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Abstract15

Regional climate models (RCMs) have a high computational cost due to their higher spa-16

tial resolution compared to global climate models (GCMs). Therefore, various downscal-17

ing approaches have been developed as a surrogate for the dynamical downscaling of GCMs.18

This study assesses the potential of using a cost-efficient machine learning alternative19

to dynamical downscaling by using the example case study of emulating surface mass20

balance (SMB) over the Antarctic Peninsula. More specifically, we determine the impact21

of the training framework by comparing two training scenarios: (1) a perfect and (2) an22

imperfect model framework. In the perfect model framework, the RCM-emulator learns23

only the downscaling function; therefore, it was trained with upscaled RCM features at24

GCM resolution. This emulator accurately reproduced SMB when evaluated on upscaled25

RCM features, but its predictions on GCM data conserved RCM-GCM inconsistencies26

and led to underestimation. In the imperfect model framework, the RCM-emulator was27

trained with GCM features and downscaled the GCM while exposed to RCM-GCM in-28

consistencies. This emulator predicted SMB close to the truth, showing it learned the29

underlying inconsistencies and dynamics. Our results suggest that a deep learning RCM-30

emulator can learn the proper GCM to RCM downscaling function while working directly31

with GCM data. Furthermore, the RCM-emulator presents a significant computational32

gain compared to an RCM simulation. We conclude that machine learning emulators can33

be applied to produce fast and fine-scaled predictions of RCM simulations from GCM34

data.35

Plain Language Summary36

Over the last century, climate scientists have tried to deepen their understanding of the37

behavior of climate processes through two types of computer climate simulations: global38

(GCMs) and regional (RCMs) climate models. GCMs cover the whole planet but do not39

contain fine spatial details, whereas RCMs provide highly detailed information but cover40

small areas and come at a high additional computational cost. Therefore, we imitated41

regional models from global models using machine learning to facilitate their faster de-42

velopment.43

To test our machine learning framework, we focused on the Antarctic Peninsula and aimed44

to reproduce the surface mass balance of ice formation and loss. We trained our model45

to learn the relationship between a group of low-resolution images of climate variables46

and a high-resolution image from surface mass balance images in the same region.47

Our results show that the machine learning model is fast and could recreate regional im-48

ages of ice sheet processes from global data almost identical to existing on-site observa-49

tions. This is a good start for further usage of machine learning emulators.50

In conclusion, we can make fast and detailed reproductions of surface mass balance pro-51

cesses at regional scales from globally accessible climate data using machine learning.52

1 Introduction53

Numerous climate models have been developed to understand and predict the behav-54

ior of different climate phenomena. Climate models simulate climate variables in differ-55

ent parts of the world over time and space. Their complexity is a compromise between56

computational costs, the resolution of pixels, and the domain covered (Doury et al., 2022).57

Depending on the spatial resolution and domain, two types of models are typically de-58

fined: global (GCMs) and regional climate models (RCMs).59

GCMs are simulations that cover the entire world. Since they have global domains, their60

spatial resolution is typically low (50-300 km), which complicates capturing the effects61

of local forcings and the fine-scale representation of heterogeneous surface regions (Kittel62
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et al., 2021; Seroussi et al., 2020). On the other hand, RCMs are a dynamic downscal-63

ing of GCMs, and their driving data is typically derived from GCMs directly (e.g., Giorgi64

and Bates (1989), Box and Rinke (2003), Fettweis et al. (2017), and Kotlarski et al. (2015)).65

RCMs have a higher spatial resolution (1-50 km) than GCMs but cover a limited globe66

area. Due to the RCMs’ higher spatial resolution, they come with a high computational67

cost and time (usually several weeks on supercomputers). Furthermore, while RCMs elim-68

inate most of the low-resolution bias from the GCM inconsistencies, they can still mis-69

represent key small-scale processes due to their coarse resolutions (Sellevold et al., 2019).70

