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Abstract

We solve object localisation in partial scenes, a new prob-
lem of estimating the unknown position of an object (e.g.
where is the bag?) given a partial 3D scan of a scene. The
proposed solution is based on a novel scene graph model,
the Spatial Commonsense Graph (SCG), where objects are
the nodes and edges define pairwise distances between them,
enriched by concept nodes and relationships from a common-
sense knowledge base. This allows SCG to better generalise
its spatial inference to unknown 3D scenes. The SCG is used
to estimate the unknown position of the target object in two
steps: first, we feed the SCG into a novel Proximity Predic-
tion Network, a graph neural network that uses attention to
perform distance prediction between the node representing
the target object and the nodes representing the observed ob-
jects in the SCG; second, we propose a Localisation Module
based on circular intersection to estimate the object position
using all the predicted pairwise distances in order to be inde-
pendent of any reference system. We create a new dataset of
partially reconstructed scenes to benchmark our method and
baselines for object localisation in partial scenes, where our
proposed method achieves the best localisation performance.
Code and Dataset are available here: https://github.
com/IIT-PAVIS/SpatialCommonsenseGraph

1. Introduction
The localisation of unobserved objects given a partial

observation of a scene is a fundamental task that humans
solve often in their everyday life as shown in Fig. 1. Such
a task is useful for many automation applications, includ-
ing domotics for assisting visually impaired humans to find
everyday items [10], visual search for embodied agents [3],
and layout proposal for interior design [23]. Yet, object lo-
calisation in partial scenes has never been formally studied
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Figure 1: Given a set of objects (indicated in the green cir-
cles) in a partially known scene, we aim at estimating the
position of a target object (indicated in the orange circle).
We treat this localisation problem as an edge prediction prob-
lem by constructing a novel scene graph representation, the
Spatial Commonsense Graph (SCG), that contains both the
spatial knowledge extracted from the reconstructed scene, i.e.
the proximity (black edges) and the commonsense knowl-
edge represented by a set of relevant concepts (indicated in
the pink circles) connected by relationships, e.g. UsedFor
(orange edges) and AtLocation (blue edges).

in the literature. We formalise the problem as the inference
of the position of an arbitrary object in an unknown area of
a scene based only on a partial observation of the scene.

Humans perform this object localisation task not only by
using the partially observed environment, but also by relying
on the commonsense knowledge that is acquired during our
lifetime experience. For example, by knowing that pillows
are often close to beds (the spatial relationship), and that
chairs and beds are often used for resting (the affordance
relationship), one could infer the whereabouts of pillows
even if only a bed and a chair were observed. In this paper,
we question whether it is possible to computationally solve
this task by injecting the commonsense knowledge within
a scene graph representation [19, 12, 32], so that a machine
can also reasonably localise an object in the unseen part of
the scene, without the use of any visual/depth information.

In this work, we propose a new scene graph representa-
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tion, the Spatial Commonsense Graph (SCG), having het-
erogeneous nodes and edges that embed the commonsense
knowledge together with the spatial proximity of objects as
measured in the partial 3D scan of the scene. The underlying
intuition is that commonsense knowledge extracted from
an external knowledge base is not specific to any observed
visual scene, and thus allows for a better generalisation, but
at the cost of a coarser localisation. At the same time, the
objects’ arrangement in the known portion of the scene is
useful in providing better pairwise object distances, strength-
ening the estimate of the target object position. The main
challenge here is devising a model that promotes the gener-
alisation of commonsense while increasing the accuracy of
the scene-specific metrics.

The proposed scene graph, as shown in Fig. 2, is first de-
fined by nodes representing the known objects in the scene
that are fully connected through edges representing the prox-
imity, i.e. the relative distance between a pair of objects. We
call this spatial representation the Spatial Graph (SG) of the
known partial 3D scan. Then, the SG is further expanded
into the SCG by adding and connecting nodes that repre-
sent concepts through relevant commonsense relationships
extracted from ConceptNet [29].

