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Highlights
Mechanochemical strategies deployed
by cancer cells to invade tissues depend
upon different amounts of energy pro-
duction and consumption.

Whereas collective and mesenchymal
migration is bioenergetically demanding,
amoeboid migration is energetically fa-
vorable.

Under conditions of energy deprivation,
invading cancer cells adapt both their cy-
toskeletal activity and metabolism to
save energy and secure migration.
Energy deprivation is a frequent adverse event in tumors that is caused by muta-
tions, malperfusion, hypoxia, and nutrition deficit. The resulting bioenergetic
stress leads to signaling and metabolic adaptation responses in tumor cells, se-
cures survival, and adjusts migration activity. The kinetic responses of cancer
cells to energy deficit were recently identified, including a switch of invasive can-
cer cells to energy-conservative amoeboidmigration and an enhanced capability
for distant metastasis. We review the energy programs employed by different
cancer invasion modes including collective, mesenchymal, and amoeboid mi-
gration, as well as their interconversion in response to energy deprivation, and
we discuss the consequences for metastatic escape. Understanding the energy
requirements of amoeboid and other dissemination strategies offers rationales
for improving therapeutic targeting of metastatic cancer progression.
Recently identified transitions in re-
sponse to oxygen and energy depriva-
tion include collective-to-amoeboid and
mesenchymal-to-amoeboid transitions.

Understanding the crosstalk between
bioenergetic and cell migration pathways
will aid the identification of intervention
points to interferewith tumor cell dissem-
ination and metastasis.
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Cancer invasion and nutrient deprivation
Cancer cell invasion and metastasis result from cytoskeletal activation in tumor cells that initiates
migration and detaches cells from the primary tumor followed by dissemination through interstitial
tissue and across vessel walls [1,2]. As a consequence of migration, tumor cells can spread via
blood and lymphatic vessels to other organs and initiate metastatic regrowth. To migrate through
tissues, tumor cells deploy migration strategies used by other cells during physiological pro-
cesses such as morphogenesis, wound healing, and inflammation. Three distinct but intercon-
vertible migration programs have been identified which differ in cell–cell and cell–matrix
adhesion, cytoskeletal organization, and mechanochemical tissue interactions. Collective
movement (see Glossary) depends on cell–cell adhesion of variable stability and represents an
important migration mode in embryonic morphogenesis, vascular spouting, wound healing,
and cancer cell metastasis [3–5].Mesenchymalmigration of individual cells involves prominent
cell–matrix adhesions, actomyosin contractility, and proteolytic remodeling of the tissue, as
detected in fibroblasts and tumor cells that have undergone the epithelial-to-mesenchymal
transition [6]. Amoeboid migration is mediated by cortical actomyosin contractility, weak cell–
matrix adhesion, and low pericellular proteolysis. This type of movement is mediated by changes
in cell shape as detected in leukocytes, lymphoma cells, and more rarely in solid tumors [7].

During cancer progression, cancer cells must adapt their energy production and consumption to
local conditions of the primary or metastatic tumor microenvironments. Rapidly growing tumors
display high energy demands and consumption of energy carriers ATP and GTP but simulta-
neously suffer from significant local perfusion deficits [8]. The resulting metabolic challenges in-
clude hypoxia and nutrient depletion, as well as an accumulation of cell-derived toxic
metabolites [8,9]. Energy deprivation induces a cascade of adaptation responses in tumor cells
to reduce energy consumption and make use of alternative nutrient sources and metabolic path-
ways so as to avoid cell death [10–12]. In addition, energy deprivation activates programs that in-
duce migration and enable cell escape from perturbed tissue [13,14]. However, whether and by
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Glossary
Actin-binding proteins (ABPs):
mediators of actin filament organization
and dynamics, including elongation
(by formins), branching of actin
networks (by actin-related protein 2/3
complex, Arp2/3), network severing
(cofilin), and disassembly intomonomers
(cofilin).
Actin filaments: flexible and thin
microfilaments formed by the
polymerization and depolymerization of
actin monomers, and which determine
cell adhesion, shape, stability, and
movement.
Adherens junction: the initiator and
stabilizer of cell–cell adhesion; junctions
are composed of cadherin adhesion
receptors, intracellular adaptors
(e.g., β-catenin, α-catenin,
p120-catenin), and actin filaments.
Amoeboid migration: a migration
mode driven by rounded cell shape,
blebbing, or pseudopodal protrusions,
as well as by weak or absent cell–matrix
adhesions.
AMP-activated protein kinase
(AMPK): a central sensor of low
intracellular ATP or high ADP and AMP
levels which responds to energy
deficiency by inhibiting ATP
consumption and securing ATP
production by favoring glycose uptake.
Autophagy: a catabolic process by
which cellular components are
engulfed in autophagosomes,
degraded into sugars, fatty acids, and
amino acids, and recycled to generate
pyruvate and glucose to secure
glycolysis and oxidative phosphorylation
under conditions of energy deprivation.
Blebs: poorly adhesive roundish
membrane protrusions that form
through hydrostatic pressure, contain
cortical actin, and frequently support
amoeboid movement.
Collectivemovement: a motility mode
of groups, sheets, or strands of cells that
preserves cell–cell junctions and
synchronizes their intracellular signaling
and actin dynamics.
Epithelial–mesenchymal transition
(EMT): a multistep activation and
differentiation process by which
epithelial cells achieve mesenchymal
phenotypes, activate migration, and
delay cell-cycle progression.
Fatty acid oxidation: the primary
mitochondrial aerobic pathway of fatty
acid catabolism to acetyl-CoA to
produce proteins, carbohydrates, and
lipids.
which mechanisms energy deprivation causes either arrest, activation, or switching of invasion
programs has been unclear. Recent progress in applying live-cell microscopy in 3D tissue culture
and tumor models in vivo has revealed the astounding adaptability of tumor cell migration pro-
grams in response to hypoxia and/or energy deprivation. As an outcome, an integrated program
consisting of metabolic adaptation, growth control, and plasticity of tumor cell migration towards
an energy-conserving amoeboid escape mode has been identified [15,16].

