies on the technical sustainability of academic software in Software
Engineering, especially in the field of static analysis, with a long tradition in the
development of tools to support research in different areas.

In this talk, we present the results of an exploratory study on the technical sustainability
of academic software in the Software Engineering field [33]. We analysed 60 static
analysis software projects with the purpose of characterising its technical
sustainability, with respect to publicity (or availability), recognition and life cycle, from
the perspective of the scientist (developer or user) of academic software in the context
of two important software engineering conferences; 40% of the software analysed
either decayed or became lost.

8.2.4 An Introduction to the UK Reproducibility Network
Andrew Stewart137

In this talk, I will provide a brief history and overview of the structure of the UK
Reproducibility Network (UKRN138). I will cover the goals of UKRN’s recently funded
Research England Development Fund bid, the activities that this funding will support
over the next 5 years, and some of the challenges that UK institutions face in
transitioning to a more open and transparent way of conducting research.

The UK Reproducibility Network (UKRN) was launched in March 2019 by Marcus
Munafò (University of Bristol), with activities coordinated by the Steering Group139 and
an Advisory Board140. At its inception, the UKRN brought together several individuals
and pre-existing groups who had become increasingly focused on issues related to
reproducibility, replicability, and transparency in research. Many of the early
interactions took place via social media and revealed the extent to which there were
overlapping concerns across disciplines and institutions around openness in research.

The creation of the UKRN provided a way to bring together those individuals and
groups to work together towards solutions and advocate for cultural change. The main
grassroots activities of the UKRN occur via the local networks, local network leads,
and institutional representatives. Each local network (of which there are currently 63),
many of which are ECR-led, engage in grassroots activities, such as forming Open
Research Working Groups, that cross traditional discipline boundaries and act to
promote the aims of the UKRN at their home institution. These activities can include
setting up ReproducibiliTea journal clubs 141 , RIOT Science Clubs 142 , organising
regional or national workshops and conferences on transparency and reproducibility
in research, organising local training events, and lobbying senior leaders to raise
awareness and promote the importance of openness and transparency in research.
The UKRN’s aims overlap substantially with the aims of the organisations (such as
UKRI – including Research England and numerous individual research councils,

137 Links to a video, slides, and transcript available at - https://wosss.org/wosss21/S3-AndrewStewart
138 https://www.ukrn.org/
139 https://www.ukrn.org/steering-group/
140 https://www.ukrn.org/advisory-board/
141 https://reproducibilitea.org/
142 http://riotscience.co.uk/

53

Wellcome, the Software Sustainability Institute, and Jisc) that form the External
Stakeholder Group143.

In August, Research England confirmed funding for the UKRN project “Growing and
Embedding Open Research in Institutional Practice and Culture” over 5 years,
beginning on September 1st, 2021. This is a substantial and ambitious project with the
overall aim of accelerating the uptake of high-quality open research practices across
the 18 institutional members of the UKRN, and ultimately across the sector. There are
three main workstreams to the project. The first involves working with academic
communities to identify training gaps needed for transparent research practices, the
(iterative) development of new training materials to meet the needs of these
communities, a series of train-the-trainer events, and the curation of pre-existing and
new training materials so that they are freely available to all (and not just to those
institutional members of the UKRN). The second workstream involves developing and
delivering a framework for the evaluation of institutional practice and learning in open
research. Together these first two workstreams will lead to activity in workstream three
which involves sharing effective practice across disciplines and institutions. Crucially,
none of these workstreams assumes a “one size fits all” approach but rather will
operate through collaboration with different research communities (across institutions)
and through an understanding that the definition of “research openness and
transparency” will mean different things in the context of different disciplines and
different research methods.

One of the greatest challenges associated with re-configuring how research is carried
out and reported is in terms of the incentive structures that – at an individual level –
often does little to encourage the adoption of transparent research practices. Critically,
the incentive structure that institutions face also does little to encourage behaviour
change at an institutional level. While individuals can be incentivised to change their
behaviour through the evaluation of their adoption of transparent and open research
practices associated with the processes of hiring, probation, and promotion,
institutions can also be incentivised to change their behaviours. These institutional
incentives are likely to be financial, and so UKRI (in the form of REF) and the individual
research councils have a clear role to play in rewarding institutions that embed
research openness and transparency in their local research environments.