The SCG is instrumental to address the localisation prob-
lem. In this work, we propose a two-stage solution, dubbed
SCG Object Localiser (SCG-OL). First we predict the pair-
wise proximity between the target object node, having an un-
known position, and each of the known object nodes through
our graph-based Proximity Prediction Network (PPN), for-
mulating the task as an edge regression problem. We then
use our Localisation Module to compute the position of the
target based on the pairwise distances. The localisation mod-
ule estimates the most probable position as the intersection
of the circular areas defined by all pairwise object distances.
Note that by only using distances between pairs of objects,
our model does not depend on the scene’s reference frame,
thus being considered agnostic to the coordinate system.

We also introduce a new dataset built from partial re-
constructions of real-world indoor scenes using RGB-D se-
quences from ScanNet [7], which we will use as a benchmark
for this novel problem. We construct the dataset to reflect
different completeness levels of the reconstructed scenes.
We define the evaluation protocol via a set of performance
measures to quantify the localisation success and accuracy.

To summarise, our core contributions are the following:
• We identify a novel task of object localisation in partial

scenes and propose a graph-based solution. We make
available a new dataset and evaluation protocol, and
show that our method achieves the best performance
w.r.t. other comparing methods.

• We propose a new heterogeneous scene graph, the Spa-
tial Commonsense Graph, for an effective integration
between the commonsense knowledge and the spatial

scene, using attention-based message passing for the
graph updates to prioritise the assimilation of knowl-
edge relevant to the task.

• We propose SCG Object Localiser, a two-staged lo-
calisation solution that is agnostic to scene coordinates.
The distances between the unseen object and all known
objects are first estimated and then used for the locali-
sation based on circular intersections.

2. Related work
We will cover prior work related to the inference of scene

graphs, the current dataset used for experimental validation
and the use of commonsense for spatial reasoning.
Scene graph modelling and inference. Scene graphs were
initially used to describe images of scenes based on the
elements they contained and how they were connected. The
work of [18] showed that for certain applications, e.g. Image
Retrieval, the abstraction of higher-level image concepts was
improving the results compared to using the standard pixel
space. Since then, scene graphs have been successfully used
in many other tasks such as image captioning [39, 40, 14]
and visual question answering [27, 20].

Recently, the use of scene graphs has also been extended
to the 3D domain, providing an efficient solution for 3D
scene description. The 3D scene graph can vary from a
simple representation of a scene and its content, in which
the objects are nodes, and the spatial relationships between
objects are the graph’s edges [12, 32, 38]; to a more complex
hierarchical structure that describes the scene at different
levels: from the image level with description about the scene
from only a certain point of view, moving up to a higher
level description of objects, rooms and finally buildings [1].
The work of [42] uses a scene graph to augment 3D indoor
scenes with new objects matching their surroundings using
a message passing approach. A relatively similar task is
indoor scene synthesis [33], in which the goal is to generate
a new scene layout using a relation graph encoding objects as
nodes and spatial/semantic relationships between objects as
edges. A graph convolutional generative model synthesises
novel relation graphs and thus new layouts. In [9] and [23]
the authors use a 3D scene graph to describe the object
arrangement, they then modify the scene graph and generate
a new scene. Like these works, we use an underlying scene
representation, but unlike them we embed commonsense
knowledge into the scene graph. This way, our approach
can better generalise to unseen rooms with unseen object
arrangements by leveraging prior semantic knowledge.
Dataset for Object Localisation. Datasets existing in the
literature are not suited for this type of object localisation
task. For instance, Scene Synthesis datasets [34] do not
have enough variability in the scene structure, as all environ-
ments represented are of identical shape and of similar size.
Moreover, the scenes mostly contain the same set of objects.



Figure 2: Overall architecture of our proposed approach. First, we construct a spatial commonsense graph (SCG) from the
known scene by enriching the scene graph with concept relationships, resulting in edges of three types: UsedFor (orange
edges), AtLocation (blue edges) and Proximity (black edges). The SCG is then fed into the Proximity Prediction Network
(PPN) that performs message passing with attention to update the node features taking into consideration the heterogeneous
edges. PPN then concatenates the node features of the target node and one of the scene object nodes and passes it through
an MLP to predict the pairwise distance. The localisation module then uses the predicted pairwise distances to estimate the
position of the target object within the area where most distances overlap.