We summarize here the bioenergetic pathways engaged in cancer cell invasion, the commonal-
ities and differences in energy metabolism in collective, mesenchymal, and amoeboid modes,
and their interconversion in response to energy deprivation. We discuss the adaptation of energy
metabolism in response to oxygen and nutrient deficiency and the resulting adaptation of migra-
tion strategies. Lastly, we highlight conversion to amoeboid dissemination as an integrated pro-
gram that secures both cancer cell dissemination through 3D tissue and survival. Understanding
the shared programs of energymetabolism and invasionmechanisms offers new perspectives for
therapeutic intervention to combat metabolic resilience and metastatic escape.

Cell migration modes and metabolism
In moving cells, energy demands are tightly linked to cytoskeletal activity. ATP consumption
results from actin filament formation, as well as cyclic phosphorylation and dephosphorylation
of regulatory and adaptor proteins. These energy-consuming processes are necessary to build
actin networks, regulate actin filament dynamics, and contract actin filaments by myosin motor
activity [17]. Consequently, together with enzymatic remodeling of extracellular matrix (ECM)
structures, all actin-dependent steps of cell migration, including cell–cell and cell–matrix
adhesion, change of cell shape, cell contraction, and force generation, consume significant
amounts of ATP and GTP [17]. To effectively deliver energy at a subcellular scale to sites where
the cytoskeleton is actively being rearranged, mitochondria and glycolytic enzymes interact
with the actin cytoskeleton to ensure energy production near the site of consumption [18–22].

Actin filament formation and contraction
Actin polymerization into filaments and their turnover are crucial for cell polarization and the formation
of protrusions including lamellipodia, filopodia, focal adhesions, and stress fibers [23]. A large amount
of ATP is consumed by the ATPase activity of actin in building actin filaments frommonomers (Figure
1A). Actin filament formation and actin network dynamics are regulated by actin-binding proteins
(ABPs) [24]. Depending on upstream regulation, including Rho-family GTPases and cooperating
kinases and phosphatases, ATP-consuming actin dynamics extend three protrusion types at the
leading edge with different morphologies, actin organization, and kinetics: lamellipodia, filopodia,
and blebs [24] (Figure 1A). Actin stress fibers and actin filament networks become contracted by
non-muscle myosin II [25] and by ATP-dependent myosin motor activity, and are regulated by
ATP-dependent kinases that control Rho regulatory light-chain (RLC) activity (Figure 1A).

Lamellipodia and filopodia are actin polymerization-driven extensions of the plasma membrane that
require respective branching and bundling of actin filaments and myosin contractility to engage
with the extracellular substrate [24]. Alternatively, blebs initially form when the intracellular hydrostatic
pressure increases and the plasma membrane locally detaches from the actin cortex [26].
Lamellipodia and filopodia depend upon actin turnover, whereas blebs formwithout actin polymeriza-
tion [26]. Consequently, the energy demands incurred by each protrusion typemay differ (Box 1) [24].

Cell–cell adhesion
Adherens junctions support cell–cell adhesion between collectively migrating tumor cells and
mediate tumor cell interaction with stromal fibroblasts and/or macrophages during invasion
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Filopodia: thin, spindle-shaped, and
dynamic actin-rich protrusions at the
leading edge that probe and adhere to
the environment during cell migration.
Glycolysis: a rapidly adaptive metabolic
pathway (100-fold faster than OXPHOS),
which yields 2 moles of ATP per mole of
glucose and can occur under oxygen-
dependent or -independent, aerobic, or
non-aerobic conditions.
Hypoxia-inducible factor 1 (HIF-1): a
central regulator of cell response to
hypoxia, including transcription of genes
involved in glucose metabolism, survival
and release of pro-angiogenic cytokines.
Integrins: adhesion receptors that
connect the actin cytoskeleton to
extracellular ligands through affinity
regulation and clustering, thereby
forming transient extracellular matrix
(ECM) interactions and generating
traction forces required for migration.
Lamellipodia: flat membrane
protrusions at the front of moving cells
which extend by actin network dynamics,
adhesion to substrate by integrins, and
pull the cell forward by myosin II motors.
Macropinocytosis: internalization of
extracellular proteins and necrotic cell
debris (necrocytosis), often followed by
degradation in phagolysosomes.
Mesenchymal migration: a mode of
migration characterized by fibroblast-like
morphology, focalized interactions with
the extracellular matrix (ECM), and
protease-dependent ECM degradation.
Non-musclemyosin II: an actin-binding
protein involved in actin crosslinking and
the contraction of actin filaments.
Oxidative phosphorylation
(OXPHOS): an efficient
energy-producing pathway in
mitochondria that depends on oxygen
and converts glucose via the tricarboxylic
acid (TCA) cycle into ATP (36 ATP per
glucose molecule).
Pentose phosphate pathway: an
alternative pathway of glucose metabolism
that provides metabolites for nucleotide
synthesis, cell survival, and growth,
including NADP and ribose 5-phosphate.
Pseudopodia: actin-rich short-lived
membrane protrusions involved in cell
migration and chemotaxis.
Rho-family GTPases: a family of
signaling G proteins that function as
regulators of cytoskeletal dynamics, cell
polarity, adhesion, and migration.
Stress fibers: parallel bundles of
filamentous actin that are contracted by
myosin II motors in cooperation with
actin-binding proteins (e.g., α-actinin).
[3,27,28]. Cadherins transmit force to the actin and microtubule cytoskeleton through adaptor
molecules and ABPs, and ATP is consumed by upstream regulators including Abelson tyrosine
kinase (Abl), Src, RhoA, and Rac1 [29]. For example, Abl phosphorylates vinculin which then
binds to actin, activates RhoA, and increases actomyosin contractility at cell–cell interactions
[30]. Cadherin mechano-coupling activates metabolic signaling and energy production, including
increased glucose uptake and ATP production [31].

