
Citation: Psychogyios, K.;

Velivassaki, T.-H.; Bourou, S.;

Voulkidis, A.; Skias, D.; Zahariadis, T.

GAN-Driven Data Poisoning Attacks

and Their Mitigation in Federated

Learning Systems. Electronics 2023,

12, 1805. https://doi.org/10.3390/

electronics12081805

Academic Editors: Charalabos

Skianis, Philippe Krief, Enric Pages

Montanera and John Soldatos

Received: 14 March 2023

Revised: 6 April 2023

Accepted: 9 April 2023

Published: 11 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

GAN-Driven Data Poisoning Attacks and Their Mitigation in
Federated Learning Systems
Konstantinos Psychogyios 1,* , Terpsichori-Helen Velivassaki 1 , Stavroula Bourou 1 , Artemis Voulkidis 1 ,
Dimitrios Skias 2 and Theodore Zahariadis 1,3

1 Synelixis Solutions S.A., GR34100 Chalkida, Greece; terpsi@synelixis.com (T.-H.V.); zahariad@uoa.gr (T.Z.)
2 Netcompany-Intrasoft S.A., GR19002 Paiania, Greece; dimitrios.skias@netcompany-intrasoft.com
3 General Department, National and Kapodistrian University of Athens, GR15772 Athens, Greece
* Correspondence: psychogios@synelixis.com

Abstract: Federated learning (FL) is an emerging machine learning technique where machine learning
models are trained in a decentralized manner. The main advantage of this approach is the data
privacy it provides because the data are not processed in a centralized device. Moreover, the local
client models are aggregated on a server, resulting in a global model that has accumulated knowledge
from all the different clients. This approach, however, is vulnerable to attacks because clients can be
malicious or malicious actors may interfere within the network. In the first case, these types of attacks
may refer to data or model poisoning attacks where the data or model parameters, respectively,
may be altered. In this paper, we investigate the data poisoning attacks and, more specifically, the
label-flipping case within a federated learning system. For an image classification task, we introduce
two variants of data poisoning attacks, namely model degradation and targeted label attacks. These
attacks are based on synthetic images generated by a generative adversarial network (GAN). This
network is trained jointly by the malicious clients using a concatenated malicious dataset. Due
to dataset sample limitations, the architecture and learning procedure of the GAN are adjusted
accordingly. Through the experiments, we demonstrate that these types of attacks are effective in
achieving their task and managing to fool common federated defenses (stealth). We also propose
a mechanism to mitigate these attacks based on clean label training on the server side. In more
detail, we see that the model degradation attack causes an accuracy degradation of up to 25%, while
common defenses can only alleviate this for a percentage of ∼5%. Similarly, the targeted label attack
results in a misclassification of 56% compared to 2.5% when no attack takes place. Moreover, our
proposed defense mechanism is able to mitigate these attacks.

Keywords: machine learning; federated learning; generative adversarial networks; data poisoning;
label flipping

1. Introduction

Nowadays, machine learning is used to enhance many industrial and professional
processes [1–8]. Such applications leverage image classification/processing [9–11] or regres-
sion models deployed in real-world scenarios with a real and immediate impact. However,
these models, and especially deep learning models, require vast amounts of data to properly
train. In most cases, the required data are collected from different locations and are thus
independent from each other. An indicative example comes from electronic health record
(EHR) patient-level data gathered from different hospitals referring to patients of different
nationalities, socioeconomic status, etc. A common approach is to process the aggregated
data in a centralized manner on a single server or device. Nevertheless, privacy concerns
may arise with this approach, which may not comply with the existing data protection
laws, such as the General Data Protection Regulation (GDPR) [12], increasing the demand
for alternative decentralized solutions.
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The FL approach [13] is a prominent solution to such concerns. This approach has been
adopted by a number of industries, such as defense, IoT, and pharmaceutics [14–16]. Client
data are kept confidential, because local models are trained individually on the customer’s
premises and only the model parameters are sent to a central server. Model aggregation
applied on the central server derives the global model, which is shared among a number
of clients in contrast to the centralized training case. The most common aggregation
algorithm applies simple averaging, introduced as FedAvg [17]. In such a scenario, the
global model encapsulates the knowledge gained from each client individually, without
disclosing private data.