These characteristics lead to datasets that do not reflect the
real world and cannot be used to train models to be deployed
in real indoor environments. Another major limitation of ex-
isting datasets is their assumption that the entire layout of the
room is known and that the objects lie within the boundaries
of the observed part of the scene [33, 22], which is atypical.
In robotic applications like Visual Search [37, 13, 5], the
robot only has partial information about the environment,
that gets updated during navigation. In general, the searched
object has to be found in the unexplored part of the scene,
yet to be discovered. Our work is based on partially observed
scenes and performs localisation without navigation.

Commonsense Knowledge in Neural Networks. Com-
monsense reasoning focuses on imitating the high level rea-
soning employed by humans when solving tasks. Typically,
we do not only use the information directly related to the
task, but also rely on knowledge gained through prior experi-
ence. The field of Natural Language Processing, [11] makes
use of ConceptNet [29] to create richer, contextualised sen-
tence embeddings with the BERT architecture [8]. In [2]
, the authors utilise the knowledge graph Freebase (now
Google Knowledge Graph) to enrich textual representations
in a knowledge-based question answering system. In com-
puter vision, [21] exploits commonsense knowledge using
Dynamic Memory Networks for Visual Question Answering
(VQA), stating it helps the network to reason beyond the
image contents. In the scene graph generation task, [15]
exploits the ConceptNet [29] knowledge graph to refine ob-
ject and phrase features to improve the generalisation of the
model. The authors state that the knowledge surrounding
the subject of interest also benefits the inference of objects
related to it, helping the model to generalise better and gen-
erate meaningful scene graphs. In this work, we exploit the
commonsense knowledge to enrich a spatial scene represen-

tation used for predicting proximity among pairs of objects
in a scene context.

3. Spatial Commonsense Graph (SCG)
Our model of the scene has the objective to embed com-

monsense knowledge into a geometric scene graph extracted
from a partial scan of an area.

As illustrated in Fig. 2, we construct the SCG with nodes
that are i) object nodes including all the observed objects
in the partially known environment and any target unseen
object to be localised, or ii) concept nodes that are retrieved
from ConceptNet [29]. Each SCG is constructed on top of a
Spatial Graph (SG) composed of object nodes that are fully
connected. Each object node is further connected to concept
nodes via the semantic relationships. The edges of SCG are
of three heterogeneous types:

• Proximity relates the pairwise distances between all the
object nodes given the partial 3D scan;

• AtLocation is retrieved from ConceptNet, indicating
which environment the objects are often located in;

• UsedFor is retrieved from ConceptNet, describing the
common use of the objects.

The proximity edges connect all the objects nodes of the SCG
in a fully connected manner, while the semantic AtLocation
and UsedFor edges connect each object node with its related
concept nodes that are queried from ConceptNet (e.g. bed
AtLocation apartment or bed UsedFor resting). The two
semantic edge types provide useful hints on how objects
can be clustered in the physical space, thus benefitting the
position inference of indoor objects.

We formulate SCG as an undirected graph that is com-
posed by a set of nodes H = {hi| i ∈ (0, N ]}, where
N = No +Nc is the total number of nodes in SCG with No

the number of the object nodes and Nc the number of the



concept nodes. The D-vector hi is the node’s corresponding
word embedding in NumberBatch [30] (i.e. D = 300). The
edges are defined by the set E = {ei,j | i, j ∈ (0, N ], i ̸= j},
where ei,j is the edge between node i and node j. Let Ni

be the neighbouring nodes of node i connected by any edge.
We use a 4-dimensional feature vector, i.e. ei,j ∈ R4, whose
first three elements indicate the previously defined edge type
in a one-hot manner while the last element is a scalar indicat-
ing the pairwise distance between two scene objects. Note
that the distance is only measurable on the observed part
of the 3D scan (i.e. between known object nodes). Other-
wise, we initialise the distance value to −1 when the edges
are AtLocation, UsedFor, or proximity edges involving the
unknown target object node.

4. SCG Object Localiser (SCG-OL)
We define a two-stage solution to address the task of lo-

calising the arbitrary unobserved target object using the SCG.
In the first stage, we propose a Proximity Prediction Network
(PPN) on top of the SCG. PPN aims to predict the pairwise
distances between the unseen target object and the objects in
the partially known scene. In the second stage, our localisa-
tion module takes as input the set of pairwise distances and
it outputs the position of the target object based on a proba-
bilistic circular intersection. The following sections provide
more details regarding the Proximity Prediction Network
and the Localisation module.

