
Data organisation ABC
Siiri Fuchs, Hanna Koivula, Tuija Korhonen, Tanja Lindholm,

Päivi Rauste, Liisa Siipilehto

CC BY 4.0 Siiri Fuchs, Hanna Koivula,
Tuija Korhonen, Tanja Lindholm, Päivi
Rauste, Liisa Siipilehto

Contents

Part 1

1. Folder structure

2. Naming conventions

3. Version control

4. Read me -file

5. Keep track of what you do

6. Exercise 1

Part 2

1. How to keep a tabular file tidy?

2. Using formatting, comments, and units

3. Naming variables

4. Marking null values & missing data

5. Adding metadata to a table

6. Exercise 2

7. References

Well-organised and documented data is the foundation for the entire

research lifecycle!

When data is well organised and documented, it is

easy to share, open and re-use.

By following a few basic principles of data

processing and documentation, you will be many

steps closer to FAIR data.

Why organise and document?

1. Well-designed file names and folder structures make it easier to find and track
data files

2. Data is easier to use, share, open, access and preserve.
3. Standardized practices increase the value of the data and its reusability.
4. Good documentation reduces the risk of data being misinterpreted.
5. Time spent on careful documentation saves time both during the project and in

the opening phase.
6. Good metadata increases the discoverability of data.

Well organised and well documented

Good documentation includes:

1. Data collection methods: sampling, how the data was collected, what equipment
and software was used

2. Quality assurance methods
3. File and folder structure
4. Version control
5. Information about the terms of access and use or the confidentiality of the data
6. Names, labels and descriptions of variables, datasets and their values
7. An explanation or definition of the codes and classification systems used
8. Definitions of any special terms or abbreviations used

9. Codes for missing values and the reasons for them

Designing the folder structure

● For whom are you designing a data organisation system? For yourself, as a

researcher, for the needs of the project, for partners?

● Is the project short term or long term? Is a simple folder structure sufficient or do

you need a more complex structure?

● Who should have access to the folders? List all the people (including potential

ones) who will need access to the files on your system.

● Making copies and backups and controlling access is efficient with the help of

an organised folder structure (e.g. if the project contains sensitive data, a

particular folder can be protected with a password).

Functional folder and file structure

● Create a separate folder for each project by name and date (e.g. abbreviation + year).

● In addition to data files, create separate folders for project management, methods, text

files, etc.

● Consider who should have access to the folder

● Use unique names for files and folders.

○ The names of the files in different folders must not be confused when the folder structure

is disassembled (do not use the same file names in different folders and on the other hand

name the files so that you know which folder they belong to (some identifier)).

● The right balance between shallow and deep folder hierarchy helps to find the right file.

○ Avoid folders within folders. For example, don’t create different folders for different years,

despite the fact that you want to keep the years separate. Instead, name the files uniquely

and keep them in the same folder.

Good folder structure & content

A good structure includes at least the

following elements:

1. Unique main folder for the project

2. Codes

3. Data

4. Readme document containing all important

information about the project (there can be

more than one). There must be at least one

readme at the top level of the folder,

covering at least administrative matters.

https://mitcommlab.mit.edu/be/commkit/file-structure/#ChooseScaleAim

Data can be divided into different
folders, for example like this:

● Individual main folder for the
project

○ Code
○ Data

■ Raw data
■ Edited data
■ Final data

● Readme

https://github.com/mitcommlab/Coding-Documentation/blob/master/File-

Structure-Case-Studies.md#case-study-2-a-simple-hierarchy

Examples of folder structures

From: RDMKit, Elixir.

From: Three examples of file structures for different project types

https://rdmkit.elixir-europe.org/data_organisation#how-do-you-organise-files-in-a-folder-structure
https://github.com/mitcommlab/Coding-Documentation/blob/master/File-Structure-Case-Studies.md#three-examples-of-file-structures-for-different-project-types

Naming files

● The file name is the main identifier of the file:

○ Short & descriptive file names tell what the file contains and make it easier to organise the

data, but only if the naming is consistent.

● The file naming convention should be agreed at the beginning of the project by the whole group

and the names should include elements relevant to the project. It is important that everyone in the

project follows an agreed file naming convention.

Example elements to include in filenames

● Creation date

● Project number / experiment number / acronym

● Data type: sample ID, analysis, conditions, changes, etc.