Cell–ECM adhesion
Integrin activation, clustering, and mechano-coupling are mediated by adaptor proteins,
including talin, vinculin, paxillin, filamin A, and α-actinin [32], under the control of ATP-
consuming upstream kinases and phosphatases [33]. In concert, focal adhesion kinase
(FAK), Src-family kinases, integrin-linked kinase (ILK), PAK Ser/Thr kinases, and tyrosine
phosphatases SHP2 [34] and PTP-PEST [35] control integrin engagement, adhesion
turnover, and migration [36]. Integrin interactions with actin filaments and mechano-coupling
further depend on the localized activation of Rac and RhoA and engagement of myosin II in an
ATP-dependent manner [33].

Nucleocytoskeleton connection
The nucleus is the largest and stiffest organelle, which becomes deformed, moved, and mechan-
ically protected in migrating cells by perinuclear actomyosin networks in an ATP-dependent man-
ner [37]. Rho GTPases Cdc42 and RhoA control the nucleo–actin connection by myosin II-
mediated crosslinking and contraction (Figure 1D) [38–40]. Perinuclear actin couples to the nu-
clear envelope via the adaptors nesprin and SUN proteins under the control of Rac1 [41]. ATP
is further necessary to assemble, deform, and disassemble the nuclear lamina consisting of a fil-
amentous network of A/C- and B-type lamins under the control of kinases including protein ki-
nase B (PKB/Akt) [42,43] and Src kinase [44]. Src further regulates nuclear stiffness via
phosphorylation of inner nuclear membrane proteins (e.g., emerin) [45].

Volume regulation
Intracellular water content and cell volume during cell migration are regulated by ion transporters
(e.g., Na+/H+ exchangers, Na+/K+/2Cl− cotransporters) and aquaporins (AQPs) which jointly con-
trol the intracellular water content [46,47]. ATP is consumed by ion channel pump activity and by
phosphorylation to regulate AQP activity regulation through phosphorylation (e.g., the cAMP–
PKA axis) (Figure 1E) [46,48,49]. AQPs cooperate with cytoskeletal proteins and support protru-
sion formation at the leading edge (e.g., AQP-1, -4, and -5) or local shrinkage and detachment at
the cell rear [50].

Proteolytic tissue remodeling
Invasive cells can facilitate their movement through the ECM by its proteolytic degradation
through matrix metalloproteinases (MMPs) and other proteases in an energy-dependent multi-
step process (Figure 1F) [51]. ATP and GTP are consumed for MMP expression, protein folding,
transport of MMP-containing vesicles via microtubules and motor proteins [52], MMP activation
[53], and exocytosis [54]. Cell surface-localized proteolysis depends on the delivery and recycling
of transmembrane proteases (e.g., membrane-type I matrix metalloproteinase, MT1-MMP) as
well as on phosphorylation of the cytoplasmic tail (Figure 1F) [55].

Metabolic pathways fueling cell migration
The metabolic pathways delivering energy for basic cell functions, including cytoskeletal
dynamics and cell movement, depends on intracellular ATP, GTP, NAD(P)H, and flavin adenine
dinucleotide (FADH). In response to energy deprivation, cells upregulate nutrient uptake and
390 Trends in Cell Biology, May 2023, Vol. 33, No. 5
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Figure 1. Energy-consuming processes during migration. Overview (top panel) and individual ATP-consuming steps involved in cell movement (bottom panels, A–
F). (A) Actin–ATP monomers polymerize to filaments. The dynamics of the filaments is controlled by actin-binding proteins, including cofilin, under the control of LIMK and
phosphatases, that are under the control by Rac1. Rac 1 further controls PAK1–Arp2/3 engagement for filament branching. Non-muscle myosin II (NM II) mediates actin
filaments contraction, under the control of MRLC phosphorylation regulated by MLCK and MLCP controlled by Rac1 and RhoA, respectively. (B) ATP consumption is
involved in cadherin adaptor molecules regulation via phosphorylation (e.g., of p120-catenin) under Src kinase control. In response to external forces, E-cadherin
stimulates AMPK signaling. AMPK stimulates increased glucose uptake and its conversion into ATP. AMPK further acts on kinases (Abl) to phosphorylate vinculin and
the RhoA–ROCK–myosin II axis. (C) Integrin activity, clustering, and turnover require energy because they are regulated by cycles of phosphorylation and
dephosphorylation of their cytoplasmatic tail and adaptor proteins. The examples show paxillin phosphorylation by FAK and Src kinases, and filamin A controlled by the

(Figure legend continued at the bottom of the next page.)
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Box 1. Analysis of energy metabolism with single-cell and subcellular resolution

A range of classical methods allow analysis of energy production and consumption in cell populations in bulk culture, in-
cluding detection of oxygen consumption, production of lactate, ATP concentration (luciferase assay), and the rate of ex-
tracellular acidification [139]. However, linking mechanisms of cell migration to cell metabolism is technically challenging
because it depends on coregistering cell migration and energy fluxes in live-cell culture over time followed by image anal-
ysis of individual cells in cell populations to account for interindividual heterogeneity during mixed responses.