4.1. Proximity Prediction Network

The goal of the PPN is to predict all the pairwise distances
between the unseen object and the observed scene objects.
We utilise a variant of the Graph Transformer [28] and update
the nodes iteratively over the heterogeneous edges, to allow
effective fusion between the commonsense knowledge and
the metric measurements.

The input to the network is the set of node features H
and the output is a new set of node features H′

= {h′
i| i ∈

(0, N ]}, with h′
i ∈ RD. Each node i in the graph is updated

by aggregating the features of its neighbouring nodes N i via
two rounds of message passing. The resulting h′

i forms a
contextual representation of its neighbourhood.

At each round of message passing, we first learn the
attention coefficient αi,j using a graph based version of the
scaled dot-product attention mechanism [28], conditioned
on each edge feature ei,j from node j to node i, and on
both nodes’ features, hi and hj . This allows the network
to understand how important each neighbour is for the node
representation’s update, which is:

vj = Wvhj + bv, (1)

ĥi =
∑
j∈Ni

αij(vj + ei,j), (2)

where Wv, bv represent respectively the weight matrix and
bias used to calculate the value vector v for the scaled dot-
product attention mechanism. The updated state h′

i is then
defined as:

h′
i = ReLU(LNorm((1− βi)ĥi + βiWrhi + br)), (3)

where βi is the output of a gated residual connection [28],
which prevents all the nodes from converging into indistin-
guishable features. Wr, br represent the weight matrix and
bias respectively used in the linear transformation of hi.

After message passing, we obtain the set of final node
embeddings H∗ = {h∗

i | i ∈ (0, N ]}, with h∗
i ∈ R2D =

Concat(hi,h
′
i), where Concat(·) represents a concate-

nation operation. This way, the final representation of
each node contains both the original object embedding and
the aggregated embedding of its context in the scene. Fi-
nally, we combine the features of the two nodes h∗

i,t =
Concat(h∗

i ,h
∗
t ) by concatenation, and predict the pairwise

distances d̂i,t between the target object node t and the ob-
served object node i via fully connected layers.

SCG-OL loss. To train our PPN, we compute the Mean
Square Error (MSE) between the predicted pairwise dis-
tances d̂i,t of the object node i and the target node t and
the set of ground-truth pairwise distances di,t. The loss is
expressed as:

LMSE(d̂, d) =
1

No − 1

No−1∑
i=1

(d̂i,t − di,t)
2
. (4)

Note that the class of the target object can have multiple
instances in the unknown part of the scene, i.e. multiple
ground-truth positions. Our method, as a localiser, uses the
GT position of the instance that is closest to the predicted
position for the computation of the MSE loss.

4.2. Distances to position: Localisation module

In the localisation module, we solve the problem of con-
verting the set of predicted object-to-object distances to a
single position p̂t in the space that defines the position of
the searched object in a bird’s eye view. The distances d̂i,t
predicted by the PPN, and the known objects positions pi,
can be used to define a set of circles of radius d̂i,t, centred
in the positions pi. With perfect predictions, p̂t would be
obtained as the point of intersection of all the circles. In this
case we would need at least three known object nodes to
unambiguously define p̂t. For this reason, in this study we
only consider instances with three or more known objects.
Let us define p̂t as the point in the space that minimises the
squared distance from all the circles:

p̂t = arg min
pt

No−1∑
i

(∥pt − pi∥2 − d̂i)
2. (5)



While it is possible to obtain a closed form solution of Eq. 5
via Linear Least Squares [36], this is not robust to noise in
the measured distances, noise which is likely present in the
PPN predictions. An alternative is to minimise this problem
by brute force: we first subdivide the space into a grid and
compute the sum of the residuals at each position. We then
take the position with the lowest value and use it as an initial
guess for the Nelder-Mead’s simplex algorithm [24] to obtain
the final estimate.