● Place / coordinates

● Author's name / initials

● Version number

● The last three letters indicate the file format (e.g. .xls, .rtf, .mov, .tif, .doc)
From:

https://docs.csc.fi/data/datasets/metadata-and-documentation/#data-organization

https://rdmkit.elixir-europe.org/data_organisation#what-is-the-best-way-to-name-a-file

20221202_Mountain_EXP2_Kilpis_DATA_V01.xls

https://docs.csc.fi/data/datasets/metadata-and-documentation/#data-organization
https://rdmkit.elixir-europe.org/data_organisation#what-is-the-best-way-to-name-a-file

Tips for naming files

1. Balance the number of elements: too many make it difficult to understand, too few make it generic.

2. Arrange the elements from general to specific.

3. Use meaningful abbreviations.

4. Use an underscore (_), hyphen (-), or capital letter to separate elements in the name. Do not use spaces or special

characters: ?!& , * % # ; * () @$ ^ ~ ‘ { } [] < >.

5. Use as date format (ISO8601): YYYYMMDD (year, month, day), and time, if necessary, HHMMSS (hours, minutes,

seconds).

6. Include the version number in the name if necessary: at least two numbers (V02) and extend if necessary for minor

fixes (V02-03). The first zeros allow the files to be ordered correctly.

7. Write down your naming convention and explain the abbreviations in your documentation (e.g. Readme file).

8. If you have to rename numerous files in order to manage the files more easily, it is possible to use applications, e.g.

Bulk Rename Utility (Windows, free), Renamer4Mac (Mac).

Example: Mountain project, experiment 2, Place Kilpisjärvi, file created 2.12.2022

● Name of the file: 20221202_Mountain_EXP2_Kilpis_DATA_V01.xls

● Explanation: Time_ProjectAbbreviation_ExperimentNumber_Location_TypeOfData_VersionNumber

20221202_Mountain_EXP2_Kilpis_DATA_V01.xls

https://www.bulkrenameutility.co.uk/
https://renamer.com/

Version control helps you keep your

data organised!

● Version control can be done either manually, or by adding a sequential

number (_v03) to the end of the filename, or automatically, which is the

preferred method.
○ Automated version control can be implemented using software such as Git, GitHub or GitLab

(your organisation may offer an integrated solution).

● You can also use cloud storage solutions, which usually offer automatic file

version control. There are several version control systems available, both

open source and commercial, closed implementations.

20221202_Mountain_EXP2_Kilpis_DATA_V01.xls

20221202_Mountain_EXP2_Kilpis_DATA_V02.xls

https://git-scm.com/
https://github.com/
https://gitlab.com/gitlab-org/gitlab

Things to remember when versioning

● Version control produces a (modified) copy of the file, uniquely marked with a

version number. Version control allows reverting to a previous version, which is

important for data traceability, the tracking of edits and error correction.

● When making new versions of data files, it is important to keep a copy of the

original raw data.

● When sharing data, it can also be useful to provide both unprocessed and

processed versions of your data and include either code or explanations of how

the final version is produced

● Plan and agree which versions of the data will be archived and/or published.

20221202_Mountain_EXP2_Kilpis_DATA_V01.xls

20221202_Mountain_EXP2_Kilpis_DATA_V02.xls

README.txt - file

● The README- file binds the parts of the dataset together. It can be used to collect

and describe the data history (lineage), i.e. the relationships between individual

files, collection methods, data quality information, intended use and restrictions.

● README-file records consist of the documentation and data quality information

generated during data processing (and version control).

● Acts as a repository of ‘tacit knowledge’ for you and your research team.

● Makes data easier to publish and understand.

● Provides guidance on the re-use of data.

In addition, file or database level metadata describes how the files that make up the dataset relate to each other; what

format they are in; and whether they replace or are replaced by previous files. A folder-level readme.txt file is the classic

way of accounting for all the files and folders in a project.

https://carpentries-incubator.github.io/spreadsheet-humanities-lesson/02-common-mistakes/

README file

● A ReadMe file is a simple text file, such as
a .txt

● It should be clearly named using good
naming conventions (not mandatory)

● It should contain information about when it
was created or updated

● The date is in ISO 8601 format:
YYYYMMDD

● The file contains the author's name and
contact details

For datasets, the minimum requirement is
information on the following

● When was the data collected/produced?
● Data licence
● Links to publications using the data
● Links to openly available datasets
● Reference to dataset
● Descriptions of the datasets
● Reference to a file containing e.g.:

○ description of variables or
classifications (code book)

○ external vocabularies used in the
data

○ method descriptions and linkage of
data/files to them

Keep track of your analysis

To reproduce your analysis and to remember what you did, you should

● Create a new file with your cleaned or analysed data. Never modify the original dataset!