Even though this approach is appealing and addresses the issue of data privacy in the
general case, there are still limitations concerning the system’s security [18,19]. Specifically,
because the clients fully control their data and the model they receive, they have the ability
to alter each of these components, namely changing the model parameters (weights and
biases) and altering data labels, for instance, by injecting fake data. Moreover, because the
local and global models are exchanged through the network, adversaries could intercept
communications and perform inference attacks [20], obtaining sensitive information. Conse-
quently, a compromised client can intervene in the learning process of the federated system
and perform malicious actions, such as pattern injection and model degradation [21,22].
These attacks can be data poisoning or model poisoning when private data or model param-
eters are altered, respectively [23,24]. In a smart agriculture scenario involving grapevine
image classification, it is possible for a malicious actor to manipulate the labels assigned
to the grapevine images, which could result in the misclassification of a particular class
by the global model. The consequences of such tampering could be severe as it could
lead to incorrect conclusions about the crops’ health or status. These could in turn drive
inappropriate management actions related to the irrigation or spraying processes, which
could ultimately damage the crops. Additional effective security tools and mechanisms are
thus needed to protect federated systems from data and model poisoning attacks. Recent
research has been focused on developing variations of the aggregation algorithm that are
tolerant to the appearance of malicious participants [25–27]. Such approaches include
mean aggregation, trimmed mean aggregation [28,29], etc. These techniques rely on the
assumption that model updates originating from malicious participants differ significantly
from those from benign clients. Thus, by using distance-based algorithms, the poisoned
parameters could be detected and excluded from the aggregation process.

GANs are neural networks that train in an adversarial way and were introduced
primarily for the task of image generation. Although they have since been tailored to
many different scenarios, image generation is still an area of active research where new
architectures and techniques are employed for tasks, such as person generation, high-
resolution image generation, etc. [30,31]. Within federated systems, GANs [32] have been
used for either benign [33] or malicious reasons [34]. Regarding the first, the global model
can be a GAN trained for the task of image generation in a federated manner. For the latter,
the global model could be used as the discriminator by a malicious user to create a GAN
model. This model could then be used to generate samples that belong to benign clients
and formulate an inference attack. A major disadvantage of this assault is that the attack
can only commence after the global model has been trained for a specific number of rounds.
Furthermore, conventional label-flipping attacks involve modifying the original images.

In this paper, we introduce two data poisoning attacks aimed at an image classification
task in a federated learning system. The image classification is performed on a grapevine
dataset that has common types of grape diseases (e.g., Esca). These poisoning attacks are
based on images generated by a GAN and are altered to fit the goal of each attack. The
GAN was trained on malicious clients’ data, which are very limited. Therefore, different
alterations to the vanilla GAN architecture empirically prove to solve the issue of a limited
database. In more detail, we create two label-flipping attacks: (a) one with the goal of global
model accuracy degradation and (b) one with the goal of target label misclassification. In
contrast to earlier studies, this assault can be launched right from the initial federated
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round and does not necessitate any modifications to the current dataset. We experiment
with different numbers of clients and show that these attacks are able to achieve their
objective in a vanilla federated environment together with stealth. Moreover, we also test
these attacks against some common federated defenses and show that these are unable to
mitigate them. To remedy this, we introduce a simple yet effective technique that operates
on the server side. Our contributions can be summarized as follows:

• We train a GAN on limited image data and introduce appropriate modifications.
• We generate attacks based on label flipping that target a global classification model.
• We show that label-flipping attacks are successful with a limited number of malicious

participants and can be initiated from the first federated round.
• We show that commonly used approaches fail to identify the poisoned updates.
• We propose a moderation technique to mitigate these types of backdoor attacks.

The rest of this paper is organized as follows. In Section 2, the related work on label-
flipping attacks and federated learning defenses is presented. In Section 3, the federated
training scenario as well as the adversary’s goals and capabilities are defined. Section 4
describes the end-to-end approach of the federated scenario. The experiments evaluating
the performance of each component of the process are presented in Section 5. Finally,
Section 6 draws conclusions and outlines future work directions.

2. Related Work

Federated systems, are prone to a number of attacks, each falling into a category such
as backdoor, label-flipping attacks, etc. [35–38]. To remedy this, different defenses have
been introduced against these attacks, mainly regarding the aggregation process on the
centralized device [39–43]. These two areas of research complement each other and jointly
push the boundaries of federated learning further. On the one hand, new and successful
attacks motivate the researchers to create updated and robust defenses. On the other hand,
researchers are constantly trying to find vulnerabilities in state-of-the-art defense methods
with the intent of making federated learning secure. In recent studies, GANs have been
utilized for inference attacks through image generation, which is an area of intense research.

2.1. Label-Flipping Attacks

These types of attacks have been shown to be successful against federated systems, achiev-
ing both stealth and model misclassification with or without overall accuracy degradation.

Xiao et al. [44] tested two label-flipping attacks against support vector machines
(SVM), namely the uniform random flip and distance from hyperplane-based flip. The
tests conducted on ten real-world datasets show that the error rate increases as the number
of flips increases. It is also noted that the first attack mentioned above is less effective
compared to the second one.

