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Abstract—Nowadays, IoT networks and devices exist in our 

everyday life, capturing and carrying unlimited data. However, 

increasing penetration of connected systems and devices implies 

rising threats for cybersecurity with IoT systems suffering from 

network attacks. Artificial Intelligence (AI) and Machine 

Learning take advantage of huge volumes of IoT network logs to 

enhance their cybersecurity in IoT. However, these data are often 

desired to remain private. Federated Learning (FL) provides a 

potential solution which enables collaborative training of attack 

detection model among a set of federated nodes, while preserving 

privacy as data remain local and are never disclosed or processed 

on central servers. While FL is resilient and resolves, up to a point, 

data governance and ownership issues, it does not guarantee 

security and privacy by design. Adversaries could interfere with 

the communication process, expose network vulnerabilities, and 

manipulate the training process, thus affecting the performance of 

the trained model. In this paper, we present a federated learning 

model which can successfully detect network attacks in IoT 

systems. Moreover, we evaluate its performance under various 

settings of differential privacy as a privacy preserving technique 

and configurations of the participating nodes. We prove that the 

proposed model protects the privacy without actually 

compromising performance. Our model realizes a limited 

performance impact of only ~ 7% less testing accuracy compared 

to the baseline while simultaneously guaranteeing security and 

applicability. 

Keywords—Federated Learning, Internet of Things, 

Differential Privacy, Privacy Preservation, Cyber Security 

I. INTRODUCTION  

Artificial Intelligence (AI) plays a significant role in Internet 
of Things (IoT) applications. The main added value of AI lies in 
its ability to provide insights, by automatically identifying 
patterns and detecting anomalies on data collected from IoT 
sensors and other devices. Machine Learning (ML), as a specific 
area of AI that trains machines on how to learn from data, 
provides significant benefits across application domains, arising 
from proactive intervention, tailored experiences and intelligent 

automation. ML is almost everywhere, from small wearable 
devices and smartphones to powerful super-computers ensuring 
fast and accurate data analysis. IoT devices generate large 
amounts of data, which are a real wealth for ML applications. 

On the other hand, IoT systems and devices are vulnerable 
to a wide range of attacks, including those at the network level. 
Modern connected systems may significantly increase their 
cybersecurity levels via ML-based intrusion detection systems. 
Specifically, ML applied on the network logs within a corporate 
network is able to learn data patterns and thus identify potential 
attacks as anomalies in the network traffic. The performance of 
such models could be significantly enhanced by combining the 
insights from different administrative domains. However, 
traditional cloud computing applications would need the data to 
be uploaded and processed on a central server giving data access 
to third parties, which would raise significant concerns about 
privacy and ownership of those data.  

To address these concerns Google introduced Federated 
Learning [1] which is a distributed machine learning approach. 
FL aims to build and train global models based on training 
datasets that are distributed across different remote devices 
while avoiding data leakage. The data is never processed on 
central servers, decoupling the machine learning process from 
the data sources. In practice, FL solutions train an initial, generic 
machine learning model in a central server, which is a baseline 
to start with. Afterwards, the server sends this model to the 
user’s devices, where the local copy of the model is trained using 
its own data. Then, the updated model parameters are sent back 
to the central server and the global model is updated. Therefore, 
FL approaches are capable of learning robust models from a 
huge amount of distributed data across IoT devices without 
transferring and/or processing it on a central server. However, 
FL systems may suffer, as well, from malicious activity, which 
may affect the training process. Including privacy preservation 
techniques within the FL system introduces a trade-off between 
the privacy preservation level and the model performance. 
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That said, we introduce an anomaly attack detection model 
trained on the widely used NSL-KDD dataset [2], which 
combines the federated learning architecture and privacy 
preserving techniques in order to enhance the cyber security in 
IoT systems by classifying network attacks to “DoS” or “Not 
DoS”. Training our model in a federated manner, knowledge is 
transferred from one IoT device to another resulting in better 
understanding of possible attack types in the future. We perform 
an extensive analysis of how differential privacy [3], [4] is 
affecting the attack detector’s accuracy under several, real-
world scenarios, resulting in creating a robust model for attack 
detection. Our proposed model can successfully be adopted to 
[5], where the authors propose a novel and intelligent Mobile 
Ad-Hoc Network for the detection, identification and recording 
events on a given traffic network. 

The rest of the paper is organized as follows. In section Ⅱ, 
we provide a literature review of related works. In section Ⅲ, 
we describe our experimental components and we present our 
results acquired from training procedures. Finally in section Ⅳ 
we conclude the paper. 