8.3 Discussions

8.3.1 Engaging communities that proactively manage burnout
Neil Chue Hong, Jess Farrell, Jean-Noël Grad, Colin Venters, Carlos Martinez, Kelly
Braghetto

8.3.1.1 Key Points

• Academic leadership need to be aware of software issues
o Working with legacy code can be slow and impact perceived productivity

143 https://www.ukrn.org/stakeholders/

54

§ There is no one tasked with managing code complexity
(refactoring code or improving modularity by separation of
concerns).

o If the focus is solely on publication rather than quality software, quality
will be impacted as it takes time to write sustainable, documented, and
tested code.

o Important and complex features used by key users can make code
bases harder to work with; the time and complexity aspects need to be
acknowledged when estimating new work

o Leaders should look out for burnout, an environment where people can
self-report comfortably about burnout is also vital

o The incentives for writing good code are a work in progress without
sympathetic leadership; the change to where this becomes important
won’t happen.

o Some funders in some countries (e.g., a local funding agency in Sao
Paulo, Brazil) are starting to mandate software be open source; leaders
need to be cognizant of the funder requirement and allow time to make
sure they are met.

• Create an environment which fosters community and support without adding
unrealistic key performance indicators (KPIs)

o Set realistic expectations
o Be aware of the differences of online and in person work and how

burnout might manifest
• Aware communities which allow community leads to identify early signs of

burnout and allow community members to step back when they need to.
• Avoid fragmentation of a community by fostering good communication.

o If different groups have different needs better to work together otherwise
there will now be two systems that need maintaining

8.3.2 The state of research software roles
Hilary Shiue, Peter Doorn, Shoaib Sufi

8.3.2.1 Key Points

Software roles included Research Software Engineering, Data Stewards, Digital
Humanities, and Information Science.

• The Maturity of research software engineering/sustainability is different in
different parts of the world.

• The UK and Europe have more developments in general than the US or other
countries, which is reflected in the job market, available positions in relevant
institutions.

• However, even if there are positions available, it is notable that they are often
project-based, instead of established positions within institutions (although this
is changing)

8.3.3 What should software’s place in the scholarly record be?
Vicky Rampin, Adam Jackson, Carina Haupt

55

Software should be on a par with other research materials and should be with other
research materials.

Software and data are put in different places than articles; this is mainly for practical
and legacy reasons but maybe this needs to be re-visited.

The ability to cite software is getting better (see the adoption of the Citation File Format
(CFF144)). However fundamental questions about what and where to cite software are
still in progress.

Software publications can be seen as a hack to get credit for software, although rather
than writing about software in a normal journal the Journal of Open Source Software
(JOSS145) is a good middle ground as the peer review is on software and the ‘paper’
is a paragraph telling you that the software exists.

There are questions around how effort on software projects is measured and
rewarded. Currently rewarding software is not really established. The way funding
works also is a problem; with innovation supported far more than maintenance.

It is worth considering why software should be included in the scholarly record. There
are two main purposes, recognition, and reproducibility.

Metrics create an incentive not to dilute the recognition people can get.

Software that primarily lives in non-public places, e.g., institutional version control
repositories is quite invisible to the public scholarly record (even if “available on
request”). Licensing tends to be somewhat relaxed around this kind of private
development – and can become a problem when publishing larger software that has
dependencies on this type of software. Making sure software has a licence will clear
up any issues with licence compatibility.

Where code is heavily licence-encumbered or even cannot be distributed as source,
it is still useful to have precise versioning and CHANGELOG summary information
such that at the very least the code's metadata can be included in the scholarly record.

144 https://citation-file-format.github.io/
145 https://joss.theoj.org/

56

9 Sustaining the community and promoting (human) infrastructures
for software sustainability.

This section describes the fourth session of the workshop. This session includes
summaries on mapping people-related activities in the research software community,
humans as infrastructure, ARDC software sustainability efforts in Australia, software
sustainability and the European Open Science Cloud, the German RSE association
and how the Chan Zuckerberg initiative is supporting open source in science.

A panel discussion on research software infrastructure followed the presentations in
this session and the results and comments on them are included in the last section.

9.1 Summaries

9.1.1 The People Roadmap: Mapping people-related initiatives in the research
software community
Michelle Barker146

The People Roadmap is a Research Software Alliance (ReSA147) consultation to map
the landscape of research software community initiatives focused on people-themed
issues, as part of ReSA’s mission is to bring research software communities together
to collaborate on the advancement of the research software ecosystem.

28 organisations, community initiatives and/or projects in the research software
community have been profiled as part of the creation of the People Roadmap, to
facilitate identification and opportunities for accelerating efforts to address major
issues related to personnel challenges. The People Roadmap aims to increase
understanding on how to create an environment where research software personnel
are recognised, have appropriate skill sets and access to inclusive communities, within
policy and infrastructure environments that support their work.