Tolpegin et al. [23] tested label-flipping attacks within a federated system using two
datasets, namely CIFAR-10 [45] and F-MNIST [46]. With these datasets, they tested various
label-flipping scenarios, each tailored to a specific dataset. For example, in the F-MNIST
case, the “shirt” label is changed to “t-shirt”. Through the experiments, they demonstrated
that label-flipping attacks are effective against federated learning systems, causing global
model accuracy degradation, and that targeted poisoning impacts can be achieved.

Zhang et al. [47] trained a GAN model with the global model as the discriminator.
They subsequently used this GAN to produce a poisoned dataset with custom fake labels for
the malicious client. Before sending the updates, these are scaled to maximize the malicious
impact. To test these attacks, the datasets Cifar-10 and F-MNIST were employed. The
experimental evaluation proved this attack is effective in compromising the global model.

Xiao et al. [48] introduced a Sybil-based collusion attack scheme. In their work, the
malicious clients colluded to launch successful label-flipping attacks that affect the global
model. To evaluate their attack, they monitored the global model accuracy, attack success
rate, and source class accuracy, where the source is the targeted label. Moreover, the
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datasets used for this purpose were F-MNIST and CIFAR-10. The results showed that the
attack is successful and competitive against the state-of-the-art alternatives.

2.2. Federated Defenses

To mitigate the effect of model and data poisoning attacks, many defenses have been
proposed that enhance the aggregation rule.

Median aggregation [28] is an aggregation method that selects the median value for
each model parameter instead of the average. Each parameter is sorted, and subsequently
the median value is selected. In the original paper, the authors showed that this method
achieves the optimal rate for strongly convex quadratic losses. It is noted that this approach
is strong, and because malicious model updates differ from the benign ones, a poisoned
parameter is not frequently selected. However, because only one parameter is selected each
time, there is substantial information loss.

Trimmed mean aggregation [29] is an aggregation method that also treats each param-
eter separately. Here, each parameter was sorted, and subsequently the top and bottom n
instances were removed. At last, the remaining values were averaged. It is obvious that
this method is sensitive to the parameter n because a smaller n may fail to include all the
malicious nodes and a larger n may remove many benign nodes, negatively affecting the
performance of the model.

Krum aggregation [29] is yet another aggregation method that filters model parameters
based on distance. More specifically, for each model, the sum of squared distances to its
closest n-f neighbors was calculated. Consequently, the choice of model was made based
on the minimization of this distance. The authors also showed that this method achieves
O(n2 × d) complexity, which is linear to the dimension of the gradient.

Bulyan [49] showed an improved aggregation rule based on Krum and the trimmed
mean. Firstly, Krum was applied iteratively to select N models. Subsequently, the trimmed
mean was applied to each parameter as described above. We can see that this method
is more sophisticated compared to Krum but requires substantially more computational
power because it applies Krum multiple times.

2.3. Image Generation with GANs

GANs were originally introduced by Ian Goodfellow et al. [32] for the task of image
generation. Since then, many improvements have been made to the original architecture
and training procedure, as the original networks proved to be unstable.

Radford et al. [50] proposed a new architecture of GANs with specific constraints that
make the training procedure more stable. The architecture utilized convolutional layers,
which proved to be effective with image data. The validation results showed that this
method is effective and can produce accurate results for many benchmark image datasets.

Arjovsky et al. [51] proposed a new loss function for GANs with constraints, namely
the “Wasserstein distance” and weight clipping. The main goal was to overcome common
learning stability problems, such as mode collapse [52]. The experimental results were
sound and proved that this approach is more stable compared to previous methods [32].

Kodali et al. [53] proposed a new gradient penalty scheme called DRAGAN. It was
proposed as an alternative to the weight clipping method introduced in the Wasserstein-
GAN, which is not an optimal way to enforce constraints on the network. The experiments
validated that this approach is promising, achieving a higher inception score compared to
previous works.

Jin et al. [54] proposed a residual GAN for the task of plant leaf image generation,
where the generator has a U-Net architecture. The main goal was to augment the dataset
through image synthesis and achieve better post-synthesis classification results. The
validation results indicated that this method indeed enhances the dataset, yielding more
accurate classification results compared to other methods.
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2.4. Related Work Review Findings

From the aforementioned research works, we can see that in many cases label-flipping
attacks happen by changing the labels of the malicious clients’ datasets. This is not always
possible, because in many cases an adversary may infiltrate a client, but altering the dataset
is impossible. The reasons for this lie in dataset protection, which may reveal the identity
or activity of the adversary, or in the partial control of the adversary over the client node.
Moreover, in other works employing a GAN for data poisoning in a federated system [47],
the global model is chosen as the discriminator. In such a scenario, the global model must
be trained first (possibly for many federated rounds) within the federated process before it
can successfully fit the role of a local discriminator. Thus, the attacker may have to wait
for an arbitrary amount of time before the attack is ready to be launched. It is also noted
that the selection of the aggregation algorithm may significantly affect the robustness of
the FL system against cyber-attacks. Indicatively, in [47], the vanilla federated average
algorithm was chosen, which proved to be vulnerable, so an attack incident is more likely
to be successful.