II. RELATED WORK AND BACKROUND 

A. Differential Privacy  

      While FL is resilient and resolves, up to a point, data 

governance and ownership issues, it does not guarantee security 

and privacy by design. A lack of encryption can allow 

adversaries to abduct personally identifiable data directly from 

the processing nodes or interfere with the communication 

process, expose network vulnerabilities, and perform attacks. In 

addition, the decentralized nature of the data complicates data 

handling and curation. Federated Learning can be vulnerable to 

various backdoor threats (bug injection, inference & model 

attacks) on different processing steps. Therefore, additional 

measures are essential to protect data from adversarial attack 

strategies such as data poisoning and model poisoning attacks. 

The major approaches that can be employed in FL for data 

protection are differential privacy, homomorphic encryption 

[6], and secure multiparty computation [7], [8]. In this paper, 

we will examine the differential privacy approach. Differential 

Privacy (DP) is a method that randomizes part of the 

mechanism’s behavior to provide privacy [3], [4]. The 

motivation behind adding randomness (Gaussian noise) into a 

learning algorithm is to make it impossible to reveal data 

patterns or insights that correspond either to the model and the 

learned parameters or to the training data. Therefore, the DP 

provides privacy against a wide range of attacks (e.g., 

differencing attacks, linkage attacks) [9]. The method of 

introducing noise to the data can result in great privacy but may 

compromise accuracy. In differential privacy techniques, a 

central aggregator exists which has access to the raw data. 

Generally, differential privacy may be divided into Local 

Differential Privacy (LDP) [10], and global differential privacy 

(GDP) [11]. LDP is a state-of-the-art approach which allows 

statistical computations while simultaneously protecting each 

individual user’s privacy, as shown in Fig. 1. No trust 

limitations to a central authority or a third party are necessary 

since noise is added to the individual inputs locally. 

      In global differential privacy techniques, a central 

aggregator exists (i.e., a trusted curator) which has access to the 

raw data, as depicted in Fig. 2. In particular, each user sends 

their data to the aggregator node without adding noise. The 

aggregator then considers the input data and transforms it with 

a differentially private mechanism, by adding Gaussian noise. 

When an untrusted querier makes a specific query on the trusted 

aggregator node, an answer shall be provided, however, this 

answer is mathematically impossible to be reverse-engineered, 

and consequently it is impossible to know the precise answer 

about the private raw data. 

      Generally, global private systems are more accurate, since 

all the analysis is implemented on “clean” (i.e. noise-free) data, 

and only a small amount of noise is added at the end of the 

process. However, the efficiency of global privacy models lies 

in the users’ amount of trust in the trusted curator. 

      Abadi [12] introduced a Differentially Private Stochastic 

Gradient Descent (DP-SGD) algorithm which aims to control 

the effect of the training data during the optimization operation 

(GD). For each step, the DP-SGD algorithm computes the 

gradient for a random set of data, calculates the clipped 𝑙2 norm 

of each gradient computes the average, adds noise to preserve 

privacy and takes a step in the opposite direction of this SGD. 

B. Network Intrusion Detection Systems 

      In the past few years, the variety and complexity of cyber-

attacks and malicious events has grown tremendously. For that 

reason, the design of a robust Intrusion Detection System 

becomes a high priority need. Intrusion detection systems 

monitor networks for potentially malicious activity and policy 

violations. Several approaches have been proposed in the 

related literature [13], [14]. The detection method of IDS can 

be divided into two categories, the signature-based method and 

the anomaly-based method. The signature-based method 

detects on the basis of the already known malicious instruction 

sequence that is used by the malware. The detected patterns in 

the IDS are known as signatures. The anomaly-based IDS was 

introduced to detect unknown malware attacks as new malware 

are developed rapidly. In anomaly-based IDS there is use of 

machine learning to create a trustful activity model and 

anything coming is compared with that model and it is declared 

suspicious if it is not found in the model. 

      In [15] the authors investigate the possibilities enabled by 

federated learning concerning IoT malware detection, study 

security issues and propose a framework that uses federated 

learning to detect malware affecting IoT devices. 

      Rahman [16] proposed a Federated Learning based 

intrusion detection scheme for IoT systems that maintains data 

privacy and detects network threads could occur over an FL 

setting. The authors evaluate their method across multiple use-

cases in order to simulate real-world scenarios and conclude 

that the federated learning setting can achieve results in 

accuracy as high as a centralized approach. 

      Authors in [17], introduced an FL approach for malicious 

activity detection in IoT devices. They created and trained an 

intrusion detection model for the security of IoT devices and 
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manage to keep private sensitive data. Their method has been 

evaluated in several use-cases similar to [16]. 

      The contribution of the present paper is to introduce new 

attack detection model architectures that would achieve 

increased accuracy, while preserving privacy of the local data. 