5. Experiments
We evaluate our proposed method on a new dataset of

partially reconstructed indoor scenes. First, we provide the
implementation details of our method followed by the met-
rics used for evaluation.
Implementation Details. We train our network using the
Adafactor optimiser [26]. The network is trained for 100
epochs. The dimension of the first message passing projec-
tion is set to D = 256 and 2D for the second round. Both
use 4 attention heads. For localisation, we ignore edges with
a predicted distance of more than 5m, as such high distance
values are not trustworthy for the localisation.
Evaluation Measures. We evaluate the performance in
terms of both the proximity prediction and target object
localisation. For the edge proximity prediction, we report
the mean Predicted Proximity Error (mPPE), which is the
mean absolute error between the predicted distances and the
ground-truth pairwise distances between the target object
and the objects in the partially known scene. We quantify
the localisation performance by the Localisation Success
Rate (LSR), which is defined as the ratio of the number of
successful localisations over the number of tests. A localisa-
tion is considered successful if the predicted position of the
target object is close to a target instance within a predefined
distance. Unless stated differently, the distance threshold
for a success is set to 1m. We consider LSR as the main
evaluation measure for our task. Finally, to quantify the
localisation accuracy among successful cases, we report the
mean Successful Localisation Error (mSLE), which is the
mean absolute error between the predicted target position
and the ground-truth position among all successful tests.

5.1. Dataset

We built a new dataset of partial 3D scenes using se-
quences available in ScanNet [7]. ScanNet contains RGB-D
sequences taken at a regular frequency with a RGB-D cam-
era. It provides the camera pose corresponding to each
captured image, as well as the point-level annotations, i.e.
class and instance id, for the complete Point Cloud Data
(PCD) of each reconstructed scene.

The original acquisition frequency in ScanNet is very
high (30Hz), meaning that most images are similar with
redundant information for the scene reconstruction. We

(a) Complete scene (b) Partial scene
Figure 3: The proposed dataset with (a) the complete scene
from the ScanNet dataset, and (b) our reconstructed partial
scene overlaid with the Spatial Graph.

therefore use ScanNet frames 25k, a subset provided in the
ScanNet benchmark1 with a frequency of about 1/100th of
the initial one. We further divide the full RGB-D sequences
of each scene into smaller sub-sequences to reconstruct the
partial scenes. We vary the length of the sub-sequences to
reflect different levels of completeness of the reconstructed
scenes. For each sub-sequence, we integrate the RGB-D
information with the camera intrinsic and extrinsic param-
eters to reconstruct the PCD at the resolution of 5cm using
Open3D [41]. The annotation for each point in the partial
PCD is obtained by looking for the corresponding closest
point in the complete PCD scene provided by ScanNet.

From each partially reconstructed scene, we extract the
corresponding Spatial Graph with its object nodes, i.e. the
graph with only proximity edges (see Fig. 3 for an exam-
ple). The nodes of the graph contain the object information:
e.g. the position, defined as the centre of the bounding box
containing the object, and the object class. We consider the
position of each scene object as a 2D point (x, y) on the
ground plane as most objects in the indoor scenes of Scan-
Net are located at a similar elevation. Each node is marked
as observed if it represents an object in the partially known
scene; or as unseen if it represents the object in the unknown
part of the scene, i.e. the target object to localise.

Moreover, we construct our SCGs by adding two seman-
tic relationships AtLocation and UsedFor, as well as the
concepts that are linked by the relationships. We extract the
concepts from ConceptNet by querying each scene object
using the two semantic relationships. The query returns a
set of related concepts together with their corresponding
weight w indicating how “safe and credible” each related
concept is to the query. We include a concept to the SCG
only when it has a weight w > 1. Fig. 4 shows the average
number of nodes linked by different types in the SCGs. On
average, each SCG contains about 5 times more the concept
nodes than the object nodes in the SG, demonstrating that
rich commonsense knowledge is introduced within the SCG.
The outliers in the boxplot visualisation are introduced by
uncommon room types with a large amount of objects, e.g.

1http://kaldir.vc.in.tum.de/scannet benchmark



Figure 4: Average number of different types of nodes among
the SCGs in the train and test split of the dataset.

libraries with several books. More statistics regarding our
dataset can be found in the Supplementary Material.