This study explores the potential of using a more cost-efficient machine learning alter-71

native to dynamical downscaling by using the example case study of emulating surface72

mass balance (SMB) over the Antarctic Peninsula. SMB is the net balance between in-73

puts and outputs of mass on top of the ice sheet (Lenaerts et al., 2019). It is a key in-74

put to essential climate variables when observing the Antarctic Ice Sheet and is typically75

obtained from RCMs after dynamical downscaling. Changes in the surface mass of Antarc-76

tica impact the global mass balance and, therefore, the ice dynamics and sea-level rise (Mottram77

et al., 2021). Currently, however, it is challenging to model SMB accurately because it78

varies strongly across multiple scales of space and time. Moreover, SMB is impacted by79

complex interactions between the atmosphere and the ice sheet surface, large-scale at-80

mospheric circulations, and ice sheet topography (Lenaerts et al., 2019). For a fine-scale81

representation of Antarctica, such as its edges or peripheral ice, the resolution of a GCM82

is too coarse (Kittel et al., 2021; Seroussi et al., 2020). In addition, GCMs typically do83

not correctly incorporate critical polar physical processes, such as snow melt, albedo feed-84

back, etc. (Kittel et al., 2021; Lenaerts et al., 2017). Polar-oriented RCMs, such as the85

Modèle Atmosphérique Régional (MAR), tackle the problem of low spatial resolution of86

GCMs over Antarctica and give a significantly more robust evaluation of mass and en-87

ergy fluxes at the surface, but at a high computational cost (Fyke et al., 2018; Kittel et88

al., 2021).89

One generally used alternative to the dynamical downscaling of GCMs is empirical sta-90

tistical downscaling. Using observational data, statistical downscaling methods estimate91

statistical relationships between regional climate variables and global-scale predictors.92

Local climate changes are simulated by applying those relationships to the outputs of93

GCMs (Sellevold et al., 2019; Doury et al., 2022). In this line, Agosta et al. (2012) and94

Ghilain et al. (2022) developed a statistical downscaling of Antarctic SMB components95

from large-scale atmospheric forcings. Similarly, in Greenland, Sellevold et al. (2019) and96

Geyer et al. (2013) used an elevation class method to downscale SMB. Statistical down-97

scaling can also be combined in a hybrid model with RCMs, e.g., Gallée et al. (2011) used98

a cascade of atmospheric models from large to local-scale to simulate high-resolution SMB99

over Antarctica. However, statistical downscaling approaches are limited because of (1)100

their dependence on observational data, (2) their need for a high-quality calibration dataset,101

and (3) their stationary statistical assumption of large/local-scale relationship that is102

required to remain constant under climate change (Dayon et al., 2015; Erlandsen et al.,103

2020; Doury et al., 2022).104

More recently, novel statistical methods that use machine learning have been proposed105

to downscale GCMs. The machine learning RCM-emulator receives low-resolution global106

inputs and outputs a high-resolution image of a regional predictor. The emulator is de-107

signed to save computational costs and augment the ensemble of RCM simulations by108

combining the advantages of dynamical and empirical statistical downscaling (Doury et109

al., 2022). Machine learning surrogates of computationally expensive and complex RCMs110

are still a novel and recent approach in the cryosphere community. Nevertheless, machine111

learning has already been harnessed in other applications that model ice variables and112

dynamics, e.g., Bolibar et al. (2020), Hu et al. (2021), and Jouvet et al. (2022).113

This study proposes two SMB emulators to downscale a GCM, using a (1) perfect and114

(2) imperfect model framework. The first emulator was trained following the perfect model115
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framework developed by Doury et al. (2022), where upscaled RCM features (UPRCM)116

are used as low-resolution inputs. The perfect model framework evaluates how the RCM-117

emulator performs when it only has to learn the downscaling function of the RCM. For118

this approach, the RCM-emulator needs perfect spatial and temporal consistency between119

the global climate variable inputs and local-scaled SMB images it recreates. Such an align-120

ment cannot be guaranteed when using variables from a GCM and RCM because they121

stem from different models, and an RCM can generate sub-GCM-grid variability. The122

perfect model framework provides a perfect alignment by bypassing GCM/RCM vari-123

ability and replacing GCM variables with an upscaled RCM (Sanchez-Gomez et al., 2009;124