III. PROPOSED MODEL ARCHITECTURE 

      This paper proposes an FL-based, privacy preserving 

intrusion detection system (IDS) for the detection of DoS 

attacks in IoT networks. Our model consists of 2 fully 

connected Dense layers, an input layer and an output layer. The 

output layer is responsible for the binary classification task, and 

is selected to be activated with the SoftMax activation function. 

In addition, we use the Stochastic Gradient Descent (SGD) as 

our optimizer with 0.001 learning rate and the loss function is 

the Binary Cross-Entropy (BCE) since our goal is binary 

classification (“DoS” or “Not DoS” attacks). Our proposed 

model architecture follows the standard Federated Learning 

training process. A central Server loads the initial, generic 

global model. For each federated round, the Server sends the 

model to its clients and each individual client trains the model 

in their corresponding local, sensitive dataset. After the training 

procedure of all clients is finished, each client transforms its 

model’s weights with the Local Differential Privacy 

mechanism by adding Gaussian noise. Finally, the clients send 

back to the central Server the noisy-aggregated model updates, 

where the Server updates the global model by averaging the 

updated weights using the FedAvg [1] method. After model’s 

training process is finished, the model can successfully classify 

if there is a “DoS” attack or not and can be applied to IoT 

systems to detect anomaly attacks in networks as shown in Fig. 

3. 

 
Figure 3: IoT System with our proposed model applied. 

 

The following paragraphs are dedicated to the binary 

classification problem of network records under the following 

scenarios: the number of clients in the Federated System, the 

quantity of noise addition in Differential Privacy and the 

scenario of imbalance client’s dataset. 

A. Number of clients in the FL System 

      In this scenario the effect of the number of clients on 

model’s performance is examined. As the total number of 

clients in our IoT system is increased, the security of each 

individual IoT device (client) is enhanced because each client 

transfers her knowledge to the others while they are training in 

the form of federated learning. 

B. Noise addition in Differential Privacy 

      The main component of our proposed architecture is the 

Differential Privacy. Adding noise to our model can lead to 

higher data privacy resulting in keeping the data of each IoT 

device secure. Therefore, there is a trade-off between applying 

differential privacy and achieving a high level of model 

accuracy. In this scenario, the effect of the noise addition on 

model’s accuracy is investigated. 

C. Imbalance Client’s dataset 

In real-world scenarios the local dataset size of each IoT device 

may differ from each other affecting the entire IoT systems’ 

performance. To define the imbalance level of each client’s 

dataset we introduce a new component a, a factor that defines 

how imbalanced each client’s dataset will be. A value of 1 

means no imbalance, whereas higher values than 1 assign 

datasets to clients with higher imbalance. 

IV. EXPERIMENTAL EVALUATION 

A. Experimental Setup 

Dataset. We use the NSL-KDD [2] dataset for our 
experiments. For its features, it is widely used for the testing and 
evaluation of intrusion detection systems. The dataset is 
composed of 257673 cyber-attacks labeled in 5 different classes 
as Dos, Probe, U2R, R2L (attack types) and Normal (no attack). 
We modify the dataset in a way that we have 2 classes, 
converting our problem to binary classification problem, where 
the labels are “No DoS” and “DoS”. That said, “No DoS” 
encapsulates normal and other kind of attack samples. 
Consequently, our goal is only to detect Denial of Service 
attacks. 

B. Environment Setup 

Google proposed TensorFlow Federated [18] an open-

source framework for machine learning and other computations 

on decentralized data. TensorFlow Federated includes 

TensorFlow Privacy, a python library for applying privacy 

techniques and provides two different APIs, one for model 

training and one for creating custom federated algorithms. That 

said, we choose Tensorflow Federated framework for our 

experiments. 

C. Metrics 

The overall performance of our model is based on the 

accuracy metric. The accuracy measures the impact of the 

differential privacy on the efficiency of the model. The 

accuracy is defined as: 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑ (𝑝𝑟𝑒𝑑(𝑥𝑖) = 𝑗|𝑦𝑖 = 𝑗)𝑖∈𝐷𝑡

𝑛𝑡
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where 𝐷𝑡 is the test set, 𝑛𝑡 is the size of the 𝐷𝑡, 𝑥𝑖 is the input 

and 𝑦𝑖  is the true label. 

D. Experimental Results 

      As described in section Ⅱ, our model consists of two fully 

connected layers, the input and the output layer (i.e., 

classification layer). Specifically, the output layer is activated 

with the SoftMax function and has 1 unit (neural). It assigns the 

0 or 1 depending on the class it classifies, 0 for “Not DoS” class 

and 1 for “DoS” class. The number of hyper-parameters were 

evaluated via an extended validation approach. The number of 

batch size was set to 512, the number of epochs was set to 2 and 

the number of federated rounds was set to 25. We observe that 

within the interval of 2 epochs and 25 rounds we achieve highly 

robust results in terms of accuracy. Our baseline model was 

trained in a federated learning scenario with one client 

(centralized case), whereas the others are all trained in a 

federated learning manner. 

