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A vast variety of bacteria, fungi, higher plants, and insects have laccases. Vegetables 

such as cabbage, turnips, potatoes, pears, and apples are examples of plants that contain 

laccases. It can be found in Ascomycetes, Deuteromycetes, and Basidiomycetes, and it 

is very common in white-rot fungi that degrade lignin. Hair coloring with natural 

phenols such gallic acid, catechol, syringaldehyde, etc. uses laccase enzyme. The dyes 

used in laccase-catalyzed dyes well penetrated the hair. The surface morphology of the 

colored hair was unaffected by the coloring process as well. The colored hair also 

displayed a variety of colors that met market demands and shown strong resistance to 

fading after shampooing and pH changes. In the production of lignocellulose-based 

composite materials, such as fiberboard, laccases can be employed to aid in the 

enzymatic attachment of fibers. Moreover, make improvements to the fiber products 

chemical or physical characteristics. Laccases are also used as cleaners in some water 

purification systems, as catalysts in the creation of anti-cancer drugs, and even as 

components in cosmetics.  
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INTRODUCTION

Since they are prevalent in nature, laccase is one 

of the first enzymes that scientists have studied [1]. 

Laccases are 1,4-benzenediol: oxygen oxidoreduc- 

tases (EC 1.10.3.2) that contain copper and are 

present in higher plants and microorganisms [2]. 

They are part of a small class of enzymes known 

as blue copper proteins or blue copper oxidases 

that also includes, among others, plant ascorbate 

oxidase and the mammalian plasma protein 

ceruloplasmin [3]. The enzyme is a type of copper-

containing poly-phenol oxidase that was 

discovered in the exudates of the Japanese lacquer 

tree Rhusvernicifera in 1883 [4] and successively 

was signified as a fungal enzyme [5, 6]. The most 

prevalent organic materials on earth, 

lignocelluloses, are becoming more valuable 

biomass resources because they can be easily 

transformed into a variety of energy-containing 

products and can be utilized as an alternative to 

fossil fuel resources [7]. Its potential to the four-

electron reduction of oxygen to water is often 

combined with the one-electron oxidation of a 
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wide variety of phenolic and non-phenolic 

substrates via laccase-driven catalysis [8]. Due to 

the fact that laccases (EC 1.10.3.2, benzenediol 

oxygen oxydoreductase) are multinuclear copper-

containing enzymes, they are also known as 

“BLUE ENZYMES” [9]. The laccase enzyme (EC 

1.10.3.2) is used in a variety of industrial fields, 

such as the food industry, to improve the 

organoleptic qualities of beverages, and to handle 

waste materials [10]. An enzyme called laccase 

catalyses the oxidation of phenolic substances 

while simultaneously reducing oxygen to water 

[11]. As a “green catalyst,” this enzyme qualifies 

as having a significant industrial potential because 

it just needs “air” to function, releases water and 

the oxidised product, and uses oxygen as a co-

substrate [12]. In general, bacteria are more 

tolerant of a wider range of habitats and develop 

more quickly than fungi [13]. Furthermore, some 

bacterial laccases can be much more robust and 

highly active at high temperatures, high pH, and 

high chloride concentrations in comparison to 

fungal laccases [14]. Both the Bacillus atrophaeus 

and Bacillus pumilu strains produced laccase 

enzymes that could break down or alter lignin and 

help liberate fermentable sugars from 

lignocellulose [15]. The manufacturing medium 

from Pseudomonas aeruginosa performed best 

under the following conditions: 72 hours of 

incubation, 40 °C temperature, pH-7, 2% glucose 

as the carbon source, and 2% peptone as the 

nitrogen source [16]. Azospirillum lipoferum, 

Streptomyces lavendulae, Streptomyces cyaneus, 

and Bacillus subtilis have all produced certain 

bacterial laccases that have been described. At 

high temperatures, high pH levels, high chloride 

concentrations, and other conditions, some 

bacterial laccases can be very active and much 

more stable [17]. 