Sanchez-Gomez & Somot, 2018). Nevertheless, we expect this framework to have lim-125

ited use in the study case of SMB because of large differences in RCM and GCM sim-126

ulations over the Antarctic Peninsula (Bozkurt et al., 2021). Therefore, we explore the127

potential of an alternative called the imperfect model framework, where the RCM-emulator128

is trained on coarse input features directly from the GCM. In this imperfect training frame-129

work, we aim to analyze whether the model could learn the underlying dynamics, de-130

spite inconsistencies between GCM and RCM simulations.131

In this study, we explore the downscaling potential of the two machine learning frame-132

works by applying them to SMB over the Antarctic Peninsula. We first present the data,133

machine learning architecture, and frameworks that define, train, and evaluate both RCM-134

emulators in Section 2. Then, Section 3 shows the evaluation results of the emulators135

in the case study. In the end, Sections 4 and 5 discuss the results of the two frameworks136

and draw conclusions about the emulator and training frameworks for future use. Ap-137

pendix A provides additional information about the data pre-processing pipeline, and138

Appendix B machine learning background about certain acronyms.139

2 Materials and Methods140

This study aimed to build an RCM-emulator F̂ that uses a neural network architecture141

to estimate the downscaling function F in the following equation:142

Y = F(X) X ⊂ D, Y ⊂ E (1)143

where X are low-resolution variables from a GCM over an input domain D, and Y is a144

high-resolution surface variable of an RCM over a target domain E .145

2.1 Data and pre-processing146

2.1.1 Choice of climate models147

The goal of the RCM-emulator was to reproduce monthly SMB predictions from MAR(ACCESS1.3),148

a regional downscaling by MAR of the ACCESS1.3 GCM. This GCM is from the Cou-149

pled Model Intercomparison Project - Phase 5 (CMIP5) (Bi et al., 2012; Taylor et al.,150

2012). The RCM and its corresponding GCM were selected as the climate simulations151

for the emulator for two reasons. First, MAR accurately models physical processes in152

polar regions such as SMB, air-snow interactions, and atmospheric circulation over ice153

sheets (Donat-Magnin et al., 2021). Secondly, Kittel et al. (2021) and Agosta et al. (2015)154

showed that MAR(ACCESS1.3) outperformed other climate models when comparing pre-155

dictions of the current Antarctic climate to ERA-Interim data.156

The MAR simulations cover the period of 1980-2006 and future climate projections un-157

der a high-emission scenario (RCP8.5) from 2006-2100 (Moss et al., 2010). The RCM158

grid is in south polar stereographic coordinates and has a resolution of 35×35 km. In159

contrast, the GCM resolution is of 1.25° latitude by 1.875° longitude (approximately 68×160

206 km) (Bi et al., 2012; Collier & Uhe, 2012). The GCM was projected to south po-161

lar stereographic coordinates to have it in the same projection system as the RCM (c.f. Ap-162

pendix A for more details).163
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Figure 1: Target domain E (in dark red) and input domain D (in blue) for the RCM-emulator.

The mean daily SMB values from 1980 to 2100 above Antarctica (left) and the Antarctic Penin-

sula (right) are illustrated underneath.

2.1.2 Target and input domain164

The target domain E chosen for the RCM-emulator is a grid box that has a domain size165

of 64×64 pixels (at a resolution of 35×35 km, so 2240×2240 km) and covers approxi-166

mately 5 million square kilometers. The target domain covers an area centered on the167