Regarding the first scenario, where we investigate the 

number of clients in the FL system, we experiment with the 

values 1 (baseline model), 10, 25 and 50. Fig. 4 illustrates the 

impact that the number of clients has on the model’s accuracy.  

The total accuracy achieved for the testing phase is 79.06%, 

78.95%, 77.88% and 75.54% respectively. We observe that a 

higher number of clients results in accuracy degradation. This 

is to be expected since splitting the dataset in smaller sets 

eliminates certain relationships that define the data. The 

difference can be as high as 3.52%. 

 
Figure 4: Impact of clients’ number. 

In the second scenario, we experiment with the differential 

privacy that our model preserves. The parameter which controls 

the noise addition quantity is called noise multiplier [18]. The 

parameter noise multiplier is the ratio of the noise standard 

deviation to the clipping norm and we experiment with the 

values 0, 0.5, 1, 1.5 and 2 where the value 0 refers to a model 

trained with no DP, a classical federated learning model as 

introduced to its original paper [1]. As the value of noise 

multiplier is increased, the more Gaussian noise is added to the 

model and so more privacy is preserved. In Fig. 5, we observe 

that adding more noise has a negative impact on the model’s 

accuracy and adding too much may cause the model to collapse. 

In particular, our model achieves 79.06%, 75.85%, 73.49%, 

63.33% and 50.58% test accuracy with respect to the values of 

the noise multiplier mentioned above. There is a trade-off 

between privacy preservation and accuracy and this is 

something that has to be fine-tuned for each specific situation. 

For small portions of noise, the difference in accuracy is 

between 3.21-15.73 % bounds, whereas for bigger ones can be 

as high as 28.48%. 

For the last scenario, we experiment with the values of 1 (no 

imbalance), 1.2, 1.5 and 2 for the component a. The quantity 

and quality of samples that each client has for these values of 

the component a during their training procedure, are shown in 

Fig. 6, while Fig. 7 reflects the impact of the component a 

(imbalanced level) on model’s accuracy. In particular, our 

model achieves 79.06%, 77.42%, 76.98% and 75.11% with 

respect to the values for the component a mentioned above. As 

expected, while a is being increased, the model’s accuracy 

becomes worst. It can be seen that higher imbalance (higher a) 

leads to worse results. Specifically, the range of accuracy 

degradation is 1.42-3.95%. 

 
Figure 5: Impact of noise on model’s accuracy. 

 

 
Figure 6: Number of samples per client for different values of a.  

 

 
Figure 7: Impact of the component a on model’s accuracy. 

 

Considering all the scenarios mentioned above, we propose 

an FL-based IDS which performs accurately under real world 

settings. We assume that a scenario of a = 2 (imbalance ratio ~ 
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2.5:1) represents the real-world circumstances since malicious 

packets appear less frequently in network traffic logs. 

Furthermore, a value of noise multiplier = 1.5 is sufficient to 

provide both security guaranties and viable performance since 

experiments show that higher values cause model failure. This 

combination achieves high privacy concerning data as well as 

minimizes the risk of sacrificing model’s performance. Thus, 

the experiment described below reflects realistic applications of 

IDS in IoT Systems. Fig. 8 plots the proposed model and the 

baseline model. Our proposed model consists of 25 clients. In 

such a case, we can see that the model performs decently 

compared to the baseline and is a viable solution for real world 

applications. The resulting model after 25 rounds achieves 

accuracy that is only 7% lower compared to the baseline. 

 
Figure 8: Proposed model vs baseline model. 

V. CONCLUSION 

            Within Federated Learning, intrusion detection systems 

can be trained and deployed to enhance IoT cybersecurity. 

However, such an application faces many challenges, including 

imbalanced classes on clients’ data, privacy concerns regarding 

sensitive data and number of clients. In this paper, we examine 

those challenges and provide a privacy preserving IDS which 

can successfully detect attacks on IoT devices, while it can be 

applied in real world problems and scenarios. Additionally, we 

evaluate the model performance under different settings and 

configurations. More specifically, we show how the model 

performance is affected when (i) client data are imbalanced 

regarding the labels, (ii) number of clients increases, (iii) 

additive noise of differential privacy is changed. Through 

experiments, we demonstrate that the proposed privacy 

preserving IDS achieves an acceptable performance compared 

to the baseline, namely 7% accuracy drop. In the future, we aim 

to expand the ideas of this paper to different datasets that 

contain additional types of cyberattacks and further test whether 

and how different types of additive noise (e.g., Laplacian) of 

differential privacy or greater number of clients, affect the 

model’s performance.  
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