Additionally, previous works using a GAN for image synthesis utilize the whole
PlantVillage dataset to generate new leaf images which is an easier scenario because most
GANs fail when the dataset is small. For these reasons, we conclude that our approach
contributes to advancing the relevant state-of-the-art solutions because we (a) modify
the GAN training procedure and architecture to fit the scenario of limited available data;
(b) launch an attack from the first federated round; (c) surpass many common defenses by
enforcing stealth; (d) do not interfere with the poisoned client’s original dataset, and instead
create a new dataset with an enhancing rather than a substituting role; and (e) propose a
server-side mitigation for these attacks.

3. Threat Model

Here, we introduce a detailed threat model for label-flipping attacks in federated
systems as well as the federated task where the attacker operates.

3.1. Training Scenario

In normal operation, the task at hand is grapevine image classification where the
classes are either diseased or healthy. Each client has a proportion of the complete dataset
(a similar number of samples for each client), and a global convolutional neural network
(CNN) is trained in a federated manner. Clients have images of all classes, and each local
data distribution resembles the distribution of the complete dataset. Moreover, we consider
that the server has a small set of clean-label images of all four classes.

3.2. Attacker’s Training Interference

We assume the malicious attacker has control of N compromised clients. In this way,
the malicious participants’ training can be performed jointly or individually. Furthermore,
the malicious clients participate in the learning process from the beginning. We also assume
that the malicious attacker may enhance each compromised client’s dataset by adding
samples. The additional data used to generate attacks are derived from a GAN trained only
on the malicious clients’ datasets. The generated images combined with the existing dataset
cannot exceed the number of the already existing images in each benign client by a large
margin because the training time of each client (benign or malicious) must be roughly the
same. This additional constraint allows malicious nodes to be less distinguishable from the
benign ones, which would not be possible with large differences between the local training
time of malicious and benign nodes.

3.3. Attacker’s Objective

The attacker can adopt different types of malicious behavior, achieving different attack
objectives. In our case, the attacker’s activities may evolve toward two different goals. In
the first case, the intruder targets a specific label (e.g., label 3), for which they aim to divert
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the global model’s prediction. Specifically, the goal is to classify images of diseased leaves
as healthy. To achieve these, a GAN is used to generate images of a specific disease class,
and subsequently, the common class of these images is changed to healthy. At the same
time, the attacker aims to keep global accuracy high to succeed in both the corresponding
objective and stealth simultaneously. In the second case, the attacker aims to degrade
the global model’s accuracy again by poisoning the local dataset of the N compromised
nodes. Here, the attacker generates images of all classes using a GAN and assigns random
labels to them. Each malicious node dataset is enhanced with the generated images, and
subsequently, the local model is trained with poisoned samples.

3.4. Adversary’s Capability

The adversary is assumed to have no knowledge of the global aggregation algorithm
on the server’s side and can only influence the learning process through poisoned model
updates. Moreover, the attacker is not aware of the benign clients’ datasets. However, we
assume they know that the classes included in the aggregated poisoned dataset are all
the classes available within the federated system. In other words, there is not any class
only present in benign local datasets and not in a malicious one. We also assume that the
adversary cannot alter the private dataset of the compromised client but can only enrich it
by adding more generated images. Lastly, the attacker is assumed to not be able to influence
the local training algorithm and directly access or alter the local model’s weights.

4. Approach

In this section, we describe our overall approach to attack generation based on GANs,
which surpasses common federated defenses. We use a grapevine leaf disease image dataset
for the task of image classification within the FL system. In this system, some clients are
compromised and are controlled by a single adversary. The adversary trains a GAN using
the joint dataset of the malicious clients and then uses it to launch label-flipping attacks.
These attacks are tested against common federated defenses based on the aggregation
algorithm. In Figure 1, we can see an overview of the whole process.

Figure 1. Proposed process for the GAN data poisoning attack. This figure illustrates the internal
structure of both benign and malicious clients involved in the GAN data poisoning attack, presenting
the proposed process for carrying out the attack. Additionally, it examines the federated learning
process while utilizing secure aggregation techniques.

4.1. Dataset

To validate our results, we use the PlantVillage dataset [55]. This dataset consists
of leaf images which can be either healthy or diseased. It contains 39 different classes of
plant leaf, adding up to 61,486 images in total. For each crop (class), there are multiple
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subclasses representing healthy and diseased plants. In this work, we use the grapevine
images, which are classified based on four classes, as depicted in Figure 2:

• Black measles (upper left).
• Black rot (upper right).
• Healthy (down left).
• Leaf blight(down right).