● Keep track of the steps you took in your cleaning or analysis.

○ What are the steps did you take from the raw data to the analysis data. For example, use a plain text

file (txt) to document the steps you took and store it in the same folder as the data file.

● It is recommended to use R, Python or another programming language to clean up your

data. Above your code write clearly what the different steps do # this does this and that

This might be an example of how to do it with the plain text file:

Text adapted from: Hoyt, P., et al.(2019): Data Carpentry: Data Organization in Spreadsheets for
Ecologists, June 2019 (Version v2019.06.2). Zenodo. http://doi.org/10.5281/zenodo.3269869

Keep track of your analysis

Exercise 1

If necessary, the trainer can add the necessary instructions and links on how to

proceed with the exercise.

How to structure data in spreadsheets

A few rules about how to keep your data tidy:

1. Put all your variables in columns — such as “weight” or “temperature”.

2. Never put units in the same cell with numeric values, but report them somewhere, such as in a

variable name.

3. Put each observation in a separate row.

4. Don’t put several pieces of information in the same cell. This makes it easier to use or sort the data.

5. Leave the raw data as it is — don’t change it!

6. Export the cleaned data into a text-based format, such as CSV (comma-separated values) format.

This ensures that anyone can use the data and is required by most data repositories.

Remember! Columns = Variables, Rows = Observations, Cells = Data (value).

Text adapted from: Hoyt, P., et al.(2019): Data Carpentry: Data Organization in Spreadsheets for
Ecologists, June 2019 (Version v2019.06.2). Zenodo. http://doi.org/10.5281/zenodo.3269869

Remember! Columns = Variables, Rows = Observations, Cells = Data (value)

Data Example from: Hällfors, Maria et al. (2020), Data from: Shifts in timing

and duration of breeding for 73 boreal bird species over four decades,

Dryad, Dataset, https://doi.org/10.5061/dryad.wstqjq2ht

https://doi.org/10.5061/dryad.wstqjq2ht
https://doi.org/10.5061/dryad.wstqjq2ht

One Tab - One Table, One Table - One Tab

Using multiple tables

● Do not create multiple data tables

within a spreadsheet!. It may look

nice, but it will confuse the computer.

● By creating multiple tables within one

spreadsheet, you make false

associations between things for the

computer, which sees each row as an

observation.

● You are potentially using the same

field name in multiple places, making

it harder to clean up your data.

Using multiple tabs

● Using multiple workbook tabs may seem an easy way to organise

data or to create metadata, but it has consequences:

● For example, you are more likely to accidentally introduce

inconsistencies into your data if you start recording data in a new

tab every time you take a measurement.

● Even if you manage to prevent all inconsistencies from creeping

in, you are still adding an extra step to your analysis. If you need

to combine this data into a single data table, you will need to

explicitly tell the computer how to combine the tabs.

● Also, many data repositories require your data to be entered in a

single tabular file, such as csv.

The next time you enter data, and want to create another tab or table, ask yourself if you could avoid adding that tab by adding

another column to your original spreadsheet. Even if your spreadsheet gets really long, you can always freeze the column

headings so that they remain visible if you have a spreadsheet with many rows.

Text adapted from: Hoyt, P., et al.(2019): Data Carpentry: Data Organization in Spreadsheets for
Ecologists, June 2019 (Version v2019.06.2). Zenodo. http://doi.org/10.5281/zenodo.3269869

Using formatting, comments and units in excel sheet

1. Never use any formatting, such as highlighting, borders and such to convey

information.

2. Firstly, a computer cannot read this information, and secondly information is not

stable

3. Add a column each piece of information you want to convey.

4. Comments should also be in a separate column.

5. Do not use units after numbers. You can either express the information in the

variable name or you can have a new column for units.

6. Remember not to use any special characters when adding comments or units.

Text adapted from: Hoyt, P., et al.(2019): Data Carpentry: Data Organization in Spreadsheets for
Ecologists, June 2019 (Version v2019.06.2). Zenodo. http://doi.org/10.5281/zenodo.3269869

Naming the variables

Give variables descriptive names!

Remember:

1) Names should not contain spaces, numbers or special characters. These
confuse computers.