At the single-cell level, fluorescent reporters allow detection of the oxidative state of mitochondria (e.g., JC-1 [140]), the
oscillation of glycolysis [141], the ATP:ADP ratio (PercevalHR), glucose uptake (2-NBDG probe), NADH:NAD+ redox state
(Peredox probe), and H2O2 gradients (e.g., HyPer 7) [142]. To link the metabolic state to cytoskeletal action, energy flux
reporting needs to be linked to molecular intervention of defined pathways, and recording of the effects on metabolism
caused by the intervention. For example, inhibition of RhoA reduces the oscillating activity of glycolysis in adherent endo-
thelial cells, indicating that glycolysis fuels RhoA-mediated actomyosin contractility [141]. However, mapping the role of
metabolic pathways for the generation of individual actin-based structures, such as protrusion types or cortical versus
perinuclear actin filaments, and their respective energy needs will require spatially defined live-cell measurements at a sub-
cellular resolution. This will allow reporting locally produced and consumed ATP equivalents or local enzyme activity in met-
abolic pathways. In addition, the coregistration of several metabolic pathways in the same cell is currently limited due to the
spectral overlap of available fluorescent reporters. Thus, in-depth information linking the relative weight and cooperation of
energy pathways to migration modes and individual actin-based structures will require the development of functionally and
spectrally complementary single-cell reporter systems. In addition, combining spectrally unmixed multichannel recordings
of energy states with molecular-based in silicomodeling on ATP consumption will enable predictions of the energy needs
of individual cellular substructures and the changes associated with plasticity responses [49].
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adapt the metabolic pathways (reviewed in [56]). We briefly summarize key metabolic pathways
and their interdependence with cell migration.

Energy production under normal conditions
When oxygen and glucose supply is unperturbed, invading cancer cells balance their energy ho-
meostasis mostly between oxidative phosphorylation (OXPHOS) and glycolysis to maintain
migration activity in response to mechanical and chemical cues in the microenvironment [57].
OXPHOS provides localized energy production to the most energy-demanding regions of the
cell. Mitochondrial trafficking to the leading edge of the cell supports cytoskeletal dynamics,
membrane protrusion, and focal adhesion assembly [19–22]. Localized glycolysis occurs near
sites of cytoskeletal activity and supports migration dynamics by ATP production [58,59]. For ex-
ample, phosphofructokinase-1 (PFK-1), the rate-limiting enzyme of glycolysis, binds to actin in its
active form, thus controlling glycolysis near cytoskeletal activity [17]. Other glycolytic enzymes, in-
cluding aldolase and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), bind to actin fila-
ments as inactive enzymes which, after release, undergo activation near sites of cytoskeletal
dynamics [17]. Under both normal conditions and metabolic deprivation, the bioenergetic func-
tions of OXPHOS and glycolysis are complementary, cooperative, and respond to nutrient avail-
ability [60]. Glycolysis can occur without oxygen involvement but is rapidly adaptive in delivering
ATP, whereas OXPHOS depends upon oxygen availability and constitutively produces high
amounts of ATP [60].

Energy deprivation
Under conditions of metabolic stress, including acidosis, hypoxia, and nutrient deprivation, addi-
tional mechanisms for ATP production become activated, including autophagy, amino acid and
Rac1–PAK1 axis. (D) ATP is engaged in MRCK activity and regulation by the Rho GTPase Cdc42, which leads to myosin contractility around the nucleus. ATP is further
required for the activity of the LINC (linker of nucleoskeleton and cytoskeleton) complex and dynamic actin filaments connecting to the nucleus. For example, Rac1 interacts
with Nesprin-2 to connect the LINC complex to actin. Src-mediated phosphorylation of lamin A causes lamin A disassembly from the inner nuclear lamina. (E) ATP-
dependent phosphorylation and regulation of ion channel pumping into the cytoplasm and aquaporin activity. For example, AQP-2 is phosphorylated by PKA, which is
activated by cAMP. (F) ATP-consuming steps during extracellular matrix (ECM) degradation, including kinesin and dynein-mediated vesicle transport of proteases,
endo/exocytic protease transport, autocatalytic activation of the zymogen, and zymogen cleavage by activating protease. MT1–MMP activity can further be regulated
through LIMK-mediated phosphorylation of the cytoplasmic tail. Figure created with BioRender.com.
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creatine metabolism, and lipid oxidation [61,62]. Within minutes after energy deprivation, cancer
cells can adapt ATP production by activating pathways regulating cell metabolism, including
AMP-activated protein kinase (AMPK), hypoxia-inducible factor (HIF-1), and calpain,
which enable an acute bioenergetic response [63,64]. AMPK stimulates glucose uptake (through
the glucose transporters Glut1 and Glut4) and ATP production through glycolysis [64]. AMPK fur-
ther promotes the use of alternative energy sources, including lipid import into mitochondria for
fatty acid oxidation and autophagy [64]. In addition, AMPK reduces energy expenditure by
inhibiting the mTOR pathway, which delays RNA translation and cell-cycle progression [65].
HIF-1 mediates the transition from oxidative to glycolytic metabolism [66] as well as autophagy
[67] to maintain ATP levels. In response to hypoxia, HIF signaling upregulates the expression of
glycolytic proteins (e.g., GLUT1, PFKFB, lactate dehydrogenase A) [66,68] and inactivates the tri-
carboxylic acid (TCA) cycle [66]. In addition to adapting their energy metabolism, tumor cells fur-
ther broaden the spectrum of sources of rate-limiting metabolites and molecules to fuel the TCA
cycle by degradation products that are typically present in the metabolically perturbed microen-
vironment (Box 2). These include proline from degraded ECM sources [69], amino acids (e.g., glu-
tamine, glutamate) by intracellular biosynthesis or from the extracellular space [70], extracellular
creatine [71], and lactate which is produced by glycolysis in metabolically perturbed tumors
[72]. Extracellular nutrients become internalized via molecular transporters (GLUT1, MCT1,
LAT1), whereas multi-molecular aggregated proteins and lipids as well as cell fragments become
internalized via macropinocytosis [62,73].