Antarctic Peninsula and extends to the Ronne-Filchner ice shelf in West Antarctica (Fig-168

ure 1). The target domain is mountainous, with its highest peaks rising to about 3’000169

m, and major ice shelves include Larsen C, Wilkins, and Ronne-Filchner. Precipitation170

varies significantly within the target domain. For example, the northern tip of the Antarc-171

tic Peninsula has the highest yearly precipitation levels (35-50 cm), and its west and north-172

east coasts also reach 35 cm/year. However, along the Antarctic Peninsula’s east coast173

and Antarctica’s interior, the climate is drier, with 10-15 cm/year of precipitation (Vignon174

et al., 2021; Draggan, 2009).175

The heterogeneity of climate variables, like precipitation, over the target domain leads176

to a high temporal and spatial variability in SMB values. This shows when looking at177

mean daily SMB values (Figure 1). For example, dry inland points have minor variations178

of SMB, with maximum daily values under 2 mm water equivalent per day (mm w.e./day),179

while a point on the west coast of the Antarctic Peninsula can reach low extremes of -180

20 mm w.e./day. This substantial variation in SMB values with different annual patterns181

provides a unique use case to test the RCM-emulator in complex environments.182

The input domain D of the RCM-emulator covers approximately 17 million square kilo-183

meters and is a 48×25 pixels grid box (at a resolution of 68×206 km) defined around184

the target domain. Because it is easier to give the machine learning model a square in-185

put, it is resized to 32× 32 pixels by bilinear interpolation.186

2.1.3 Input features of the RCM-emulator187

As input features, the RCM-emulator receives a two-dimensional array X and a one-dimensional188

array Z. X is an array that contains images of normalized monthly means (Ṽt,x ∈ RD)189

of eight different climate variables x ∈ C1 at near surface level over domain D and T190
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months. Table 1 shows an overview of the eight climate variables chosen for this study.191

For each climate variable x and month t, each image Vt,x is normalized according to its192

own spatial mean and standard deviation before providing them as inputs to the RCM-193

emulator:194

Ṽt,i,j,x =
Vt,i,j,x − V̄t,x

σ(Vt,x)
∀(i, j) ∈ D, t ∈ T, x ∈ C1 (2)195

where Vt,i,j,x is the pixel at location (i, j), and V̄t,x and σ(Vt,x) are the spatial mean and196

standard deviation of image V for variable x at time step t, respectively. Using spatial197

normalization of Vt,x transforms each pixel of an image so that they are on a similar scale.198

Overall, the input feature X contains T∗C1 normalised images of dimension D and is199

described by the following equation:200

X =
[
Ṽt,x ∀t ∈ T, x ∈ C1

]
∈ RT×D×C1 (3)201

Z is a one-dimensional temporal encoding of the eight climate variables and includes the202

time series of spatial means V̄t,x and standard deviations σ(Vt,x) for each x ∈ C1 and203

t ∈ T (Table 1). Because the climate variable images Vt,x in X are normalized at each204

time step by their spatial mean, they no longer carry any temporal encoding. Provid-205

ing Z to the RCM-emulator gives it access to this additional information. Following the206

same procedure as Doury et al. (2022), each element Zt,x in Z (V̄t,x or σ(Vt,x)) is nor-207

malized according to a reference period (Tref =1980-2000):208

Z̃t,x =
Zt,x − Z̄Tref ,x

σ(ZTref ,x)
t ∈ T, x ∈ C1 (4)209

where Z̄Tref ,x and σ(ZTref ,x) are, respectively, the temporal mean and standard devia-210

tion of the arrays of spatial means or standard deviations of Vt,x for climate variable x211

and over the reference period t ∈ Tref . Z also includes a cosine and sine vector212

cost = cos

(
2πt

12

)
; sint = sin

(
2πt

12

)
∀t ∈ T (5)213

to encode information about the month of the year. Overall, this gives the following equa-214

tion for Z:215

Z =
[
Z̃t,x, cost, sint ∀t ∈ T, x ∈ C1

]
∈ RT×C2 (6)216

where C2 = 2 ∗ C1 + 2. Figure 2 shows an example of X and Z for one time step t.217