The People Roadmap was conceived in response to the evolution of a range of
research and software areas, including 1) the rise of open science (which includes
open software), 2) increased understanding of the need for advanced digital skills in
the research community (including research software engineering) to achieve the aims
of open science, and 3) the development of the Research Software Engineering
movement to recognise and support the Research Software Engineers who are
responsible for the development and maintenance of a significant amount of research
software.

9.1.2 The fundamental part of software: the human infrastructure
Martin Hammitzsch148

146 Links to a video, slides, and transcript available at - https://wosss.org/wosss21/S4-MichelleBarker
147 https://www.researchsoft.org/
148 Links to a video and transcript available at - https://wosss.org/wosss21/S4-MartinHammitzsch

57

Infrastructures are facilities, services, and installations needed for the functioning of
communities. Whereas facilities and installations can be an array of equipment set up
for use, facilities are also abilities and aptitudes to perform activities and to serve
particular functions. In this regard, services are assistance and help, they are abilities
set up as work and duties done for others. Following these definitions, we look at
different aspects of the fundamental part of research software – the human
infrastructure – and what it takes to ensure its sustainability and thus software
sustainability.

The human infrastructure of research software involves communities, on the one hand,
those having a demand for software, and on the other hand, those meeting these
needs. Ensuring measures that support both necessitates firstly, common policies,
guidelines and procedures that community members can follow; secondly, awareness,
training and exchange that enable community members; thirdly, work capacities that
community members can make use of; and, finally, funding that allows members of
the communities to take advantage of support measures as well as to provide these
support measures.

The measures comprise community building and the sustaining of these communities.
They are manifold and, among others, e.g., involve the elaboration and adoption of
best practices with policies, the passing on of knowledge and skills with training, the
initiation and promotion of collaborations and exchange with hacky hours and
fellowship programs, the giving of advice with consulting, and the implementation of
software with research software engineering.

In some places these measures are implemented in a structured manner and with
success, in other places they depend on the voluntary commitment of individuals and
groups. Sharing resources across wider geographical areas with a coordinated and
structured approach would, however, be advantageous in Europe across the board.
The cooperation between those involved regionally and locally has already established
itself nationally and internationally at the working level. But the collaboration between
European countries in a structured approach seems like the next logical step to
address the shared needs with a coordinated and efficient use of resources.

We will look at some of these aspects from a human infrastructure and community
perspective that is expecting trusted, reliable, and supported infrastructures containing
multi-purpose and tailor-made software for their research work. Finally, we aim to
address unsolved issues in understanding research software as (human)
infrastructure and in managing, implementing, operating, maintaining, and developing
it as such.

9.1.3 What we are doing towards software sustainability
Tom Honeyman149

The Australian Research Data Commons (ARDC150) is a national facility supported by
the federally funded national collaborative research infrastructure strategy (NCRIS)

149 Links to a video and transcript available at - https://wosss.org/wosss21/S4-TomHoneyman
150 https://ardc.edu.au/

58

scheme. In this role the ARDC is a provider or coinvestor in several areas of digital
infrastructure, skills development, and guidance, and has national programs in
storage, compute, data, informatics services, skilled workforce, policy, platforms and
now software.

The software program is a new initiative from the ARDC signalling an interest to move
into research software. The program is operating under a strategic aim to achieve
recognition of research software as a first-class output of research. As part of this
work, a draft "National Agenda for Research Software" was released in June this year
to stimulate discussion amongst partners in action towards this strategic aim, and to
consider what contributions they might make. Based on responses to the draft agenda,
the ARDC is now starting to initiate activities tied to the framework laid out in the
agenda.

The agenda builds on three high level actions to "See, Shape and Sustain Research
Software" which consider:

• (See) the visibility and availability of research software,
• (Shape) the application of software engineering best practice to shape research

software for easiest and broadest meaningful reuse, and
• (Sustain) the maintenance and longevity of relevant research software

infrastructure (including particularly the workforce of maintainers and
developers as a form of soft infrastructure).

To turn these three high level actions into a tractable set of tasks, they are each further
broken down into consideration of the necessary infrastructure, guidance,
communities and advocacy work needed to make them possible, easy, normal and
codified. This gives an overall set of 12 interrelated actions that form the agenda.
Further to this, national stakeholders are characterised and then mapped to these
actions.

The ARDC is considering activities across all 12 actions in the agenda, but the early
focus will be on areas of infrastructure and communities.

We will be considering what is possible under the status quo (i.e., areas of
infrastructure) by commissioning three reports, corresponding to three forms of
infrastructure (informatics infrastructure, software assets as infrastructure, and soft
infrastructure or human capital). The three reports will:

• characterise the national informatics landscape that supports software assets,
• the existence and distribution of Australian supported research software, and
• the existence and distribution of the workforce supporting the development and

maintenance of research software infrastructure.