The type and extent of adaptation of energy metabolism depend on the severity of oxygen and
energy deprivation, and take place in a cell- and tumor type-dependent manner, to secure intra-
cellular glucose, ATP, and NADPH production for cell survival and migration [56].

Interdependence of energy consumption and migration strategy
Cells can migrate individually, without cell–cell adhesion, or collectively when cell–cell adhesions
are retained [74,75]. The ATP consumption involved in individual or collective migration depends
on the engagement of the adhesive, cytoskeletal, and proteolytic activities, resulting in differing
energy demands.

Collective migration
Collective movement depends on actin dynamics in coordination with cadherin-based cell–cell
adhesion and gap junction intercellular communication, in concert with integrin-mediated
Box 2. Intersection of energy deprivation, metabolic stress, and toxic waste

In the metabolically perturbed tumor microenvironment, adaptations of energy production often coincide with metabolic
stress responses induced by non-toxic and toxic extracellular metabolites and inflammation, as well as stress responses
to therapy. Oxygen deprivation increases the intracellular production of reactive oxygen species (ROS) by mitochondrial
complexes I and III. In addition, extracellular ROS is produced by activated neutrophils and macrophages in the tumor mi-
croenvironment [143]. ROS can oxidize protein thiols, lipids, and DNA, and can directly perturb cell integrity [144] and ac-
tivate pathways of cell adhesion and migration by cysteine oxidation of signaling proteins [e.g., mitogen-activated protein
kinase (MAPK) and NF-kB], ABPs, actin [145] or upstream receptors (e.g., EGFR) [144]. Ultimately, excessive ROS pro-
duction can impair cancer cell migration and survival, and limit metastatic spread [146]. Non-toxic metabolites including
purine nucleotides (e.g., adenosine) can activate G protein-coupled adenosine receptors (ADORAs) which promote cyto-
skeletal activation and invasion, as well as proliferation and angiogenesis [4]. Intracellular and extracellular products which
accumulate in metabolically stressed tissue, including H+, lactate, and ammonia, can perturb the metabolism, viability, and
migration of cells. For example, extracellular acidosis leads to the activation of RhoA, downregulates cell–cell adhesions,
and upregulates MMP expression, ultimately favoring epithelial-to-mesenchymal transition (EMT) and invasive properties
[67]. Lactate, in addition to lowering the extracellular pH, can also act as a signaling metabolite to increase the HIF-1α-de-
pendent hypoxia response leading to proliferation, dissemination, and escape from the immune system mediated by the
lactate-activated G protein-coupled receptor GPR81 [72]. In concert, stress pathways and bioenergetic adaptation medi-
ate integrated metabolic stress responses that favor tumor cell invasion and metastatic escape.
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mechano-coupling to the ECM and proteolytic ECM remodeling [74,76]. Owing to its mechano-
chemical complexity, the energy demands of collective migration in cancer cells are high (Figure 2)
[16,77].

Leader cells directing and paving the way for collective invasion require a higher level of
intracellular ATP/ADP compared to follower cells [77]. High ATP demands may result from
TrendsTrends inin Cell BiologyCell Biology

Figure 2. Interdependence of energy consumption and migration strategy. Collective migration depends on cell–cell adhesion, Rac1-mediated actin dynamics,
Rho-A-mediated contractility, and integrin-mediated extracellular matrix (ECM) adhesion and deformation together with pericellular proteolysis. Because of its molecular
and mechanical complexity, collective migration is energetically costly, particularly for the leader cells that must overcome substrate resistance. Collective-to-amoeboid
transition (CAT) single-cell transition is mediated by the downregulation of intercellular adhesions. Losing cell–cell junctions allows mesenchymal single cells to save
some energy, even though their elongated morphology still requires actin activity at the leading edge, cytoskeletal contractility, ECM adhesion, and proteolysis.
Mesenchymal-to-amoeboid transition (MAT) results from lowering adhesion to the substrate and pericellular proteolysis and variable activity of glycolysis. The
pseudopodal amoeboid mode retains actin-rich protrusions whereas the blebbing mode predominantly relies on Rho-mediated actomyosin contractility. By lowering
most of the ATP-consuming steps of motility, the amoeboid mode seems to minimize the energy demands of migration. The lower panel shows the hypothetical
coupling of migration modes and metabolic reprogramming. Figure created with BioRender.com.
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Rac1-mediated protrusion formation, high activity of integrins, adhesion-regulating kinases,
RhoA-mediated actomyosin contractility, and pericellular proteolysis (e.g., MMP-14 and cathep-
sin B) [78]. Leader cells further depend upon connexin-43-dependent extracellular release of pu-
rine derivatives, including ATP, ADP, and adenosine, which activate the adenosine receptor 1
(ADORA1), Akt, and leader cell function in an autocrine manner [4]. To remove tissue barriers,
leader cells perform MMP-mediated proteolysis and realign ECM structures to create trails of
least resistance [79]. In concert, these mechanical and molecular activities of leader cells result
in high energy demands.