 

Fig. lignolytic enzymes and its mechanisms for 

degradation of lignocellulosic waste in environment – 

Scientific Figure on ResearchGate. Available from: 

https://www.researchgate.net/figure/Molecular-

structure-and-active-site-of-Laccase_fig1_339369606 

[accessed 12 May, 2023] 

Distribution in the Natural World 

Currently, certain bacterial laccases from 

Azospirilum lipoferum[18], Bacillus subtilis[19], 

Streptomyces lavendulae[20], Streptomyces 

cyaneus[21], and Marinomonas mediterranea[22] 

have also been characterised. Other plant sources 

of laccase include: Rhus succedanea[23-a], Acer 

pseudoplatanus[23-b], Pinus taeda[23-c], Populus 

euramericana[23-d], Liriodendron tulipifera[23-

e], Nicotiana tobacum[23-f], Lolium perenne[23-

g], and Zea mays [23-h].  Laccases have diverse 

roles in fungi, including lignin degradation, 

morphogenesis, fungal-plant-pathogen/host 

interactions, and stress defense [24,25]. There are 

also some reports on laccase activity in bacteria 

[26]. Recently, proteins with characteristics 

typical of laccases have been identified in insects 

[27]. 

Table: Application of several intriguing fungi 

laccases that break down various substances 

Laccases 

source 

Application Reference 

Trametes 

trogii in 

Pichia 

pastoris 

 

Decolorization dyes 

(amaranth, carmoisine, 

cochineal red, sunset 

yellow, blue indigo and 

alizarin red S 

[28] 

Aspergilus 

expressing a 

laccase from 

Myceliophth

Decolorization of 

synthetic dyes 

 

[29, 30, 31] 
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ora 

thermophila 

Trametes 

trogii BAFC 

463 

Trametes 

trogii BAFC 

463 in Pichia 

pastoris 

 

Trametes 

versicolor 

Biodegradation of 

triphenylmethane dyes 

[32] 

Recombinant 

laccase (Lcc 

IIIb) from 

Trametes 

versicolor 

expressed in 

Yarrowia 

lipolytica 

Decolorization of 

pollutant dyes: 

bromocresol purple, 

safranin, malachite 

green, bromothymol 

blue, nigrosine and 

phenol red 

[33] 

P. pastoris 

or A. 

thaliana 

expressing 

Lcc9 from 

Laccaria 

bicolor 

Decolorization of 

triphenylmethane dyes, 

employed in industrial 

dyeing processes 

[34] 

Oudemansiel

la canarii 

Decolorization of 

congo red 

[35] 

Ganoderma 

lucidum E47 

strain 

Decolorizing 

xant,hene, azo and 

triarylmethane dyes 

[36] 

Pleurotus 

ostreatus 

URM 4809 

Decolorization dyes 

used in the textile 

industry 

[37] 

Neosartorya 

fischeri 

Asphaltene oxidation 

and mineralization 

(refractory petroleum 

fraction) 

[38] 

 

Anthracophy

llum discolor 

Degradation of 

polycyclic aromatic 

hydrocarbons (PAH) 

[39] 

Nicotiana 

tabacum 

expressing a 

Phytoremediation of 

phenol content from 

olive mill wastewaters 

[40] 

laccase from 

Pleurotus 

ostreatus 

Trametes 

versicolor 

BAFC 2234 

In vitro oxidation of 

phenol 

[41,42] 

Recombinant 

laccase from 

Trametes 

sanguineus 

in  

Trichoderma 

atroviride 

Degradation of 

xenobiotic compounds 

(phenanthrene and 

benzo[α]pyrene) 

 

Trametes 

villosa 

Bisphenol A (BPA) 

degradation 

[43] 

Coriolopsis 

rigid LPSC 

232 

Detoxification of water 

soluble fraction from 

‘‘alpeorujo” (WSFA) 

[44] 

Pycnoporus 

sanguineus 

CCT-4518 

Laccase removal of 17-

alpha-ethynilestradiol 

(EE2) 

[45] 

Pycnoporus 

sanguineus 

(CS43) 