These three reports will form a baseline measure of our national capacity in research
software.

To drive development and normalisation of best practice, we are looking to build or
support national communities of practice focussing on researchers, support staff, and
career research software engineers. We will also look to seed the development of

59

local, regional, and national communities that bridge the worlds of research and
software engineering.
To ease change, our initial areas of guidance development will focus on easing the
adoption of best practice software publishing and software citation, as well as
socialising and facilitating adoption of the nascent FAIR4RS principles.

Our initial work in advocacy will focus on code availability, but we are anticipating
expanding to include credit for new software, and structures to support maintaining
research software.

9.1.4 Research Software Sustainability in the European Open Science Cloud
(EOSC)
Konstantinos Repanas and Ignacio Blanquer151

The European Open Science Cloud (EOSC 152) aims at providing European
researchers a virtual environment for open access to services to store, share, process
and reuse research data and other research digital objects, such as software.
Scientific software is both a key asset for the reproducibility of science and a research
output that is re-usable to create new knowledge. We present the EOSC initiative and
how research software preservation, reuse and quality enhancement is increasing in
importance and focus, covering the future plans of the EOSC Association Task Forces
and how they will address the sustainability of Research Software.

The presentation will cover first the efforts of the working groups of the EOSC
Executive Board that have now ended their term. The activity in these Working Groups
have produced numerous pieces of work, and the presentation will stress the links to
research software sustainability in the Working Groups of Architecture and Skills and
Training, focusing on the recommendations of the "Scholarly Infrastructures for
Research Software” report in the former and the profile of the Research Software
Engineer in the latter.

We will then cover the EOSC Association and the Infrastructure for Quality Research
Software Task Force, which addresses several key aspects for software sustainability.
We will present the aims and the expected results of this Task Force.

9.1.5 (Inter)National Community Efforts by the German Association of Research
Software Engineers (de-RSE)
Alexander Struck153

The talk provides an overview of past, current and future efforts within the de-RSE
community to create sustainable (human) infrastructure and working environments.
Half a decade ago, first conferences, workshops, calls and national working groups
appeared where focus had shifted from research data to software. The UK RSE

151 Links to a video and transcript available at - https://wosss.org/wosss21/S4-
KonstantinosRepanasAndIgnacioBlanquer
152 https://eosc.eu/
153 Links to a video and transcript available at - https://wosss.org/wosss21/S4-AlexanderStruck

60

conference in 2016154 certainly affected or ignited community efforts abroad. Similar
efforts by German organisations for the Digital Humanities and Natural Sciences155
supported national efforts to gather a community around research software. The
alliance of all German research organisations initiated a working group and later
published well-received guidelines for software aspects. The same year 2016 saw its
first call for funding applications to improve software and infrastructure.

During the following years, conferences and workshops had tracks on software, and a
community started to emerge. Discussions about lobbying for RS-Engineering and
Engineers also led to the foundation of the de-RSE society, and a year later in 2019,
the first (inter)national conference took place with about 200 participants.

The past years also saw workshops on software policy, publishing, licensing. Software
Carpentries received attention. The de-RSE community flourished, as measured in
society members, mailing-list size, and twitter followers. More and more local chapters
appear and effort is spent on international collaboration.

Members of the national community are currently involved in efforts to instantiate a
European Software Sustainability Institute. Several members took part in a larger
DFG-sponsored workshop and published a position paper on our environment. Others
and the speaker are involved in the FAIR4RS WG. There we try to find a usable
definition for research software, how the FAIR principles need to be amended to be
applicable to our software and how we could improve adoption.
Unfortunately, recognition of software as a research result is still lacking as well as
recognition of RSEs as valuable human infrastructure for excellent research. More
work is needed here to initiate changes towards sustainable environments for RS-
Engineers and for the software being written or re-used.

9.1.6 Supporting the creators and maintainers of essential open source software
Carly Strasser156

Most open source software for science is undervalued and lacks funding for
maintenance, growth, development, and community engagement—especially after the
initial phase when it’s linked to original research. The Chan Zuckerberg Initiative's
Essential Open Source Software for Science program 157 supports open source
projects that are important for biomedical research via funding for maintainers,
community development, and software upkeep.