Follower cells maintain actin-based connections with the leader and the neighboring cells through
cadherins [80] and simultaneously generate force transmission via integrins to the ECM substrate
by lateral lamellipodia [3]. They further reinforce cadherin-mediated junctions in response to
pulling forces [81] and contribute to proteolytic ECM degradation [79,82]. Follower cells maintain
moderately reduced ATP levels, possibly because reduced mechanical work is necessary to
move along a path initially built by leader cells [77].

Leader and follower cells are interconvertible. As leader cells invade, their energy gradually de-
pletes, leading to leader–follower cell transition that allows a follower cell to become a new leader
cell [78]. Metabolic shifts, detectable as increased mitochondrial respiration or upregulation of the
glucose transporter 1 (GLUT1), support the energy required during collective migration in both
leader and follower cells [77,83]. Thus, cell positioning and function in moving cell groups are
reflected by differing energy consumption, although the mechanochemical activities and subcel-
lular structures underlying the correlation between metabolic programs and cell positioning dur-
ing collective migration remain to be identified (Box 1).

Individually migrating cells
Depending on the adhesive strength of cell–matrix interaction and the extent of proteolytic re-
modeling of the ECM, individually moving cells deploymesenchymal or amoeboidmigration strat-
egies that have different energy demands. Compared to collective-migrating cells, single cells
lack cell–cell adhesions and cadherin-mediated responses to forces and signals, and accordingly
move with reduced energy demands.

Mesenchymal single cells resemble leader cells during collective migration [6,77], although their en-
ergy demands are lower owing to the lack of cell–cell junctions. ATP consumption secures protrusive
actin polymerization at the leading edge, strong adhesive interaction, spindle-shaped cell extension,
and deformation of ECM by substantial actomyosin contraction (Figure 2) [16,84]. During migration,
mesenchymal cells further remodel the ECM by proteolytic degradation and the deposition of ECM
molecules [6]. The energy demands reflect the amount of actin-mediated cell protrusion and me-
chanical work executed by the cell. For example, lamellipodia and filopodia in moving cancer cells
are disabled after the inhibition of OXPHOSor glucosemetabolism [16]. Furthermore, glucose uptake
and the ATP:ADP ratio (an indicator of energy production) are increasedwhen cells exert force on the
matrix and/or interact with denser matrices [84,85]. Likewise, when confronted with ECM substrates
of high stiffness, moving cells upregulate integrin engagement, F-actin bundling, and stress fiber for-
mation, and concomitantly maintain high levels of glycolysis through tripartite motif-containing protein
21 (TRIM21)-mediated upregulation of PFK-1 [59]. Thus, in mesenchymal cells, adhesion and con-
tractility are coregulated with energy metabolism (Figure 2).

Amoeboid-moving cells develop weak adhesion to the ECM substrate and move via small
pseudopodia or lamellipodia formed by protrusive actin polymerization or bleb-induced hydro-
static pressure towards the front [86,87]. The pseudopodal amoeboid type of migration occurs
Trends in Cell Biology, May 2023, Vol. 33, No. 5 395
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in cells with actin-rich protrusions at the leading edge which generate weak adhesion to the ECM
[88–90]. Amoeboid-moving cancer cells are sustained by low levels of mitochondrial activity, and
are hence considered to be energetically efficient [16,91]. The amoeboid movement relies on
rear-polarized myosin II activity controlled by the Rho–ROCK pathway [92], which drives the ret-
rograde flow of the actin cytoskeletal cortex and generates frictional forces as well as non-
adhesive mechanical intercalation with the substrate [93,94]. Depending on the cell type and
the environmental conditions, amoeboid migration may or may not cause proteolytic modification
of the ECM [95–98]. Although proteolytic activity consumes energy, it creates a path of least re-
sistance that may reduce the need for actin-mediated cell deformation, thus, arguably, resulting in
reduced net energy demands. Actin flow and actomyosin contractility are therefore retained in
amoeboid-moving cells, but energy demands resulting from strong adhesions and force trans-
mission, stress fibers, cell–cell interactions, and proteolytic ECM remodeling are reduced.

Reprogramming of cancer cell invasion by bioenergetic stress
Invading tumor cells, when confronted with metabolic challenges, can undergo a bioenergetic
adaptation response which secures cell survival and persisting migration. Plasticity of invasion
programs can be induced by hypoxia and nutrient deprivation, and result in epithelial-to-
mesenchymal transition (EMT), mesenchymal-to-amoeboid transition, and collective-to-
amoeboid transition [16,99].