The original image size is 256 × 256 × 3 (RGB), adjusted to 128 × 128 × 3 for our
experiments. Concerning the number and type of samples, there are 1000 healthy images,
1180 “black rot” images, 1076 leaf blight images and 1383 images of leaves infected by the
Esca disease.

Figure 2. The four classes of the grapevine images of the PlantVillage dataset: black measles
(upper left), black rot (upper right), healthy (down left), leaf blight (down right).

4.2. Image Generation

As mentioned above, the malicious clients jointly train a GAN to produce fake images
in order to enrich their dataset and poison the global model for both attack objectives
considered in Section 3.3. Thus, a GAN is trained for the image generation task using
different datasets, corresponding to the different attacks that are desired to be formulated.
A key point here is that the dataset available for training in each of these two attack cases is
small, because it is assumed that at most 30% of the clients are malicious. For this reason,
we need to adjust the GAN training procedure and architecture to fit this limitation.

The selected model’s architecture is closely related to DCGAN [50], as depicted in
Figure 3. For the generator’s part, convolutional transpose layers with ReLU as activation
and batch normalization [56] before the activation function have been chosen. We notice
that batch normalization stabilizes training by normalizing batches to have zero mean and
unit variance. Each convolutional transpose layer has progressively fewer filters and scales
the image by a factor of 2, starting from a 4 × 4 × 256 image. As a result, the generator
outputs 128 × 128 × 3 images that resemble the ones in the dataset. For the output layer,
the selected activation function is the tanh function because the images are scaled to [−1, 1].
It is also noted that the input random noise is a vector of size 100.

For the discriminator, the architecture mirrors that of the generator. However, here
traditional convolutional layers are used, and the dimensions shrink while going deeper
into the network. It is also noted that before an image is fed to the discriminator, it is passed
through a data augmentation layer. This is a technique that utilizes a small dataset to the
maximum because the discriminator, instead of viewing the exact same images during each
round, is alternatively fed a slight variation. More specifically, the amendments applied to
each image are as follows:

• Random flip.
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• Random rotation.
• Random zoom.
• Random translation.

Figure 3. Proposed GAN architecture.

Furthermore, we again use batch normalization for the reasons described above. An
important difference here is that LeakyReLU is used, instead of ReLU, for the activation
function of convolutional layers. The reason is that this activation function helps with
the problem of vanishing gradients, which is a common failure of GANs. Moreover, no
sigmoid activation function is used in the output layer even though probabilities [0, 1]
are extracted due to the use of logits (as defined by TensorFlow [57]) in the loss function
computations. Both the generator and discriminator’s losses are binary cross-entropy.

When it comes to training, GANs usually fall victim to the problem of mode collapse
because the discriminator may fail to provide useful gradient feedback to the generator. To
address this, significant modifications have been applied to the original GAN architecture,
usually related to the loss function or the architecture. In the present work, the Wasserstein
distance (earth mover distance) [51] or Wasserstein-1 is used:

W(Pr, Pθ) = in fγ∈∏(Pr ,Pθ)
E(x,y)∼γ[||x− y||] (1)

where ∏(Pr, Pθ) is the set of all joint distributions γ, having marginals of Pθ and Pr. This
loss function tends to produce more accurate results because it measures distance between
2 distributions more accurately when these distributions are far apart or/and have no
overlap. Nevertheless, this loss function requires constraints to be carefully set to avoid
vanishing gradients and enforce weight convergence. In the original paper [32], weight
clipping was proposed, which sets an upper and lower bound. An enhanced method
was proposed by Kodali et al. [53], namely DRAGAN. This approach suggests a gradient
penalty defined as

λ · EPreal ,δ∼Nd(0,cI)[||∇xDθ(x + δ)|| − k]2 (2)

where x + δ is a noise point opposing to x which is a real point. Moreover, λ, k and c are
parameters to be fine-tuned. This penalty is added to the loss function of the discriminator,
scaled by the parameter λ. We empirically decided to use this method because it yields
more accurate results, namely that the generated images were visually more realistic and
the FID (Frechet Inception Distance), which measures generated image similarity compared
to the real data, was lower.
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4.3. Proposed Attacks

Federated systems are prone to attacks due to their nature. A common phenomenon is
the appearance of malicious clients who aim to disturb the training process of the federated
system either by manipulating the model’s weights directly or indirectly through data. In
the latter case, a malicious client may alter the existing data or inject new data to achieve
their purpose. These types of attacks are called “data poisoning attacks”. On such occasions,
attackers infiltrate machine learning systems and introduce fake data points or manipulate
existing data. Within the federated framework, one or more nodes may be malicious and
aim to disturb the federated process with the intent of either pattern injection (e.g., targeted
labeling attack) or model performance collapse.