154 https://society-rse.org/events/rse16/
155 Examples include FORGE 2016 - “Future of Reproducible Geoscience Experiments” in Potsdam,
October 2016 and Helmholtz Open Science Workshop “Access to and reuse of scientific software”
November, 2016 -
https://web.archive.org/web/20190926060607/https://www.hzdr.de/db/Cms?pOid=47484&pNid=243
156 Links to a video and transcript available at - https://wosss.org/wosss21/S4-CarlyStrasser
157 https://chanzuckerberg.com/science/programs-resources/open-science/

61

9.2 Panel on research software infrastructure
The panel discussion158 made use of a Mentimeter poll to take the opinions of the
audience into account, to which the panellists (the speakers in Session 4) commented.
About twenty people took part in the Mentimeter voting, although not everybody voted
every time.

Comments: this question was not about the workshop, but about how people
experience the attention for the subjects mentioned in the graph in their work situation.
It is very clear that most voters think the attention for software maintenance,
preservation and reuse is significantly less than for software development and
operation in general. The lack of attention to maintenance is a trend that has been
identified for a long time, and although many initiatives are currently aiming to improve
this situation, the focus is still more on developing new things rather than reusing
existing software and infrastructure.

158 A video of the panel is available -
https://www.youtube.com/watch?v=36_nLoP120c&list=PLXAvKzjdTsrxFqbjWtxHjfJc0RN6jMwZg&ind
ex=29

62

Comments: This question was about norms in the future, 10 years from now. While it
seemed that an International/European SSI, FAIR practices, RSE careers and
curricula exposure for software/data topics all resonated with participants it was
interesting to note the difference in distribution. FAIR practices had the most
responses closer together, there was quite a difference of thought on an
international/European SSI, while RSE careers and curricula exposure had similar
distributions highlighting the majority thought they would be more established
practices although there were still some who thought these were a longshot. This is
an area that needed further investigation, you would have thought that those attending
WoSSS21 would all rate these possibilities highly, but an exploration would help
decide whether respondents did not believe these were the right practices 10 years
from now or whether they deemed them important but the aspiration unrealistic.

63

Comment: Given the previous result, the answer here was intriguing, it’s clear that a
need is seen for a European/international Software Sustainability infrastructure effort,
perhaps this points to it being unrealistic that such an institute will exist 10 years from
now. The reason also needs further investigation; this could be due the lack of belief
that this could happen, all the way to a different model of how this should be done to
the fact that in 10 years such an organisation may have achieved its goal and not be
so relevant anymore. In any case further investigation is warranted into these intriguing
results. One point which should be stressed is the definition of infrastructure for the
purpose of software sustainability; section 9.2 gives further insight on this point.

Comments: Community building, promotion of standards and expertise and advice
were the top three priorities as seen by respondents for any Software Sustainability
Infrastructure. It’s interesting to note that activities related to community building are
ranked at the top, while activities related to coding were seen as the lowest priorities.
Another interesting comment was that “FAIR certification” was perhaps a strong
wording but having tools to validate compliance with FAIR principles automatically
would be useful. Further investigation about how important these tasks to do are would
help establish whether this was a case of prioritisation purely or also importance and
reshaping what an infrastructure would offer.

64

Comments: The highest scoring options included a future European/International
Software Sustainability Infrastructure were an independent organisation such as an
ESFRI or ERIC or an organisation with national members. Looking at the distribution
of scores it’s clear to see that an organisation of national members had most
respondents voting highly for this option whereas there was a stronger difference of
opinion for the independent entity choice. The need for shared ownership of efforts in
this space was highlighted by the lowest score going to bases such an infrastructure
at an existing research data organisation. As an example, the position of DANS is that
data organisations see the importance of such infrastructures existing, even though it
feels that it does not necessarily have the skills to lead it. The key issues around
leadership relate back to the stakeholders for software sustainability: who has
ownership, accountability, and responsibility for software sustainability? A combination
of contributions from research domains (which are most familiar with the tools
themselves) and an overarching body (to aid coordination and consensus building)
could be a good approach.

65

Comments: Raising attention among policy makers was clearly the most popular
option. Other options would be for EOSC to have its own software sustainability and
RSE strands.

Comments: two of the most important initiatives that were mentioned as relevant to
software sustainability were The Carpentries159 and The Turing Way160.

159 https://carpentries.org/
160 https://the-turing-way.netlify.app/

66

Attendees thought that treating software as a first class research output should have
the highest level of priority in how funders can support software sustainability;
reflecting the issue of recognition and the need for change in research culture around
this topic. After this came the need to support the recognition of software related roles
in research and replication of results, highlighting the importance of supporting
Research Software Engineers, Data Stewards and others as being integral to a
healthy research ecosystem. Interestingly, funding infrastructure and training came
after these two and we know how much focus both have amongst the community; this
really highlighted the importance being placed on the two topics which respondents
thought should be the highest priority.