2.2 Model218

2.2.1 Architecture219

The following section goes into the details of the architecture of the RCM-emulator model220

and will use several machine-learning terms. Appendix B provides additional machine221

learning background information.222

The RCM-emulator receives an eight-channeled 32 × 32 low-resolution image at time223

step t (where each channel is a climate variable) and its corresponding temporal encod-224

ing Zt, and outputs a one-channeled 64×64 high-resolution image of SMB values pre-225

dicted by the RCM-emulator at time step t (Figure 2).226

The RCM-emulator’s architecture (Figure 2) is a combination of the U-Net emulator de-227

veloped by Doury et al. (2022) and the SmaAt-UNet by Trebing et al. (2021). Our U-228

Net model is equipped with convolutional block attention mechanisms (CBAM) and depthwise-229

separable convolutions (DSC) instead of regular convolutional operations. DSCs are de-230

signed to reduce the number of parameters and make the model faster (Trebing et al.,231

2021; Chollet, 2017).232
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Table 1: Two and one-dimensional input features* given to the RCM-emulator at time-
step t ∈ T .

Variable Name Notation Units Dimensions

2D variables

Northward Wind NW [ms
−1

] D

Eastward Wind EW [ms
−1

] D

Shortwave Downward Radiation SWD [Wm
−2

] D

Longwave Downward Radiation LWD [Wm
−2

] D

Specific Humidity QQP [g/Kg] D

Temperature TT [
◦
C] D

Precipitation PR [mmWe/day] D

Pressure SP [hPa] D

1D variables

Spatial mean of 2D variables V̄x,t C1

Spatial std of 2D variables σ (Vx,t) C1

Seasonal Indicators cost, sint 2

*Each feature is a daily output of a climate variable at near-surface level over domain D. The

frequency of variables is monthly after a monthly mean aggregation.
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!!: 2D input
[#, 32, 32, '1]

)": SMB
[#, 64, 64, 1]

-": 1D input
[#, 1, 1, '2]

…

EW           LWD

NW             PR

QQP            SP

SWD            TT

Fully dense NN MaxPool 2*2
Conv Transp 2D

Concatenate

(3*3 DSC; BN; Relu) x 2

Conv 1*1

Conv Transp 2D;
(3*3 DSC; Relu) x 2

CBAM

Figure 2: A conceptual overview of RCM-emulator at time step t. Left: Climate variables

from the GCM (Table 1) over their input domain. The low-resolution 2D input variables Xt and

corresponding 1D variable Zt are created from these and given as input to the RCM-emulator.

Middle: scheme of the U-Net architecture used for the RCM-emulator. The low-resolution 2D in-

put variables Xt go through the left side of the U-Net (encoder) to reduce their size (and increase

the number of channels) before being concatenated with Zt at the bottom. Zt first goes through

a fully dense neural network to increase its number of channels to the same number as encoded

Xt. The resulting feature map then goes through the right part of the U-Net (decoder) to reach

the same resolution as the target SMB image. Right: high-resolution surface mass balance (SMB)

map Yt over the target domain produced by the RCM-emulator. Abbreviations of U-Net opera-

tors: DSC (depthwise-separable convolutions), BN (batch normalization), CBAM (convolutional

block attention mechanisms), Conv Transp 2D (2D transposed convolution), MaxPool (max

pooling), ReLU (rectified linear unit) (c.f. Appendix B for more information). Each block is a

feature map with a number of channels (on top) and a size (on the right). Color code of blocks:

convoluted and downsampled image (dark blue), attention feature maps (white), convoluted and

upsampled image (light blue), Zt through a fully dense neural network (striped blue).