To model this, we conducted different experiments in order to investigate the impact of
GAN-based dataset generation, described in Section 4.1, on the synthesis of data poisoning
attacks that can cause the deterioration of an FL model. We assume that a single attacker
has control of all the malicious nodes and can thus process their datasets jointly. Firstly, we
formulate a targeted label attack where a GAN is trained on a single class (in our case, leaf
blight) and subsequently produces samples of this class. Then, the label of the generated
samples is assigned to healthy and these are distributed to the malicious clients. Thus, each
malicious client has an enriched dataset that consists of the primary (benign) dataset and
the poisoned samples. The global model is subsequently trained on these clients, and the
pattern Lea f Blight = Healhty is injected. Secondly, we create a model degradation attack
by training a GAN on all four classes of the malicious aggregated dataset. Subsequently,
the attacker assigns random labels to these generated samples. Similar to the first case,
each malicious client’s dataset is enriched by a poisoned one, which leads to a global model
accuracy degradation. It is also emphasized that the local models of the poisoned clients are
trained both on the original clean dataset and the poisoned one generated by the GAN. This
ensures both that the poisoned parameters will not be far from the benign ones regarding
the parameter space and that the attacker achieves their target.

The global model under attack by the proposed approaches is a simple CNN.

4.4. Defenses

We also test these attacks against some common federated defenses. These defenses
are variations of the aggregation rule and, in general, try to filter out malicious clients
by viewing the model updates sent from the clients. The basic notion is that the model
updates generated by malicious clients differ significantly compared to the benign ones.
This difference can be investigated in the parameter space, and one could measure the
distance between model parameters separately or between whole models (the sum of model
parameters). To measure this difference, common distances are the Euclidean distance,
cosine distance, etc. Thus, we test our attacks against the defenses of the following:

• Median aggregation.
• Trimmed mean aggregation (with known number of malicious participants).
• Krum aggregation.

With the exception of the Krum aggregation, the other two defenses operate at the
parameter level and treat each parameter separately. Thus, they can result in a partially
poisoned global model, where some parameters are aggregated using only benign updates
and other parameters using both benign and malicious updates. On the other hand, Krum
treats each model separately and thus, in a federated round, it is possible for a completely
poisoned local model to be selected as the global one.

Lastly, we also propose a method that may further defend against federated attacks.
More specifically, we assume that the server has a small dataset of clean-labeled images
and is able to train the model for a few rounds after the client training. This technique will
supposedly mitigate the attacks and correct the model’s behavior.
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5. Experiments

This section outlines the experiments conducted to validate the approach presented
in Section 4. Firstly, we present the results of training a GAN on only the malicious
clients, using all four classes to create a generator capable of reproducing any image
from the dataset. Additionally, we train a GAN to generate images of the leaf blight
class. These GANs are used to produce images, and then we assign malicious labels
to each image to conduct either a model degradation (using the GAN trained on all
four classes) or a targeted label attack (using the GAN trained only with leaf blight).
Concerning the learning rate and the scaling factor of the loss, we used 0.001 and 10,
respectively. We then test the effectiveness of these two data poisoning attacks against
common federated learning aggregation algorithms to assess their robustness. Next, we
evaluate the effectiveness of our proposed solution using the federated average aggregation
algorithm. We train the global model for five more rounds on the server side with a
small, clean dataset that is half the size of the clients’ datasets. Finally, we use the overall
global model accuracy as a metric for the model degradation task, and we study the
confusion matrix of predictions for the targeted label attack, focusing on performance in
each class separately.

5.1. GAN-Generated Images

We first train the GAN described in Section 4.2. for two separate cases. In the first
case, the aim is to generate targeted label attacks, leading the global model to misclassify
leaf blight images as healthy. To achieve this, a GAN is trained over leaf blight images only,
with a subset of nodes that correspond only to the malicious clients, namely 30% of the
whole FL system. We selected this number because a significant number of comparable
studies that assess defense mechanisms or suggest attacks employ a percentage similar to
this one for the malevolent clients [58–60]. The GAN has been trained for 80 rounds using
the joint malicious dataset. The choice of this number is based on empirical evaluation
both by viewing image quality and FID score. The effectiveness/efficiency of the image
generation is depicted in Figure 4. We clearly see that as the training procedure progresses,
the images more and more resemble the original distribution. At round 80, the model
seems to have converged, which has led to the synthetic images being very similar to those
in the original dataset. We also see that the difference in the quality of the produced images
is larger between early epochs (e.g., epoch 5 and epoch 30) compared to the difference
between later epochs (e.g., epoch 50 and epoch 80).