Intersection of energy metabolism and migration programs
Bioenergetic programs and mechanisms of invasion are interconnected. In parallel, energy metabo-
lism programs cooperatewith cellular responses tometabolic stress evoked by toxicmetabolic prod-
ucts to secure survival and migration (Box 2). Deprivation of oxygen and/or nutrients can directly
impact on the efficiency and/or mode of cell migration, and the ability of cancer cells to rewire their
metabolism and exploit different energy sources is crucial to sustainmigration. Pharmacological inter-
ferencewith either OXPHOSor glycolysis results in the conversion of collective to single-cell migration
(discussed below) [16]. Hypoxia and HIF signaling support Rho GTPase-mediated actomyosin con-
tractility and cell migration through the activation of glycolysis [100]. Restriction of glutamate availabil-
ity inhibits pseudopodia formation and the migration of tumor cells [101]. Likewise, inhibition of
glutaminase – which catalyzes the hydrolysis of glutamine to glutamate – has been shown to block
the oncogenic transformation induced by at least three different Rho GTPases (Cdc42, Rac1, and
RhoC) in fibroblasts [102], the invasion of cancer and lymphoma cells [102], and the expression
and activity of metalloproteinases (e.g., MMP2 and MMP9) [103].

Whereas adaptive nutrient uptake secures energy fueling for migration activity, autophagy addi-
tionally impacts on the migration machinery directly by degrading proteins involved in cell adhe-
sion and cytoskeletal dynamics. In moving fibroblasts, autophagosomes become polarized
toward the cell front [104], where they degrade Rho guanine nucleotide exchange factors
(e.g., guanine nucleotide exchange factor H1, GEF-H1) [125]. This in turn reduces RhoA activity
and favors mesenchymal migration [125]. Autophagy further degrades cytoskeletal adapter
proteins, including paxillin and talin, leading to disassembly of focal adhesions [105,106,107]
and adherens junction proteins [108], which weakens cell–cell cohesion [109]. In cancer cells, au-
tophagy either inhibits RhoA and migration in 2D culture [110] or activates RhoA and enhances
cell migration through transwell filters [111]; the contribution of autophagy to cancer invasion
may therefore depend on the cell type and migration model. The impact of other energy sources
(e.g., creatine) and macropinocytosis [62,73] remains to be established.

EMT is induced by microenvironmental cytokine and growth factor signaling, as well as by hypoxia,
acidosis, and nutrient deprivation [67,112–114]. By transcriptional control, EMT downregulates cell–
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cell adhesions and includes cell elongation by cytoskeletal reorganization such that cells can detach
from the epithelium andmove individually [115]. This transition enhances invasion as well as changes
in energy consumption and production, including a switch fromOXPHOS to glycolytic energymetab-
olism [114,116]. The degree of EMT and the type ofmetabolic reprogramming are connected. In vitro
and in vivo evidence [117,118], further confirmed by in silicomodeling [119], shows that tumor cells
undergoing partial EMT increase glycolysis levels and reach a hybrid state that has both epithelial and
mesenchymal traits as well as high activity of both glycolysis and OXPHOS. This hybrid state may
give rise to a fully mesenchymal phenotype with decreased glycolytic levels (Figure 2, asterisk) or,
when glycolysis and OXPHOS are both decreased, to a transition into a quiescent mesenchymal-
like state [114]. Additional bioenergetic programs implicated in EMT induction or the maintenance
of EMT include the pentose phosphate pathway to support gluconeogenesis [120], and also pro-
line and glutamine metabolism [69,121].

Amoeboid plasticity
When challenged by metabolic stress, including severe hypoxia or experimental induction of HIF
signaling, collectively invading cancer cells abandon cell–cell interactions and transit to amoeboid
movement, a change termed the 'collective-to-amoeboid transition' [15,122]. This plasticity re-
sponse differs from the EMT because cells deactivate integrin-mediated cell–matrix adhesion
and develop low-adhesion bleb-mediated movement [16]. This adaptation of the mode of migra-
tion depends on activation of the cysteine protease calpain-2 which cleaves talin and thereby
weakens adhesion to ECM [16,123] (Figure 3). The amoeboid transition concurs with repression
of oxidative respiration and glycolysis to very low levels (Figure 2), indicating that amoeboid dis-
semination of cancer cell movement can occur with very low energy consumption [124]. Amoe-
boid plasticity can further be induced when autophagy is inhibited, which leads to RhoA
activation, actomyosin contractility, and rounding of otherwise mesenchymal fibroblastic cells
[125]. Likewise, pharmacologic inhibition of OXPHOS or glycolysis causes both collective-to-
amoeboid and mesenchymal-to-amoeboid transitions in cancer cells [16,126]. After culture in
hypoxia, amoeboid-migrating cytotoxic T cells retain the full capability to accumulate in tumors
TrendsTrends inin Cell BiologyCell Biology

Figure 3. Amoeboid cancer cel
migration: an 'eco-mode'. Hypoxic
stress triggers the collective-to-amoeboid
transition. This switch in migration mode
relies on HIF-1α-mediated activation o
calpain-2, a protease that cleaves Talin-1
and therefore decreases β1-integrin
activity. This weakening of interactions with
the extracellular matrix (ECM) causes ce
rounding and the formation of polarized
membrane blebs. This transition to an
amoeboid and more cost-effective type o
migration might secure cell evasion from
challenging microenvironments. Figure
created with BioRender.com. Abbreviation
LINC complex, linker of nucleoskeleton
and cytoskeleton complex.
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Outstanding questions
How are the programs of energy
production and migration modes
jointly regulated to optimize both
energy demands and cell movement?

Which energy-conserving mechanisms
are relevant for metastatic dissemination
and can be detected in circulating
tumor cells in cancer patients?