It’s interesting to note that there was an even spread of opinion around industry’s role
in improving software sustainability between helping with professionalisation of
research software, marketing and commercialisation of successful projects and

67

playing no significant role as this is the responsibility of the community. Given that the
first two criteria concern industry playing a part overall, there is a positive feeling about
industry being involved with research software.

68

10 References
1. Chue Hong NP, Katz DS, Barker M, Lamprecht AL, Martinez C, Psomopoulos
FE, et al. FAIR Principles for Research Software (FAIR4RS Principles). 2022 May 24
[cited 2022 Dec 6]; Available from: https://zenodo.org/record/6623556

2. McGovern N. Digital Preservation Management Model Document | Digital
Preservation Management [Internet]. [cited 2022 Nov 28]. Available from:
https://dpworkshop.org/dpm-eng/workshops/management-tools/policy-
framework/model-document.html

3. Internationaler Archivrat, International Council of Archives, editors. ISAD(G):
General international standard archival description; adopted by the Committee on
Descriptive Standards, Stockholm, Sweden, 19-22 Sept. 1999. 2. Ed. Ottawa:
International Council of Archives; 2000. 94 p. (ICA Standards).

4. Hong NPC, Katz DS, Barker M, Lamprecht AL, Martinez C, Psomopoulos FE,
et al. FAIR Principles for Research Software (FAIR4RS Principles). Res Data Alliance
RDA. 2021 Jun;32.

5. Union PO of the E. Scholarly infrastructures for research software : report from
the EOSC Executive Board Working Group (WG) Architecture Task Force (TF) SIRS.
[Internet]. Publications Office of the European Union; 2020 [cited 2020 Dec 15].
Available from: http://op.europa.eu/en/publication-detail/-/publication/145fd0f3-3907-
11eb-b27b-01aa75ed71a1/language-en

6. Wilkinson MD, Dumontier M, Aalbersberg IjJ, Appleton G, Axton M, Baak A, et
al. The FAIR Guiding Principles for scientific data management and stewardship. Sci
Data. 2016 Mar 15;3:160018.

7. Katz DS, Gruenpeter M, Honeyman T. Taking a fresh look at FAIR for research
software. Patterns [Internet]. 2021 Mar 12 [cited 2022 Dec 6];2(3). Available from:
https://www.cell.com/patterns/abstract/S2666-3899(21)00036-2

8. Reiter T, Brooks† PT, Irber† L, Joslin† SEK, Reid† CM, Scott† C, et al.
Streamlining data-intensive biology with workflow systems. GigaScience. 2021 Jan
29;10(1):giaa140.

9. Maier W, Bray S, Beek M van den, Bouvier D, Coraor N, Miladi M, et al. Freely
accessible ready to use global infrastructure for SARS-CoV-2 monitoring [Internet].
bioRxiv; 2021 [cited 2022 Dec 6]. p. 2021.03.25.437046. Available from:
https://www.biorxiv.org/content/10.1101/2021.03.25.437046v1

10. Wratten L, Wilm A, Göke J. Reproducible, scalable, and shareable analysis
pipelines with bioinformatics workflow managers. Nat Methods. 2021
Oct;18(10):1161–8.

11. Goble C, Cohen-Boulakia S, Soiland-Reyes S, Garijo D, Gil Y, Crusoe MR, et
al. FAIR Computational Workflows. Data Intell. 2020 Jan 1;2(1–2):108–21.

69

12. Soiland-Reyes S, Sefton P, Crosas M, Castro LJ, Coppens F, Fernández JM,
et al. Packaging research artefacts with RO-Crate. Data Sci. 2022 Jan 1;5(2):97–138.

13. Crusoe MR, Abeln S, Iosup A, Amstutz P, Chilton J, Tijanić N, et al. Methods
included: standardizing computational reuse and portability with the Common
Workflow Language. Commun ACM. 2022 May 20;65(6):54–63.

14. Khan FZ, Soiland-Reyes S, Sinnott RO, Lonie A, Goble C, Crusoe MR. Sharing
interoperable workflow provenance: A review of best practices and their practical
application in CWLProv. GigaScience [Internet]. 2019 Nov 1 [cited 2019 Nov 4];8(11).
Available from: https://academic.oup.com/gigascience/article/8/11/giz095/5611001

15. Brack P, Crowther P, Soiland-Reyes S, Owen S, Lowe D, Williams AR, et al.
Ten simple rules for making a software tool workflow-ready. PLOS Comput Biol. 2022
Mar 24;18(3):e1009823.