The FID score for the generated images up to epoch 80 is presented in Figure 5,
revealing that the score is close to 500 at epoch 5 and roughly 160 at epoch 80. This trend
indicates that the generated images become more closely aligned with the original dataset’s
distribution as the training progresses, which coordinates with our previous visual results
demonstrating that lower FID scores correspond to better image quality. Based on these
findings, we can infer that after 80 epochs, our model generates realistic images that
resemble the original dataset.

In the second case, the GAN is trained for all four classes and results in a generator
that can produce images of any class given random noise. For this scenario, the results
have been similar to the aforementioned (single label) case. The subset of malicious clients
remains the same, but their joint training dataset is larger because in this case we have
four classes instead of one. We use the same training parameters (e.g., number of epochs,
learning rate, penalty scaling factor, etc.) for this case, and the results closely follow those
of the one-label (leaf blight) case. More specifically, the images generated are realistic after
80 epochs, and there is a similar behavior regarding the loss functions of the generator and
the discriminator.
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Figure 4. GAN-generated images for the leaf blight class after a certain amount of training epochs.

Figure 5. Frechet Inception Distance score for various epoch checkpoints.

5.2. Poisoning Attacks

In this subsection, the results of the experiments against the realization of the two
types of attacks considered are presented. The experimental set-up includes X number of
client nodes, participating in federated learning by performing local model training for
the classification of grapevine leaves’ images and sharing their model parameters with an
aggregated server. Let us assume that a subset of the client nodes acts maliciously, which
corresponds to 30% of the total number of clients. The malicious clients train their models
for 50 federated rounds. After conducting the tests, we selected the value of 50 for this
number because we observed that the model had converged at this point. Moreover, two
local training rounds are considered for each client. The first round of our experiments
refers to the baseline case, in which no malicious clients are present. Then, we proceed with
the experiments for model degradation and targeted label attacks. The experimental results
are reported using the accuracy plot and the confusion matrix. The former is appropriate
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for the model degradation attack, because this attack’s goal is to reduce the accuracy of
the global model. The confusion matrix is more suitable for evaluating the results of the
targeted label attack experiments because the accuracy of the target class as well as the
accuracy of all the other classes are the main parameters of interest in this case.

5.2.1. Model Degradation Attack

In this case, a GAN is deployed on the malicious nodes with the intention of causing
global model performance degradation. The adversary uses the GAN model described
in Section 4.2, trained with all four classes. Using this model, the attacker generates
samples of all four classes and later distributes these samples to the compromised nodes.
Subsequently, each malicious node randomly assigns a class label to the generated images.
Each local model will be trained on images that resemble the original ones but have random
labels, which is something that confuses the classifier. It is noted that the poisoned dataset
was created before the training process and is available at the beginning of the training
procedure. The experimental results evaluating the model degradation attack for the
cases in which there is no defense or some of the three defense mechanisms considered in
Section 4.4 can be seen in Figure 6.

Figure 6. Accuracy for the model degradation attack with various defense mechanisms.

As shown in this figure, this attack is successful in degrading the model’s global
accuracy. Firstly, the blue line shows the case of no attack, where the FL system contains
only benign nodes and the aggregation is a federated average to be used as a baseline. The
green line shows the accuracy of the proposed attack for the case of federated average
aggregation as the training procedure progresses. Regarding the other four classes, the
only thing that changes is the aggregation algorithm. Orange is median aggregation, red
is Krum aggregation and purple is trimmed mean. Initially, the model lacks robustness,
and as a result, it categorizes all the images as the most common class, leading to a
constant accuracy prior to the eighth federated round. Nevertheless, it becomes evident
that the model can overcome this scenario of being stuck in a local minimum after several
federated rounds. Consequently, we can see that there is a difference of around 25–30% in
accuracy between the case in which no attack is realized and the case in which an attack
has materialized with no defense in place. Moreover, regarding the defenses, the model
accuracy is improved when some defense mechanisms are adopted compared to the case of
no defenses. However, the improvement is approximately 5%, 7% and 5% for the median,
Krum and trimmed mean approaches, respectively. The low improvement in all three cases
implies that these mechanisms fail to identify the malicious nodes and that the poisoned
updates are infiltrating the global model. It is worth noting that in the case of the trimmed
mean defense, we have assumed that the parameter n (number of malicious clients) is
known beforehand and thus the defense should be more powerful. Nevertheless, all three
approaches consistently achieve an accuracy value below that of the global model, with the
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difference ranging from 5 to 20%. We thus assume that this kind of attack is stealthy, mostly
due to the fact that the poisoning procedure closely resembles the training procedure and
that the malicious nodes have both a poisoned and a clean dataset.

5.2.2. Targeted Label Attack

In this case, the test scenario includes 70% benign clients and 30% malicious. All
benign clients have the same amount of data (images). The malicious clients generate
images of a specific disease class, namely the leaf blight class. Then, these participants flip
the label of the synthetic images to the one corresponding to healthy ones. The goal is to
trick the model into classifying leaf blight images as healthy. This is indeed a targeted label
attack, and the results could be catastrophic for a classification model. The results of the
experiments conducted for evaluating the targeted label attack with the three or no defense
mechanisms adopted are depicted in Figure 7.

