# Science Advances

# Supplementary Materials for

# Dissecting the recruitment and self-organization of aSMA-positive fibroblasts in the foreign body response

Maria Parlani et al.

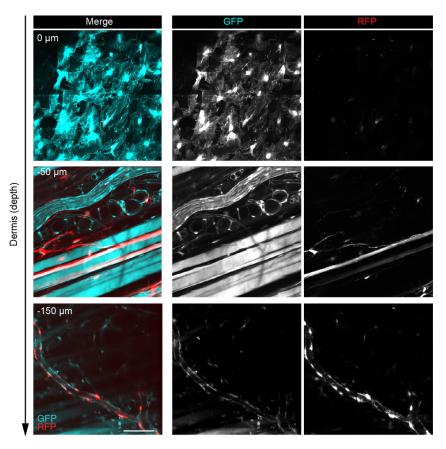
Corresponding author: Eleonora Dondossola, edondossola@mdanderson.org

*Sci. Adv.* **8**, eadd0014 (2022) DOI: 10.1126/sciadv.add0014

### The PDF file includes:

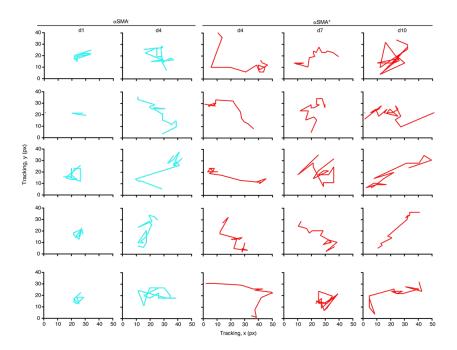
Figs. S1 to S9

# Other Supplementary Material for this manuscript includes the following:


Movies S1 to S3

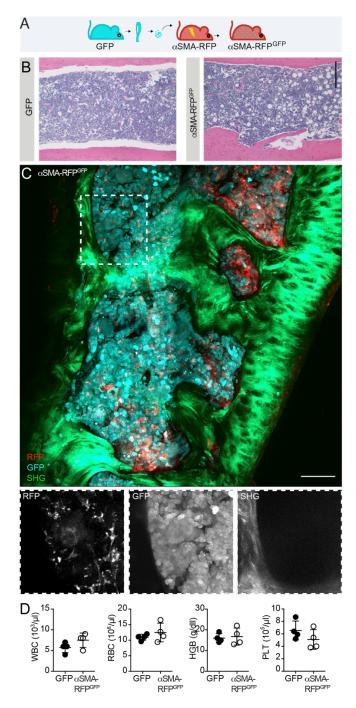
# Supplementary figures

| Mouse<br>model           | Immune<br>cells | Endothelial<br>cells | Fibroblasts/<br>pericytes |
|--------------------------|-----------------|----------------------|---------------------------|
| WT                       | -               | -                    | -                         |
| GFP                      | GFP             | GFP                  | GFP                       |
| αSMA-RFP                 | -               | -                    | αSMA-RFP                  |
| αSMA-RFP/GFP             | GFP             | GFP                  | GFP<br>αSMA-RFP           |
| αSMA-RFP <sup>GFP</sup>  | GFP             | -                    | αSMA-RFP                  |
| αSMA-RFP/<br>GFP(stroma) | -               | GFP                  | GFP<br>αSMA-RFP           |


#### Fig. S1 Legend of the mouse models applied in the study.

Black mouse, C57BL/6 WT mouse, without any fluorescent cell; Cyan mouse, C57BL/6 UBC-GFP mouse, expressing GFP in each cell; Red mouse, C57BL/6 (Acta2-RFP)1Rkl/J mouse, expressing RFP in all the cells which produce  $\alpha$ SMA (activated fibroblasts and pericytes); Cyan mouse with red stripes,  $\alpha$ SMA-RFP/GFP mouse, expressing GFP in each cell and RFP in every cell expressing  $\alpha$ SMA; Red mouse with cyan dots,  $\alpha$ SMA-RFP<sup>GFP</sup> mouse, showing GFP+ immune cells and RFP+ activated fibroblasts; Cyan mouse with red stripes and black dots,  $\alpha$ SMA-RFP/GFP(stroma) mouse, showing non-immune GFP+ and RFP+ activated  $\alpha$ SMA+ stromal cells.