Finally, we divide the dataset into training, validation
and test sets. While we have access to the ScanNet training
and validation data (1201 and 312 scenes respectively), we
do not have access to their test data. To address this, we
use ScanNet’s validation sequences as our testing set, while
we randomly sample a subset of scenes from the training
set as the validation. By splitting ScanNet’s sequences into
partial reconstruction, we have 24896 partial scenes with
19461 partial scenes to be used for training and validation,
and 5435 partial scenes for testing; where each partial scene
has its corresponding SCG.

5.2. Experimental Comparisons

We validate SCG-OL by comparing its performance on
our new dataset against a set on baselines and state-of-the-art
methods for layout prediction. All the baselines follow the
two-staged pipeline by first predicting the pairwise distances
and then estimating the position with the localisation module.
We summarise below all the evaluated approaches.

• Statistics-based baselines uses the statistics of the
training set, i.e. the mean, mode, and median values of
the pairwise distances between the target object and the
scene objects, as the predicted distance.

• MLP learns to predict pairwise distances between the
target object and every other observed object in the
scene without considering the spatial nor the semantic
context. The input to this model is a pair of the target
object and the observed object with each object repre-
sented by a one-hot vector indicating the class, which
is passed to a MLP that predicts pairwise distances.

• MLP w Commonsense learns to predict the pairwise
distance between the target object and every other ob-
served object in the scene without considering the spa-
tial context. We first use GCN to propagate the concept-
net information to object nodes, then the features are
passed to a MLP that predicts pairwise distances.

• LayoutTransformer [16] uses the transformer’s self-
attention to generate the 2D/3D layout in an auto-

Table 1: Methods comparison for object localisation in par-
tial scenes. mPPE: mean Predicted Proximity Error. mSLE:
mean Successful Localisation Error. LSR: Localisation Suc-
cess Rate (the main measure). SG: Spatial Graph. SCG:
Spatial Commonsense Graph.

Method Data type mPPE(m)↓ mSLE(m)↓ LSR ↑
Statistics-Mean Pairwise 1.167 0.63 0.140
Statistics-Mode Pairwise 1.471 0.63 0.149

Statistics-Median Pairwise 1.205 0.64 0.164
MLP Pairwise 1.165 0.62 0.143

MLP w Commonsense Pairwise 1.090 0.64 0.163
LayoutTransformer [16] List - 0.59 0.176

GNN w\o Commonsense SG 0.998 0.61 0.212
SCG-OL(Ours) - Learned Emb SCG 0.974 0.61 0.234
SCG-OL(Ours) - Concept. Emb SCG 0.965 0.61 0.238

regressive manner. We describe the observed objects as
a sequence of elements as in [16], where each element
contains the object class and the position (x, y). We
then feed the class of the target object to generate its
corresponding position (x, y). For a fair comparison,
we retrain the model with our training set.

• GNN w\o Commonsense is a variant of our approach
that we have implemented to test the capability of our
method when used without commonsense knowledge.
The input is the Spatial Graph, which is composed only
by the object nodes and proximity edges. The initial
node features are not word embeddings, but are learned
during training via an embedding layer.

• SCG-OL(Ours) is our method with two variants that
are trained with learnable node embeddings and with
pretrained node embeddings from ConceptNet, respec-
tively.

Discussion. Table 1 reports the localisation performance
measures in terms of mPPE, LSR, and mSLE, of all com-
pared methods evaluated on our dataset comprised of par-
tially reconstructed scenes. We can observe that methods
with only pairwise inputs, e.g. statistics-based approaches
or MLP, lead to worse performance compared to methods
that account for other objects present in the observed scene.
Nevertheless, introducing some semantic reasoning on top of
these methods seems to improve the performances, as shown
by MLP w Commonsense with an improvement of 2% on
LSR compared to the standard MLP. LayoutTransformer di-
rectly predicts the 2D position of the target object by taking
as input the list of all the observed scene objects and using
the target class as the last input token. LayoutTransformer
can better encode the spatial context and outperforms the
statistic-based and MLP baselines. The graph-based meth-
ods achieve the highest performances, suggesting that for
this problem a graph-based representation of the scene is
more effective than a list-based one. Our SCG-OL that use
the full SCG is able to improve on all metrics w.r.t. the GNN
without Commonsense knowledge, when using either em-
beddings learned during training and pretrained ConceptNet
embeddings. This shows how the SCG can effectively be



(a) Localisation error (b) LSR
Figure 5: Localisation performance over different levels of
scene completeness. (a) The localisation error in terms of
MAE between the estimated target position and the ground-
truth position. (b) The LSR at different threshold levels.

used to improve the localisation problem. The better perfor-
mances with the pretrained embeddings are likely due to the
fact that these embeddings are learned on a broader set of
tasks, thus including additional information that cannot be
learned directly from the localisation task.