Degradation of 

emerging endocrine 

disruptor (bisphenol A) 

[46] 

Trametes 

hirsuta 

Degradation of 

chloramphenicol 

(CAP) 

[47] 

Trametes 

versicolor 

Degradation of PhAC: 

diclofenac, 

trimethoprim, 

carbamazepine, and 

sulfamethoxazole 

Chlortetracycline 

(CTC) degradation 

[48, 49] 

 

 

 

 

 

Pycnoporus 

sanguineus 

Degradation of 

estrogens tested 

[50] 

Pleurotus 

ostreatus 

Degradation of 

ciprofloxacin (CIP) 

[51] 

Pycnoporus 

sanguineus 

CS43f 

Degradation of 

endocrine disrupting 

chemicals (EDCs): 

nonylphenol and 

triclosan (a biocide) 

[52] 
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APPLICATIONS OF THE LACCASE 

ENZYME IN DIFFERENT INDUSTRY 

Paper & Pulp Industry 

Replacement of traditional, harmful, chlorine-

based delignification/bleaching techniques is 

urged by environmental concerns. Using 

ligninolytic enzymes to pre-treat wood pulp may 

result in delignification methods that are more 

gentle, cleaner, and considerate of cellulose 

integrity [53]. Laccases have been proposed as a 

way to activate the fiberbound lignin during 

composites manufacturing, producing boards with 

good mechanical properties without the use of 

hazardous synthetic adhesives [54]. According to 

preliminary findings, laccases can graft several 

phenolic acid derivatives onto the fibres of kraft 

pulp [55,56]. 

Cosmetics 

Application of laccase in the beauty industry has 

not gone unnoticed; for instance, laccase-based 

hair colours are less irritating and easier to use than 

current hair dyes because laccases take the role of 

H2O2 as an oxidising ingredient in the dye 

formulation [57,58,59]. Nowadays, Proteins found 

in cosmetic and medical products for skin 

lightening [60]. 

Food Industry 

The capacity of laccases to cross-link biopolymers 

is currently of interest in baking. Thus, the laccase 

from the white-rot fungus Trametes hirsuta 

increased the maximum resistance of dough and 

decreased its extensibility in both flour and gluten 

dough [61]. Applications of laccase include 

bioremediation, beverage processing, ascorbic 

acid measurement, sugar beet pectin gelation, 

baking, and as a biosensor in the food sector. 

However, they recommended greater research into 

laccase production and low-cost immobilisation 

strategies to enhance the industrial application of 

this enzyme [62]. 

Synthetic chemistry 

They have been suggested to have applications in 

the synthesis of complex polymers, 

pharmaceuticals [63,64,65,66,67], and oxidative 

deprotection [68]. Using Suberase® (Novo 

Nordisk A/S, Bagsvaerdt, Denmark), an industrial 

laccase, they recently created phenolic colourants 

[69]. 

Soil bioremediation 

In order to detoxify the munitions residue, laccases 

were able to mediate the coupling of reduced 

2,4,6-trinitrotoluene (TNT) metabolites to an 

organic soil matrix [70]. It was also discovered 

that laccases may breakdown PAHs, which are 

produced by natural oil deposits and the use of 

fossil fuels [71]. Additionally, Trametes modesta 

laccase contributed to the immobilisation of TNT 

breakdown products [72]. 

Nanobiotechnology 

Through controlled deposition and targeted 

adsorption of biomolecules on various surfaces, 

reaching micro and nanoscale order, 

nanotechnology aids in the development of smaller 

and more effective biosensors [73]. Analytical 

applications have included advances in 

bioelectrochemistry, such as biosensors that serve 

as detectors in environmental and clinical analysis 

[74]. Additionally, plant flavonoids [75], 

electroimmunoassay [76], and biosensors for the 

detection of morphine and codeine [77], 

catecholamines [78,79,80] have also been created.  