#### Fig. S2 Intravital imaging of implantation site in an aSMA-RFP/GFP(stroma) mouse.

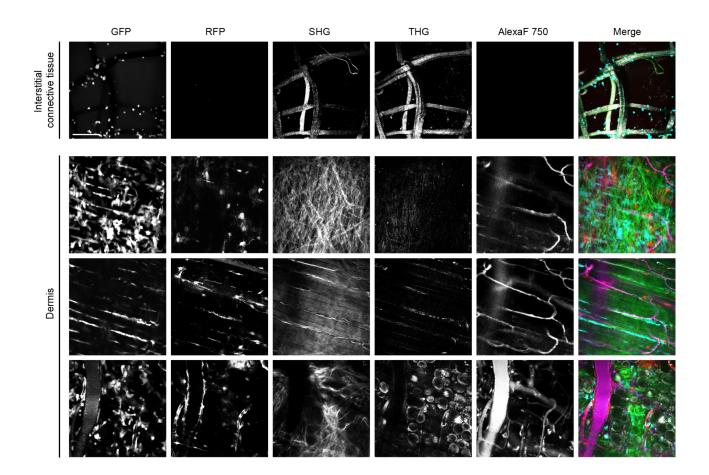
Merged multiparameter and single-channel representations of GFP<sup>+</sup> cells (cyan) and RFP<sup>+</sup> cells (red) of three different layers of the dermis at the implantation site. Upper fascia (0 $\mu$ m of depth) showing GFP<sup>+</sup> inactive fibroblasts; Panniculus carnosus (-50 $\mu$ m of depth) showing GFP<sup>+</sup> nerves, adipocytes, and muscle fibers, together with RFP<sup>+</sup> muscle fibers, and activated fibroblasts; Subcutis (-150 $\mu$ m of depth) showing RFP<sup>+</sup> pericytes and GFP<sup>+</sup> endothelial cells around vessels. Scale bar, 100  $\mu$ m.



# Fig. S3 Cell tracks.

XY plots representing examples of tracks of non-activated and activated fibroblasts monitored by time-lapse multiphoton microscopy at different time points (day 1, 4, 7, and 10).




#### Fig. S4 Generation of a dual-color aSMA-RFPGFP mouse through bone marrow transplant.

A, Schematic representation of the bone marrow transplant procedure resulting in a mouse with GFP+ bone marrow-derived immune cells and RFP+ myofibroblasts (αSMA-RFP<sup>GFP</sup>).

B, H&E staining of a C57BL/6 GFP mouse bone marrow (left) and of an αSMA-RFP<sup>GFP</sup> transplanted mouse (right). Scale bar, 100 μm.

C, Immunofluorescence analysis of a bone from a  $\alpha$ SMA-RFP<sup>GFP</sup> mouse. Overview with merged channels. Dashed box, inset; insets show single channels. Scale bar, 50  $\mu$ m.

D, Circulating white blood cells (WBC), red blood cells (RBC), hemoglobin (HGB), hematocrit (HCT) and platelets (PLT) as monitored 30 days post-bone marrow transplant. Mean  $\pm$  SD. No significant differences were identified by unpaired two-tailed Student's t-test.



#### Fig. S5 Intravital imaging of PCL implant site in aSMA-RFP/GFP mouse.

A, B, 3D reconstruction of the implantation site up to 300  $\mu$ m deep from the cover glass of the chamber was performed (the depth of imaging in relation to the position of the cover-glass is shown on the right). Merged and single-channel representations of the scaffold 1-day post-implantation (A) Upper fascia, panniculus carnosus and subcutis underlying the scaffold (B). GFP-positive cells (cyan); RFP-positive cells (red); collagen and scaffold, SHG (green); scaffold, THG (grey); vessels, Alexa Fluor 750 (magenta). Scale bar, 100  $\mu$ m.

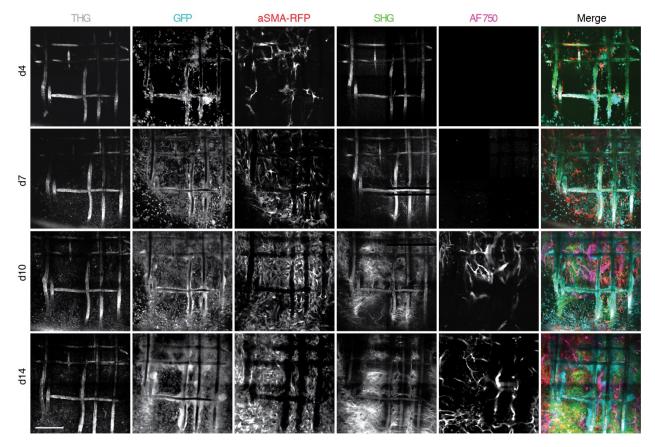
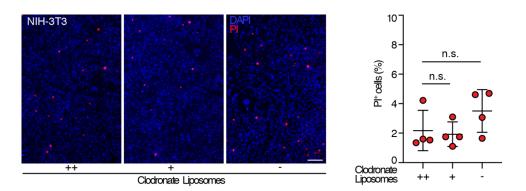




Fig. S6 Longitudinal intravital imaging of FBR at days 4, 7, 14 and 21 performed for the same lesion and subregion.