Fig. 5 shows how the completeness level of the known
scene impacts the localisation performance of SCG-OL.
Fig. 5a reports the mean absolute error (MAE) between the
estimated position and the ground-truth position in function
of the scene completeness. Note that the MAE is calculated
on all the test cases including both the successful and the
failed ones. In general, with an increasing scene complete-
ness, SCG-OL can predict more accurately the position of
the target object. Fig. 5b presents how the LSR varies as
the scene gets more complete. In general, the LSR increases
when the localisation error decreases. We report the LSR at
three different threshold values, i.e. 1m, 2m, and 3m, where
a larger threshold leads to a larger LSR value.
Qualitative results. Fig. 6 shows the qualitative results
obtained using our method SCG-OL. Fig. 6a shows that
the “bag” object class was successfully located near the
area where the bag instances are. Similarly in Fig. 6b, the
position of the second sofa in the room (target object) is
correctly estimated at a position opposite to the first sofa
in the SCG. Interestingly, Fig. 6c presents a failure case in
which the method locates a television at the opposite side of
the ground-truth television instance. Despite the estimated
position being far from the real instance, the prediction is
plausible due to the symmetry of the scene. We present more
qualitative results in the Supplementary Material.

5.3. Ablation study

We further analyse SCG-OL to justify the usefulness of
the commonsense relationships and the types of attention
graph networks. We also investigated the impact of increas-
ing the number of message passing layers, as well as using
only the updated features when predicting the distances.
Which commonsense relationship is more important? In
order to better understand the effects of using different com-

Table 2: Impacts of different ConceptNet relationships with
the proposed SCG-OL. LSR: Localisation Success Rate.

Edge Types Obj. linked by n semantic edges (%) LSR ↑0 1 2
Proximity 100 0 0 0.226

AtLocation, Proximity 8 92 0 0.233
UsedFor, Proximity 19 81 0 0.227

AtLocation, UsedFor, Proximity 8 12 80 0.238

monsense relationships, we compare SCG-OL against its
variants in which the SCG contains: i) only Proximity edges
without commonsense relationships, ii) Proximity edges with
AtLocation edges, iii) Proximity edges with UsedFor edges,
and vi) Proximity edges with AtLocation and UsedFor edges.
We report the main Localisation Success Rate (LSR) mea-
sure for all variants, as well as the scene average percentage
of object nodes which are linked by 0, 1, or 2 types of se-
mantic edges, i.e. AtLocation and UsedFor edges.
Discussion. Table 2 shows that AtLocation is more effective
than UsedFor for localising objects. A possible reason is that
using the AtLocation edge leads to message passing among
objects that are connected in the very same location, thus
prioritising information more relevant to the localisation
task. However, the best performance is obtained when the
SCG can rely on all types of edges. Moreover, most of the
object nodes ( 80%) are linked to concept nodes by both
AtLocation and UsedFor edges. This boosts the knowledge
fusion much more effectively than when only one type of
semantic edges are used in the SCG.

Which attention network is more effective? We examine
the usefulness of the attentional network of SCG-OL com-
pared to other attention modules for the localisation task.

• No attention: We use GINEConv [17] during message
passing without any attention module.

• Sequential GAT: We use GAT [31] as our attentional
message passing layer. As GAT cannot distinguish
heterogeneous edges and cannot be used with edge
features, we use it sequentially for each semantic edge:
first on the AtLocation edges, and then on the UsedFor
edges. We then use GraphTransformer for the message
passing on the proximity edges encoding the pairwise
distances on the edge feature.