The creation of extracellular matrix islands that are 

only a few micrometres across, the arrangement of 

which might dictate where the endothelium and 

bovine cells were located [81]. Investigations into 

the non-specific protein adsorption have been 

successful when controlling the nature and density 

of the groups (such as alkys, amides, and alcohols) 

on surfaces constructed with assembled 

monolayers [82]. Laccase from Trametes 

versicolor cross-linked enzyme crystals (CLEC) 

have significant advantages over the soluble 

enzyme for usage in biosensor applications [83].  
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Coriolus versicolor laccase immobilised on self-

assembled monolayers of N-hydroxysuccinimide 

on gold. T. versicolor on glassy carbon electrodes 

was used to achieve nanomolar detection limits for 

the catecholamin neurotransmitters dopamine, 

adrenaline, and norepinephrine using 

ultrasensitive amperometric detection [84]. The 

layer-by-layer method enables the management of 

macromolecular structures down to the nanoscale 

level, producing surfaces with well-defined 

thicknesses [85]. After removing the core, the LbL 

approach has also been utilised to create hollow 

polyelectrolyte capsules [86]. Additionally, 

laccase can be immobilised on the cathode of 

biofuel cells, which could supply power for small 

transmitter systems, for example [87,88]. 

Recently, it has been feasible to recrystallize 

bacterial proteins using flat polyelectrolyte 

multilayers created by the alternate adsorption of 

oppositely charged polyelectrolytes, enabling the 

construction of artificial cell walls [89].  The 

relationship between salt content and pH in hollow 

polyelectrolyte multilayer capsule permeability 

properties [90]. Additionally, the rubella virus has 

been employed to host and activate colloidal 

particles covered with polyelectrolytes and 

phospholipids [91]. 

Textile Industry 

Since laccase is utilised not only to decolorize 

textile effluents as previously mentioned, but also 

to bleach fabrics and even synthesise colours, its 

application in the textile industry is expanding 

quickly [92]. Government regulations governing 

the removal of dyes from industrial effluents are 

getting stricter and stricter, especially in the more 

industrialised countries [93]. Many dyes are 

manufactured from substances that are known to 

cause cancer, like benzidine and other aromatic 

compounds, raising concerns [94]. The majority of 

currently used methods for treating wastewater 

containing dyes are inefficient and expensive 

[95,96]. Because laccase-based procedures have 

the potential to degrade colours with a variety of 

chemical structures [97,98,99], including synthetic 

dyes currently used in industry, they appear to be 

an appealing solution [100]. Two-thirds of the 

market for dyestuffs goes to the textile industry, 

which also uses a significant amount of water and 

chemicals for the wet processing of textiles [101]. 

The chemical makeup of the chemical reagents 

utilised is quite varied, ranging from inorganic 

chemicals to polymers and organic products 

[102,103,104]. With more than 7*10^5 t of 

dyestuff produced annually, there are more than 

100,000 commercially accessible dyes [105,106]. 

Dyes are tough to decolorize because of their 

synthetic origins, which makes them resistant to 

fading when exposed to light, water, and various 

chemicals [107,108]. 

CONCLUSION & FUTURE PERSPECTIVE 

Reversing the human-caused contamination of the 

world’s water resources is today urgently 

necessary. Laccases have the capacity to oxidise 

these molecules and produce less damaging and 

toxic inactive chemicals, making them appear to 

be an efficient biocatalytic instrument. 

Engineering laccases using contemporary methods 

like in vitro evolution and site-directed 

mutagenesis, strengthened by theoretical tools like 

molecular modelling and dynamic simulations, 

among others, can overcome the complex 

composition of contaminated water (high pH 

levels or salt concentrations). For a variety of 

substrates, laccase or laccase-mediator systems do 

offer an alternative to conventional chemical 

oxidants that are also more environmentally 

friendly. One area that needs more research in the 

future is testing the laccase enzyme using different 

hybrid methods. (2) Creation of ideal laccase 

application circumstances, such as pH, 

temperature, matrix composition, and immobilised 

cell size (3) Research on numerous by-products 

made possible by the use of laccase in diverse 

sectors. 
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