Data from: A cost-effective blood DNA methylation-based age estimation method in domestic cats, Tsushima leopard cats (Prionailurus bengalensis euptilurus), and Panthera species, using targeted bisulfite sequencing and machine learning models
- 1. Kyoto University
- 2. Hokkaido University
- 3. National Institute for Environmental Studies
Description
Knowledge of individual age can help both in-situ and ex-situ conservation programs to design more efficient and suitable management plans for targeted wildlife species. DNA methylation is one of the epigenetic aging markers that has emerged as a promising tool that can estimate age with high accuracy using only a tiny amount of biological material, which can be collected in a minimally invasive way. Here, we sequenced five targeted genetic regions and used 8–23 selected CpG sites to build age estimation models with machine learning methods with about only $3–7 per sample, using blood samples of seven Felidae species—ranging from small to big, and domestic to endangered species: domestic cats (Felis catus, 139 samples), Tsushima leopard cats (Prionailurus bengalensis euptilurus, 84 samples), and five Panthera species (96 samples). The models built achieved satisfactory accuracy—the mean absolute error of the best models was 1.966, 1.348, and 1.552 years in domestic cats, Tsushima leopard cats, and Panthera spp., respectively. Our models in domestic cats and Tsushima leopard cats were applicable to individuals regardless of health conditions, indicating the high applicability of our models to samples collected from diverse situations, e.g., rescued individuals in the context of conservation. We also showed the possibility of developing universal age estimation models for the five Panthera spp. using two of the five genetic regions, suggesting an even lower cost to use our models for future applications.
Notes
Files
Files
(174.9 kB)
Name | Size | Download all |
---|---|---|
md5:0e6d18eb5854f9c2bb4c633ec02f276b
|
60.3 kB | Download |
md5:b1b11d350b35b5812de0f1e72996c95b
|
114.6 kB | Download |
Additional details
Related works
- Is source of
- 10.5061/dryad.3r2280gn4 (DOI)