2) Instead of using spaces, use underscores (_)
3) You can also use Capital Letters to separate words, for example

ExampleFileName
4) Names should not be too long!
5) Remember to document your naming convention, especially if you use

abbreviations. This will enable you and others to fully understand what they
mean.

Text adapted from: Hoyt, P., et al.(2019): Data Carpentry: Data Organization in Spreadsheets for
Ecologists, June 2019 (Version v2019.06.2). Zenodo. http://doi.org/10.5281/zenodo.3269869

Naming variables, an example

Hällfors, Maria et al. (2020), Data from: Shifts in timing and duration of breeding for 73 boreal bird species over four

decades, Dryad, Dataset, https://doi.org/10.5061/dryad.wstqjq2ht

https://doi.org/10.5061/dryad.wstqjq2ht
https://doi.org/10.5061/dryad.wstqjq2ht

Not filling in zeros

Why bother writing in the number zero if, for example, your observations in

the survey are mostly zeros?

1) There is a difference between a zero and a blank cell in a spreadsheet.

For the computer, a zero is data that you have measured or counted. An

empty cell means it hasn’t been measured and the computer will

interpret it as an unknown value (null value).

2) Most programs are likely to misinterpret empty cells as null values that

you intended to be zeros. This can naturally cause problems with your

analysis and misinterpretations.

Text adapted from: Hoyt, P., et al.(2019): Data Carpentry: Data Organization in Spreadsheets for
Ecologists, June 2019 (Version v2019.06.2). Zenodo. http://doi.org/10.5281/zenodo.3269869

Using problematic null values

Never use 0 as a null value! Statistical programs

will not recognize that this is intended to represent

missing values.

There are a few possibilities to choose from,

depending on the final use of your data and how

you intend to analyse it.

The important thing is to use a clearly defined

and consistent null indicator.

Ethan P White, Elita Baldridge, Zachary T. Brym, Kenneth J. Locey, Daniel J. McGlinn, Sarah R. Supp, Nine simple ways to make it

easier to (re)use your data Vol. 6 No. 2 (2013): Special Issue - Data Sharing in Ecology and Evolution

https://datacarpentry.org/spreadsheet-ecology-lesson/02-common-mistakes/index.html

Text adapted from: Hoyt, P., et al.(2019): Data Carpentry: Data Organization in Spreadsheets for
Ecologists, June 2019 (Version v2019.06.2). Zenodo. http://doi.org/10.5281/zenodo.3269869

https://ojs.library.queensu.ca/index.php/IEE/issue/view/478

Inclusion of metadata in the data table

● It is essential to create proper metadata in order to be able to read the data.

● However, metadata should not be included in the data file itself, as this information is

not data and its inclusion may affect how computer programs interpret your data file.

● It is recommended that you store a separate metadata file in the same directory as your

data, preferably in a plain text format with the same name that clearly associates it with

your data.

● A plain text format allows you to encode comments, units, information about null values

etc. Any information that is needed to read your data.

Text on metadata adapted from the online course Research Data MANTRA by EDINA and Data Library, University of Edinburgh. MANTRA is licensed under a

Creative Commons Attribution 4.0 International License and from the online course Data Organization in Spreadsheets for Ecologists licensed under CC-BY 4.0

2018–2023 by The Carpentries

http://datalib.edina.ac.uk/mantra
http://datalib.edina.ac.uk/mantra
https://creativecommons.org/licenses/by/4.0/
https://datacarpentry.org/spreadsheet-ecology-lesson/
https://datacarpentry.org/spreadsheet-ecology-lesson/
https://carpentries.org/

Dates in data

Always use widely known ISO8601

standard: YYYYMMDD (year, month,

day) and when necessary HHMMSS

(hours, minutes, seconds).

It is highly important to use four numbers

for the year.

For example recording year only with two

numbers, such as 17 or 99, can represent

either year 1917 or 2017 and 1899 or

1999.

Remember that there are datasets that

go back hundred years and possibly even

longer.

Data example from: Hällfors, Maria et al. (2020), Data from: Shifts in timing and

duration of breeding for 73 boreal bird species over four decades, Dryad, Dataset,

https://doi.org/10.5061/dryad.wstqjq2ht

Text adapted from: Hoyt, P., et al.(2019): Data Carpentry: Data Organization in Spreadsheets for
Ecologists, June 2019 (Version v2019.06.2). Zenodo. http://doi.org/10.5281/zenodo.3269869

https://doi.org/10.5061/dryad.wstqjq2ht

Exercise 2

If necessary, the trainer can add the necessary instructions and links on how to

proceed with the exercise.