Extended version of Fig. 3A. Single-channel representations of scaffold fiber (THG), GFP-positive infiltrate cells, RFP-positive cells, SHG, detecting PCL fibers and fibrillar collagen and dextran-positive blood vessels. Merged multiparameter images on the right. Scale bar, 100µm.



#### Fig. S7 Effect of clodronate liposomes on fibroblasts, in vitro.

Total nuclei (Hoechst) and dead cell (propidium iodide, PI) staining of NIH-3T3 cells treated with two different doses of clodronate liposomes (1:100, ++; 1:200, +) versus control-treated cells. Scale bar, 100µm; n.s., non-significant difference based on one-way analysis of variance followed by Tukey's HSD post hoc test.

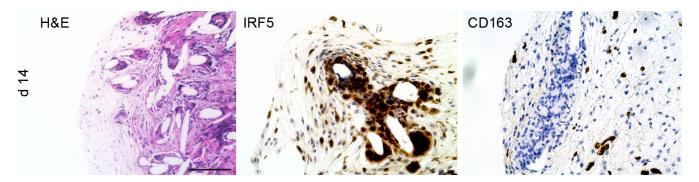



Fig. S8 Characterization of the PCL elicited FBR by histology.

Histology, (H&E staining) and IRF5 and CD163 expression detected by immunohistochemistry of the FBR in response to the PCL scaffold implantation 14 days post-implantation. Scale bar, 100µm.

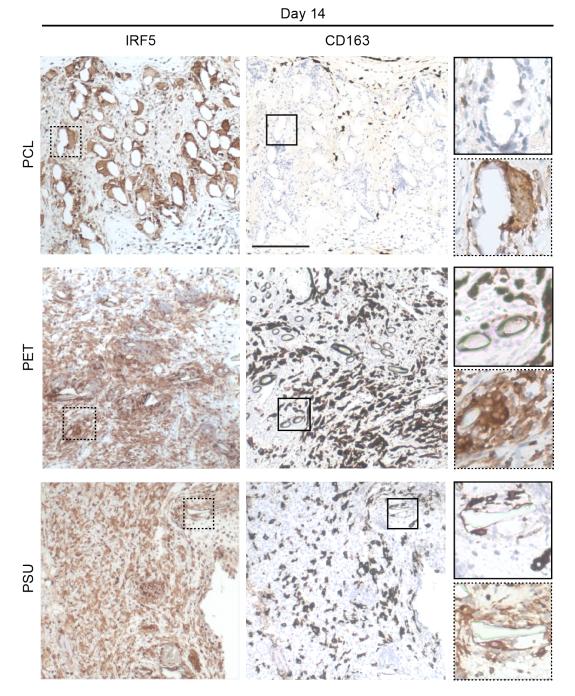



Fig. S9 M1 and M2 macrophages polarization around the three biomaterials fibers over time. IRF5 and CD163 expression detected by immunohistochemistry at day 14 post-implantation. Box, inset; inset, magnifications. n=3 scaffolds/group. Scale bar, 100  $\mu$ m.

#### **Supplementary movies**

**Supplementary Movie 1. Examination of aSMA negative and positive fibroblasts speed through iMPM.** The region shows part of the edge of the scaffold and part of the implant-free dermis, 4 days after the surgery. Cyan, GFP<sup>+</sup> cells; red, RFP<sup>+</sup> cells. Time interval, 7 min; total time-lapse duration, 3 hours.

**Supplementary Movie 2.** Detail of an αSMA<sup>+</sup> fibroblast in a region close to the scaffold implantation site 4 days after surgery monitored by iMPM. Time interval between frames, 7 min; total time-lapse duration, 3 hours.

**Supplementary Movie 3.** Detail of an αSMA- fibroblast in a region close to the scaffold implantation site 4 days after surgery monitored by iMPM. Time interval between frames, 7 min; total time-lapse duration, 3 hours.