A U-Net model (first proposed by Ronneberger (2017)) is a U-shaped convolutional neu-233

ral network, divided into a downsampling (encoder) section that forms the left side and234

an upsampling (decoder) on the right. In convolutional neural networks, an input array235

goes through a series of layers where filters are applied. The output of each filter is a fea-236

ture map (a multi-dimensional array of numerical values representing the learned fea-237

tures of an input image), which is then used as input to the next layer of the neural net-238

work.239

The encoder of our RCM-emulator consists of double DSCs followed by a max pooling240

filter; this reduces the size and increases the number of channels of the low-resolution241

2D input variables Xt. At each layer of the encoder, double DSCs duplicate the num-242

ber of channels, and max pooling downsamples the image by halving its size. Each fea-243

ture map from the double convolution also goes through a CBAM filter. CBAMs cre-244

ate an attention feature map highlighting important regions over the channels and spa-245

tial dimension of a feature map (Trebing et al., 2021). Note that the input to the next246
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layer of the encoder is not the attention feature map but the convoluted and downsam-247

pled image of the previous layer; the attention maps are used in the decoder (see below).248

This way, the original image features are preserved throughout the encoder layers. Over-249

all, the encoder learns an abstract representation of the input images at each layer; the250

deeper it goes, the more general features are extracted.251

At the bottom of the U-Net, encoded spatial information from Xt (i.e., the result of Xt252

going through the encoder) and temporal information from Zt are concatenated. First,253

a fully dense neural network is applied to the corresponding 1D input Zt of Xt to reach254

the same number of channels as the output of the last layer of the encoder. Then, it is255

concatenated with the previous feature map of the encoder at the bottom of the U-Net.256

This constrains the U-Net to give equal importance to the spatial and temporal inputs257

before starting the decoding path and generating the high-resolution SMB image (Doury258

et al., 2022; Sha et al., 2020).259

The decoder is built out of three parts that repeat at each layer. First, a 2D transposed260

convolution operation upsamples the feature maps by doubling their size. Secondly, the261

resulting feature map is concatenated with the previous encoder’s attention feature map262

via skip connections. Lastly, double DSCs halve the number of channels. At the decoder’s263

end, an additional up-sampling layer and a 1×1 convolution are added to reach the tar-264

get image size. This allows the decoder to create a high-resolution image of the same size265

as the target SMB from the RCM.266

2.2.2 RCM-emulators in (im)perfect model frameworks267

This study proposes and compares two training scenarios to use the RCM-emulator ar-268

chitecture to downscale GCMs: (1) a perfect and (2) an imperfect model framework. The269

two frameworks differ in the climate model used to source the low-resolution variables270

to train the RCM-emulator.271

Perfect model framework:272

The first RCM-emulator (F̂P) was trained following a perfect model framework (Doury273

et al., 2022). In the perfect model framework, the low-resolution training inputs of F̂P274

are upscaled features from the same RCM as the high-resolution SMB target. The per-275

formance of F̂P evaluates how the emulator performs when it has to learn only the down-276

scaling function F of the RCM (Equation 1). For this purpose, the RCM-emulator is fed277

with low-resolution inputs and high-resolution targets that are perfectly aligned and show278

high spatial and temporal correlation. Consequently, the perfect model framework avoids279

learning relationships between local/large-scale features that are RCM/GCM specific and280

is a solution to circumvent potential large-scale inconsistencies between GCM and RCM281

variables (Sanchez-Gomez et al., 2009; Sanchez-Gomez & Somot, 2018).282

To test the effect of the perfect model framework, we created upscaled RCM features (UP-283

RCM) from the RCM that have the same spatial resolution as GCMs. First, RCM fea-284

tures were upscaled to GCM resolution using conservative interpolation (Pletzer & Fill-285

more, 2015). Then, a 3×3 moving average filter smoothed the upscaled RCM features.286

This filter removes local-scale information that might remain after the upscaling (Doury287

et al., 2022; Klaver et al., 2020).288

Imperfect model framework:289

For the second RCM-emulator (F̂I), the low-resolution training inputs are GCM features.290

This imperfect model framework allows for spatial and temporal inconsistencies between291

the RCM output and GCM input during training. The performance of F̂I assesses whether292

the RCM-emulator can learn to downscale from the GCM to RCM despite inconsisten-293

cies. One potential advantage of the imperfect model framework is that it learns both294

the downscaling function and a GCM/RCM relationship, so it can be used to generate295

RCM output from GCM output directly.296
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Bias and inconsistencies:297