Which metabolic vulnerabilities are
particularly suited for molecular
intervention and in which phase
during the metastatic cascade?

Which biomarkers and samples are
best suited to identify and monitor
patient subsets with an adaptive
metabolic stress response?

Which epigenetic alterations result
from short- and/or long-lived
metabolic stress and how do these
alterations affect metastatic programs
including amoeboid behaviors?

How do metabolic stress programs
cooperate with other programs of
cancer progression, including EMT
and stemness?
as well as their antitumor effector functions [127], indicating remarkable metabolic tolerance of
amoeboid movement in leukocytes. Preconditioning of tumor cells by hypoxia is sufficient to
strongly enhance experimental lung metastasis [16,128]. This may indicate that the metabolic
programs are sufficiently sustained during the phase of circulation and impact on early organ col-
onization. However, it remains to be established how long bioenergetic reprogramming remains
active at the metastatic site.

Arguably, resulting from the constitutive lack of adherens junctions and low cell–matrix adhesion,
amoeboid movement may represent an energetically low-demand 'eco-mode' of cell migration
which is maintained by actin flow and hydrostatic regulation, but lacks energy-consuming cell–cell
interactions and occurs with minimal ECM deformation and remodeling [16,129]. Because of its
low mechanical and bioenergetic complexity, amoeboid movement may be particularly suited to
securing evasion from perturbed tissue sites with limited nutrient requirements, and this may increase
cell fitness for enhanced metastasis [7,16,99]. The bioenergetic pathways which support
either integrin-mediated adhesion and actin-based treadmilling or poorly adhesive, ion- and water-
channel-dependent migration modes in 3D environments remain to be clarified [16,49].

Concluding remarks
Understanding the intersection of cancer energy metabolism and adaptive cancer invasion pro-
grams is necessary to categorize the types, plasticity, and vulnerability of cancer metastasis
(see Outstanding questions). Metabolic stress-induced EMT and amoeboid programs may
occur independently or as overlapping programs in favor of local dissemination, intra- and extrav-
asation, and organ colonization [7]. Consequently, discriminating between cell-intrinsic and mi-
croenvironmental mechanisms of amoeboid cancer cell dissemination and metastasis may be
important to tailor suitable interference strategies. Targeting options may include upstream regu-
lators that control migration mode switching, including mechanical stress and cytokine networks
[130,131], as well as metastasis-enhancing pathways engaged by energy deprivation.

Therapeutic interference with the transition to migrationmodes with lowered energy consumption
may (i) reduce the migration speed and cell dissemination through the tissue, and/or (ii) increase
the energy deficit and hence compromise tumor cell survival. Calpain may emerge as a master
regulator of cell migration plasticity in different contexts. Pharmacological inhibition of calpain
and thereby limiting the calpain-mediated release of cancer cells from adhesive interactions
with the ECM, abrogates the metastatic ability of cancer cells in response to hypoxia in experi-
mental metastasis [16]. In addition, interfering with energy uptake and broadening of energy
sourcesmay delay invasion [56]. Pharmacological interference with AMPK, which secures energy
production by glycolysis and other programs during periods of metabolic stress, may reduce the
ability of tumor cells to adapt their metabolism at any step of the stressful metastatic cascade
[64,132]. This is in line with recent in silico simulations which predict that AMPK inhibitors will
only have therapeutic efficacy when tumor cells maintain metabolic stress signaling [132]. Pre-
venting the export of lactate derived from glycolysis, by inhibiting monocarboxylate transporters
(MCTs), limits extracellular lactate as an alternative source of energy, prevents EMT development,
and reduces the efficacy of invasion [72].

Interference with other overlapping pathways supporting tumor cells in both survival and migra-
tion, including the heat-shock response, EMT pathways [e.g., transforming growth factor β
(TGF-β), tumor necrosis factor α (TNF-α), and interleukin 6 (IL-6)], interference with Rho/ROCK
pathways activated in amoeboid movement [133], and targeted reversion of autophagy induction
[134] may allow further sensitization of tumor cells to metabolic stress and thus decrease metas-
tatic escape and metastatic organ colonization [147].
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To identify patient subsets and define personalized targets, biomarkers in liquid biopsies and/or
circulating tumor cells that indicate upregulation of metabolic stress signaling in combination
with a high load of circulating tumor cells may be used to identify engaged metabolic stress pro-
grams in a tumor type- and stage-dependent manner. Biomarkers indicating metabolic stress
may be based on transcriptomic analysis in circulating tumor cells indicative of a metabolically si-
lent state (e.g., AXL, GLUT1), autophagy (e.g., repression of miR-205), and/or hypoxia response
(e.g., HIF-1) [135–137], as well as on metabolomic analysis reflecting the balance of oxidative and
glycolytic programs [137].

Future avenues may include the identification of minimal metabolic deprivation stresses which
can elicit reprogramming of metastasis. Likewise, the duration and mechanisms of persistence
of metabolic stress signaling after evasion from the perturbed microenvironment remain to be
identified, including epigenetic reprogramming involved in EMT and amoeboid programs. Both
elongated and amoeboid-rounded migratory modes can contribute to the EMT spectrum
[7,138], consistent with potentially broad adaptability of both metabolic pathways and migration
strategies in response to nutrient deprivation and stress caused by toxic metabolites. Molecular
intervention in migration programs alone may not suffice to combat metastasis. Instead, com-
bined intervention in pathways supporting migration, cancer cell survival, and, as discussed
here, the response to energy deprivation may require targeting by combined approaches [148].
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