16. Andrio P, Hospital A, Conejero J, Jordá L, Del Pino M, Codo L, et al. BioExcel
Building Blocks, a software library for interoperable biomolecular simulation workflows.
Sci Data. 2019 Sep 10;6(1):169.

17. Borgman CL, Bourne PE. Why it takes a village to manage and share data
[Internet]. arXiv; 2022 [cited 2022 Dec 7]. Available from:
http://arxiv.org/abs/2109.01694

18. Lamprecht AL, Garcia L, Kuzak M, Martinez C, Arcila R, Martin Del Pico E, et
al. Towards FAIR principles for research software. Data Sci. 2019 Jan
1;Preprint(Preprint):1–23.

19. Jiménez RC, Kuzak M, Alhamdoosh M, Barker M, Batut B, Borg M, et al. Four
simple recommendations to encourage best practices in research software [Internet].
F1000Research; 2017 [cited 2022 Dec 7]. Available from:
https://f1000research.com/articles/6-876

20. National Academies of Sciences E, Division H and M, Services B on HC, Policy
B on HS, Health R on G and P, Forum NCP, et al. Enhancing Scientific Reproducibility
in Biomedical Research Through Transparent Reporting [Internet]. National
Academies Press (US); 2020 [cited 2022 Dec 9]. Available from:
https://www.ncbi.nlm.nih.gov/sites/books/NBK555201/

21. Goble C. Better Software, Better Research. IEEE Internet Comput. 2014
Sep;18(5):4–8.

22. Booch G. The Accidental Architecture. IEEE Softw. 2006 May;23(3):9–11.

23. Becker C, Chitchyan R, Duboc L, Easterbrook S, Penzenstadler B, Seyff N, et
al. Sustainability Design and Software: The Karlskrona Manifesto. In: 2015 IEEE/ACM
37th IEEE International Conference on Software Engineering. 2015. p. 467–76.

70

24. Venters C, Lau L, Griffiths M, Holmes V, Ward R, Jay C, et al. The Blind Men
and the Elephant: Towards an Empirical Evaluation Framework for Software
Sustainability. J Open Res Softw. 2014 Jul 9;2(1):e8.

25. Wiese I, Polato I, Pinto G. Naming the Pain in Developing Scientific Software.
IEEE Softw. 2020 Jul;37(4):75–82.

26. Durdik Z, Klatt B, Koziolek H, Krogmann K, Stammel J, Weiss R. Sustainability
guidelines for long-living software systems. In: 2012 28th IEEE International
Conference on Software Maintenance (ICSM). 2012. p. 517–26.

27. Bass L, Clements P, Kazman R. Software Architecture in Practice. 3rd ed.
Addison-Wesley Professional; 2012. 640 p.

28. Software Engineering: Principles and Practice, 3rd Edition | Wiley [Internet].
Wiley.com. [cited 2022 Dec 9]. Available from: https://www.wiley.com/en-
gb/Software+Engineering%3A+Principles+and+Practice%2C+3rd+Edition-p-
9780470031469

29. Northrop L. Modern Trends through an Architecture Lens. Carnegie Mellon
Univ. 2018;54.

30. Salari A, Kiar G, Lewis L, Evans AC, Glatard T. File-based localization of
numerical perturbations in data analysis pipelines. GigaScience. 2020 Dec
2;9(12):giaa106.

31. Ludäscher B. Computational Reproducibility vs Transparency: Is it FAIR
enough? :45.

32. Bechhofer S, Buchan I, De Roure D, Missier P, Ainsworth J, Bhagat J, et al.
Why linked data is not enough for scientists. Future Gener Comput Syst. 2013 Feb
1;29(2):599–611.

33. Costa J, Meirelles P, Chavez C. On the sustainability of academic software: the
case of static analysis tools. In: Proceedings of the XXXII Brazilian Symposium on
Software Engineering [Internet]. New York, NY, USA: Association for Computing
Machinery; 2018 [cited 2022 Sep 29]. p. 202–7. (SBES ’18). Available from:
https://doi.org/10.1145/3266237.3266243

71

11 Appendix A - WoSSS21 Agenda

All times stated were in BST which is UTC+1; the afternoon sessions were timed to
make it easier for those in the Americas to participate, the morning sessions were
timed to make it easier for those in Oceania.