Since the difference between the perfect and imperfect model framework depends mainly298

on the differences between upscaled RCM and GCM, two correlation statistics were used299

to assess the presence of inconsistencies between upscaled RCM and GCM features. First,300

for each atmospheric variable x ∈ C1 and point p = (i, j) in the input domain D, the301

Pearson correlation coefficient was calculated between the GCM and upscaled RCM time302

series (Appendix B2). Secondly, for each x ∈ C1 and time step t ∈ T , the spatial cor-303

relation (sc) between GCM (Gx
t ) and upscaled RCM images (Ux

t ) was computed:304

sc (Gx
t , U

x
t ) =

cov(Gx
t , U

x
t )

σ(Gx
t )σ(U

x
t )

∀t ∈ T, x ∈ C1. (7)305

2.3 Training306

Every observation given to the RCM-emulator comprises features Xt and Zt for monthly307

time step t ∈ T (Figure 2). Xt is an array of dimension 32× 32× 8, where 32× 32 is308

the spatial size (number of pixels) of the input domain D, and 8 is the number of dif-309

ferent atmospheric variables chosen as predictors. Zt is the corresponding temporal en-310

coding of Xt and of dimension 18 (c.f. Section 2.1.3).311

To address the high spatiotemporal variability in SMB values over the target domain,312

we used a normalized RMSE (NRMSE) loss function. Normalizing the RMSE facilitates313

comparing datasets with different magnitudes and large variability, as in our case. For314

each time step t, the NRMSE was calculated between the predicted SMB maps Ŷ t and315

the target SMB Y t from the RCM over all positions in the target domain p ∈ E :316

NRMSE
(
Y t, Ŷ t

)
=

√
1
P

∑
p(ŷ

t
p − ytp)

2

Ymax − Ymin
∀t ∈ T (8)317

318

where ŷtp is the SMB value predicted by the RCM-emulator at position p and time t, P319

the number of points in E and Ymax, Ymin are the maximum and minimum value of SMB320

over T and E , respectively.321

Both RCM-emulators were trained using a batch size of 100 (i.e., the number of sam-322

ples propagated through the neural network before updating the internal model param-323

eters) and over a maximum of 50 epochs (i.e., the number of passes the whole training324

dataset takes through the neural network). We used early stopping (Prechelt, 1998), and325

the perfect and imperfect models converged, respectively, at 30 and 32 epochs. In ad-326

dition, we used a learning-rate scheduler (ReduceLROnPlateau module from PyTorch)327

that adjusted the learning rate between epochs and reduced the learning rate on loss plateaus,328

starting with an initial learning rate of LR0 = 0.005. The batch size and initial learn-329

ing rate were chosen from hyperparameter tuning. The RCM-emulators were trained on330

a graphics processing unit (GPU), which took approximately 4 minutes. A GPU was no331

longer needed once the model was trained, and making predictions on test data took 15332

seconds on a central processing unit (CPU).333

2.4 Evaluation334

The last ten years of the time frame of the climate simulations were separated into a test335

period Ttest = 2090− 2100 (120 samples). The remaining time was separated using a336

random 20%/80% split into a validation (266 samples) and training set (1066 samples).337

These were used during the training of the model to calculate validation and training338

metrics (Figure B1). These time frames separated input features X and Z into train-339

ing, validation, and testing features. The testing features were not seen by the RCM-340

emulators during training and were only used for evaluating the models’ performance341

afterward. The test period was arbitrarily chosen to be at the end of the climate mod-342

els’ time frame, but it could also have been taken elsewhere as long as they were con-343

secutive.344
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Figure 3: Evaluation setting of the RCM-emulators F̂P and F̂I. Left: selection of the climate

model used for low-resolution inputs to evaluate F̂P and F̂I. Either GCM or upscaled RCM

(UPRCM) features are used. Upper left: The imperfect model framework where F̂P or F̂I make

high-resolution SMB predictions (Ŷ ) using low-resolution features that come from the GCM.