• Sequential GATv2: This method operates similarly
to Sequential GAT, but employs GATv2 [4] for the
attention layer instead of GAT.

• HAN [35]: This method defines multiple meta-path
that connect neighbouring nodes either by specific node
or edge types. It employs attentional message passing
sequentially by first calculating the semantic-specific
node embedding and then updating them by another
round of attentional message passing. With SCG we
define three sets of meta neighbours, i.e. the proximity
neighbours, the AtLocation neighbours, and the Used-



Figure 6: Qualitative results obtained with SCG-OL. The partial known scene is coloured with a yellow background, while
the unknown scene is indicated with grey. The coloured circles indicate the object nodes present in the SCG. The red star
indicates the GT position of the target object, while the cyan diamond indicates the predicted positions. The network is able to
correctly predict the position of a bag in (a) and a sofa in (b). In the failure case of (c), the network positioned the television at
the wrong side of the table. Best viewed in colour.

Table 3: Impacts of different attentional networks for the ob-
ject localisation task on our SCG. LSR: Localisation Success
Rate.

Attentional Network Propagation mode LSR ↑
No attention - 0.207

GAT [31] Sequential 0.212
GATv2 [4] Sequential 0.206
HAN [35] Sequential 0.205
SCG-OL Simultaneous 0.238

For neighbours connected by the specific edges.
Discussion. As shown in Table 3, different attention mod-
ules can produce results that vary greatly in terms of LSR.
Among all, HAN achieves the worst performance. Sequen-
tial GAT and Sequential GATv2 were also not as effective as
SCG-OL. This could be explained by a failure to integrate
semantic and spatial information into the object node repre-
sentation, as the semantic edges and the spatial context are
aggregated separately, in a sequential manner. In contrast,
SCG-OL performs simultaneous message passing on all the
edge types, leading to the best localisation accuracy.
Do the number of message passing layers and the final
node concatenation of SCG-OL make a difference? We
examine a set of variants of our SCG-OL with between 1
to 4 message passing layers. Table 4 shows how using two
message passing layers leads to the best performances: using
a single layer leads to the worst results, and using more than
two fails to further improve the performances. This happens
because of the over-smoothing problem [6, 25], where af-
ter multiple message passing rounds, the embeddings for
different nodes are indistinguishable from one another.

Given the best layer number, we also validate the choice
of concatenating the original embedding to the aggregated
contextual ones, instead of using only the aggregated
features. Concatenation is more advantageous with a LSR
score of 0.238 while directly using the aggregated node
representation obtains a LSR of 0.224. Concatenation
allows the network to develop a better understanding of the
context after message passing while still remembering the

Table 4: Impact of different numbers of message passing
layers in our SCG-OL. LSR: Localisation Success Rate.

# Layers 1 2 3 4
LSR ↑ 0.190 0.238 0.238 0.234

initial representation.

6. Discussion
Conclusions. We addressed the new problem of object lo-
calisation given a partial 3D scan of a scene. We proposed a
novel scene graph model, the commonsense spatial graph, by
augmenting a spatial graph with rich commonsense knowl-
edge to improve the spatial inference. With such a graph
formulation, we proposed a two-stage solution for unseen
object localisation. We first predict the pairwise distances
between the target node and the other object nodes using
the graph-based Proximity Prediction Network, and then
estimate the target object’s position via circular intersec-
tion. We tested our proposed method and baselines on a new
dataset composed of partially reconstructed indoor scenes,
and showed how our solution achieved the best localisation
performance w.r.t. the other compared approaches. As future
work, we will investigate the applicability of our approach to
large-scale scenarios in wider geographical areas, e.g. a city.
Limitations. The proposed localisation pipeline is not train-
able end-to-end, as we enforce supervision on the intermedi-
ate information of the pairwise object distances rather than
on the target object position. This choice allows the model
to be reference-free, resulting in a better generalisation. Ap-
plying end-to-end supervision on the target position might
lead to a more accurate localisation, but it is challenging to
achieve without damaging the generalisation capabilities.
Broader impacts. Our dataset is built on top of ScanNet,
featuring static indoor scenes without the involvement of
human subjects. The dataset and the proposed scene graph
formulation can facilitate and motivate further research to-
wards scene understanding.
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