Figure 7. Confusion matrices for the targeted label attack with different aggregation mechanisms.

An initial observation is that the convolutional model consistently misclassifies nu-
merous instances of black rot images as Esca. This can be attributed to the high degree of
similarity between these images, rendering it difficult for the model to make an unequivocal
distinction. Additionally, the predominance of Esca samples over black rot ones results in
the misclassification of black rot as Esca rather than the reverse. It is worth noting that this
behavior is not significant for the targeted label attack because only the classification results
of the leaf blight and healthy classes are of interest. Moreover, comparing the case with no
defenses to the case in which there is no attack, the attack appears to be successful for both
the tasks of stealth and targeted label attacking. Specifically, this attack results in a model
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that greatly misclassifies leaf blight as healthy but achieves similar accuracy regarding the
classification task for the other classes. In particular, 58% of the leaf blight images have been
categorized as healthy compared to 2.5% for the case of no attack. Regarding the effective-
ness of the defenses, they slightly improve the accuracy of this specific label. Specifically,
with any of the defense mechanisms applied, the misclassification of leaf blight as healthy
is approximately 51%. This happens due to the fact that these methods are performed
at the parameter level and not for the whole model. This happens because a specific set
of parameters (e.g., biases of the last layer) may be easily identified as poisoned by the
defenses. However, viewing the results, we can assume that this set is small compared to
the total number of parameters, and the bulk of the poisoned parameters are incorporated
into the global model. Hence, it is obvious that these methods fail to select only benign
client models, and the attack is deemed a success.

5.3. Mitigation

The results of the proposed mitigation approach are presented in Figure 7 (confusion
matrix with mitigations) and Table 1 for the cases of targeted label and model degradation
attacks. In the case of the targeted label attack, the method successfully mitigates the effects
of the attack, as evidenced by the model no longer misclassifying the leaf blight images as
healthy. Additionally, the results for the other classes remain unchanged, indicating that
the attack reduces the accuracy of the different classes, and the attack is indeed targeted, as
the accuracy of the other labels remains relatively stable.

Table 1. Test set accuracy for the cases with/without mitigation.

Mitigation Accuracy

Yes 62%

No 50%

In the case of the model degradation attack, the proposed method quickly alleviates
the effects of the attack, with the model achieving the accuracy of a non-attacked model
within only five additional rounds. This result represents a substantial improvement of
approximately 12%.

Overall, these findings demonstrate the effectiveness of the proposed method in
mitigating backdoor attacks while remaining simple and easy to implement.

6. Conclusions and Future Work

In conclusion, the present paper has studied federated learning systems, which are
vulnerable to data poisoning attacks, and proven that these can bypass common defense
techniques if they are carefully crafted. This paper addresses topical issues in the literature
related to this task. Specifically, our work considers and addresses sophisticated GAN-
based attacks, able to be initiated because of the first round of training in FL systems,
stepping beyond the existing works in which attacks can be realized only after several
rounds of federated learning and can thus be mitigated based on each node’s history.
Additionally, in this paper, we suggest and validate the efficiency of potential mitigations
to counteract label-flipping attacks. Our results show that these attacks can achieve their
objective without being detected and can be catastrophic for applications, such as smart
agriculture. In this regard, the attacker can take advantage of a small dataset if a number of
clients are compromised and train a GAN to generate realistic images. Then, these images
can be used to formulate data poisoning attacks without altering the original dataset of
each compromised client. The attack can be launched during the initial round of federated
learning and continue throughout the training process, without modifying the local dataset.
This results in attacks that achieve a misclassification of up to 58% for the targeted label
attack and an accuracy drop of up to 25% for the model degradation attack. To address this,
we show a mitigation technique that is able to eradicate these types of attacks. This method
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successfully reverts the targeted label attack and increases the accuracy within the model
degradation attack case by 12%.

In the future, we aim to test different GAN architectures and employ additional
datasets. Additionally, settings with different hyper-parameters will be tested. This is
very important because such experiments may improve the overall accuracy of the model
significantly and tailor the model to the specific task. Moreover, a GAN trained on a leaf
dataset could be used to produce images used for the federated classification of a different
dataset. Such a case could be a GAN trained on images of a specific field and then deployed
to poison another field (within a different federated system) to assess the cross-dataset
accuracy. Lastly, we aim to evaluate the attacks against more kinds of defenses to test
the stealth of the approach even further. Moreover, our future endeavors entail devising
efficient defense methods (which may be based on machine learning) to counter these
attacks, without the need for assuming the availability of a server-side dataset.
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