References
● Slides 6-9

○ MIT School of Engineering Communication Lab;
■ https://mitcommlab.mit.edu/be/commkit/file-structure/#ChooseScaleAimshttps://mitcommlab.mit.edu/be/commkit/file-

structure/#ChooseScaleAim
■ https://github.com/mitcommlab/Coding-Documentation/blob/master/File-Structure-Case-Studies.md#case-study-2-a-simple-hierarchy
■ https://github.com/mitcommlab/Coding-Documentation/blob/master/File-Structure-Case-Studies.md#three-examples-of-file-structures-for-

different-project-types
○ RDMkit Elixir: https://rdmkit.elixir-europe.org/data_organisation#how-do-you-organise-files-in-a-folder-structure

● Slides 10-13
○ CSC: https://docs.csc.fi/data/datasets/metadata-and-documentation/#data-organization
○ Elixir: https://rdmkit.elixir-europe.org/data_organisation#what-is-the-best-way-to-name-a-file
○ Siiri Fuchs, & Mari Elisa Kuusniemi. (2018). Making a research project understandable - Guide for data documentation (1.2). Zenodo.

https://doi.org/10.5281/zenodo.1914401
● Slides 20, 24

○ Data Example from: Hällfors, Maria et al. (2020), Data from: Shifts in timing and duration of breeding for 73 boreal bird species over four decades,

Dryad, Dataset, https://doi.org/10.5061/dryad.wstqjq2ht
● Slides 14, 16, 19, 21-23, 25-28

○ The Carpentries. Text mainly adapted from online course Data Organization in Spreadsheets for Ecologists licensed under CC-BY 4.0 2018–2023
by The Carpentries

○ Peter R. Hoyt, Christie Bahlai, Tracy K. Teal (Eds.), Erin Alison Becker, Aleksandra Pawlik, Peter Hoyt, Francois Michonneau, Christie
Bahlai, Toby Reiter, et al. (2019, July 5). datacarpentry/spreadsheet-ecology-lesson: Data Carpentry: Data Organization in Spreadsheets
for Ecologists, June 2019 (Version v2019.06.2). Zenodo. http://doi.org/10.5281/zenodo.3269869

■ https://datacarpentry.org/spreadsheet-ecology-lesson/
■ https://datacarpentry.org/spreadsheet-ecology-lesson/02-common-mistakes/index.html

○ EDINA and Data Library, University of Edinburgh: https://rdmkit.elixir-europe.org/data_organisation#what-is-the-best-way-to-name-a-file
○ Tidy data: https://www.jstatsoft.org/article/view/v059i10
○ Data organization in spreadsheets: https://peerj.com/preprints/3183/
○ Ethan P White, Elita Baldridge, Zachary T. Brym, Kenneth J. Locey, Daniel J. McGlinn, Sarah R. Supp, Nine simple ways to make it easier to

(re)use your data Vol. 6 No. 2 (2013): Special Issue - Data Sharing in Ecology and Evolution

https://mitcommlab.mit.edu/be/commkit/file-structure/#ChooseScaleAimshttps://mitcommlab.mit.edu/be/commkit/file-structure/#ChooseScaleAim
https://github.com/mitcommlab/Coding-Documentation/blob/master/File-Structure-Case-Studies.md#case-study-2-a-simple-hierarchy%E2%80%8B
https://github.com/mitcommlab/Coding-Documentation/blob/master/File-Structure-Case-Studies.md#three-examples-of-file-structures-for-different-project-types
https://docs.csc.fi/data/datasets/metadata-and-documentation/#data-organization
https://rdmkit.elixir-europe.org/data_organisation#what-is-the-best-way-to-name-a-file
https://doi.org/10.5281/zenodo.1914401
https://doi.org/10.5061/dryad.wstqjq2ht
https://datacarpentry.org/spreadsheet-ecology-lesson/
https://datacarpentry.org/spreadsheet-ecology-lesson/
https://carpentries.org/
https://datacarpentry.org/spreadsheet-ecology-lesson/
https://datacarpentry.org/spreadsheet-ecology-lesson/02-common-mistakes/index.html
https://rdmkit.elixir-europe.org/data_organisation#what-is-the-best-way-to-name-a-file
https://www.jstatsoft.org/article/view/v059i10
https://peerj.com/preprints/3183/
https://ojs.library.queensu.ca/index.php/IEE/issue/view/478