11.1 Session 1
October 6 2021, afternoon - Sustaining software in Cultural Heritage

14:15-14:30 Connect to Zoom & informal time
14:30-14:40 Opening WoSSS21 & Session 1
14:40-14:50 Icebreaker
14:50-14:55 Welcome to WoSSS21
14:55-15:20 Plenary session 1A

• Jessica Farrell - Software Sustainability as Collective Action
• Elena Colón-Marrero - Software Preservation at the Computer History

Museum
15:20-15:25 Break
15:25-15:50 Plenary session 1B

• Otigbu Austine - Preserving our collective documentary heritage in bits,
putting a step forward

• Patricia Falcão - Software Sustainability in the context of Software-based
Art Conservation

15:50-15:55 Break
15:55-16:20 Plenary session 1C

• Morane Gruenpeter - Software as a first class research output in a FAIR
ecosystem

16:20-16:25 Break (5 mins)
16:25-16:35 Introduction to breakout discussions
16:35-17:20 Break-out discussions & note taking
17:20-17:40 Networking
17:40-17:55 Brief report back from breakouts
17:55-18:00 Wrap up and close Session 1

11.2 Session 2
October 7 2021, morning - Open Science & applying the FAIR principles to software

07:45-08:00 Connect to Zoom & informal time
08:00-08:10 Welcome to WoSSS Session 2
08:10-08:20 Icebreaker
08:20-08:45 Plenary session 2A

• Nicolas M. Thiéry - A glimpse at decades of FAIR struggles and practices
in computational mathematics

• Tom Honeyman - FAIR adoption
08:45-08:50 Break
08:50-09:15 Plenary session 2B

• Carole Goble - FAIR Computational Workflows
• Fakhereh (Sarah) Alidoost - Research software and beyond

ESMValTool: a community and FAIR software for evaluations of Earth
system models

72

09:15-09:20 Break
09:20-09:45 Plenary session 2C

• Fotis Psomopoulos - Developing the ELIXIR Software Management Plan
for Life Sciences

• Andy Terrel - The Role of Fiscal Sponsorship in Open Software
09:45-09:50 Break
09:50-10:00 Introduction to breakout discussions
10:00-10:45 Break-out discussions & note taking
10:45-10:50 Break
10:50-11:05 Brief report back from breakouts
11:05-11:25 Networking
11:25-11:35 Wrap up and close Session 2

11.3 Session 3
October 7 2021, afternoon - Human factors and new development in preserving and
sustaining research software

14:15-14:30 Connect to Zoom & informal time
14:30-14:40 Welcome to WoSSS21 Session 3
14:40-14:50 Icebreaker
14:50-15:15 Plenary session 3A

• Emma Irwin - Changing our ways: Making Inclusion a Core Feature
• Colin Venters - The Lost Architectures of Scientific Software and How to

Find Them
15:15-15:20 Break
15:20-15:45 Plenary session 3B

• Vicky Rampin - Software preservation is necessary for reproducibility
• Stian Soiland-Reyes - Reproducibility; Research Objects (RO-Crate)

and Common Workflow Language (CWL)
15:45-15:50 Break
15:50-16:30 Plenary session 3C

• Christina Von Flach Garcia Chavez - On the Sustainability of Academic
Software in Software Engineering (due to COVID-19 was not able to
present)

• Kelly Rosa Braghetto - The FLOSS Competence Center as an Enabler
of High-Quality Open Research Software in Brazil

• Andrew Stewart - An Introduction to the UK Reproducibility Network
16:30-16:35 Break
16:35-16:45 Introduction to breakout discussions
16:45-17:30 Break-out discussions & note taking
17:30-17:40 Networking
17:40-17:55 Brief report back from breakouts
17:55-18:00 Wrap up and close Session 1

11.4 Session 4
October 8 2021, morning - Sustaining the community and promoting (human)
infrastructures for software sustainability

07:45-08:00 Connect to Zoom & informal time
08:00-08:05 Welcome to WoSSS Session 4

73

08:05-08:15 Icebreaker
08:15-08:55 Plenary session 4A

• Michelle Barker - The People Roadmap: Mapping people-related
initiatives in the research software community

• Martin-Hammitzsch - The fundamental part of software: the human
infrastructure

• Tom Honeyman - What we are doing towards software sustainability
08:55-09:00 Break
09:00-09:40 Plenary session 4B

• Konstantinos Repanas and Ignacio Blanquer -
• Research Software Sustainability in the EOSC
• Alexander Struck - (Inter)National Community Efforts by the German

Association of Research Software Engineers (de-RSE)
• Carly Strasser - Supporting the creators and maintainers of essential

open source software
09:40-09:45 Break
09:45-10:45 Panel Q & A
10:45-10:50 Break
10:50-11:05 Networking
11:05-11:15 Wrap up and close Session 4
11:15-11:30 Next steps and close of WoSSS21

74

Last page intentionally left blank.

Photo by Ricardo Gomez Angel on Unsplash