Lower left: the perfect model scenario where low-resolution features for the predictions of F̂P are

UPRCM. The evaluation metrics used to compare predictions and the target SMB from the RCM

(Y ) were the root mean square error, Wasserstein distance, and Pearson correlation coefficient.

The data pre-processing pipeline is described in Section 2.2.2. The architecture of the RCM-

emulator is defined in Figure 2.

For the evaluation of the RCM-emulator from the two training frameworks, their pre-345

dictions of SMB over the test period were compared to the target SMB from the RCM346

using different statistics: Pearson correlation coefficient, Root Mean Square Error (RMSE),347

and Wasserstein distance (c.f. Appendix B2). For each emulator and point in the tar-348

get domain p ∈ E , we compared the target SMB time series Yp to the predicted values349

Ŷp over the test period. Correlation is a good indicator of the reconstruction of tempo-350

ral patterns such as synchrony and seasonality. RMSE and Wasserstein distance eval-351

uate the fitting of extreme values and the representation of monthly variability.352

2.4.1 Evaluation of the (im)perfect model framework353

The following three types of tests made to evaluate the predictions of the RCM-emulator354

from the two training frameworks are illustrated in Figure 3.355

Perfect model framework - F̂P:356

The performance of the RCM-emulator F̂P trained in the perfect model framework on357

upscaled RCM was evaluated twice. First, we evaluated the predictions made by F̂P with358

upscaled RCM test features - F̂P(UPRCM). This assessed how the emulator performs359

when tested in conditions similar to its training, i.e., on input data from the same cli-360

mate model. In a second step, we evaluated the predictions made by F̂P with GCM in-361

puts - F̂P(GCM). This considers how the RCM-emulator trained on upscaled RCM per-362

forms when receiving GCM data as input, i.e., how it generalizes to new distributions.363

To be useful, the RCM-emulator should give accurate reconstructions of SMB when re-364
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ceiving GCM variables as input. Furthermore, the accuracy of the F̂P(GCM) predictions365

is also an indicator of the presence of inconsistencies between upscaled RCM and GCM366

features.367

Imperfect model framework - F̂I:368

Emulator F̂I, trained in the imperfect model framework with the GCM, was evaluated369

once. Its predictions made with test features from the GCM - F̂I(GCM) were compared370

to the target SMB.371

For each of the three types of evaluations F̂P(UPRCM), F̂P(GCM), and F̂I(GCM), we372

analyzed single month and average predictions made over the test period (Section 3.1).373

In addition, we examined which regions of the target domain had the best reconstruc-374

tions of SMB patterns in terms of precision (RMSE, Wasserstein distance) and tempo-375

ral synchrony (Pearson correlation) (Section 3.2.1). Furthermore, we assessed the pres-376

ence of inconsistencies between upscaled RCM and GCM features to evaluate the need377

for the perfect or imperfect model framework (Section 3.2.2). Finally, we compared the378

target SMB to the time series of predicted SMB values for four points in the target do-379

main (Section 3.3). We specifically chose these four points to evaluate how the RCM-380

emulators handled different patterns and intensities of SMB.381

3 Results382

3.1 Emulated SMB fields383

To evaluate the performance of RCM-emulators F̂P and F̂I at reconstructing spatial struc-384

tures of SMB values in the (im)perfect model framework, we compared a prediction for385

a random month and the average predictions over the test period (2090-2100) to the tar-386

get (RCM) SMB using RMSE (Figure 4a). In addition, we visualize the bias of the mod-387

els by plotting the difference in mean and standard deviation compared to the target SMB388

over the test period (Figure 4b).389

Compared to the low-resolution upscaled RCM map, the high-resolution RCM is more390

detailed and shows more complex spatial structures (Figure 4a). In both RCM and up-391

scaled RCM maps, the tip and west coast of the Antarctic Peninsula have high values392

of SMB (with maximum values of 10 mm w.e./day). For the random month of May 1980393

(first row in Figure 4a), both F̂P(UPRCM) and F̂I(GCM) accurately reproduce the spa-394

tial structure of the target RCM (RMSE of 0.27 and 0.29, respectively), except for high-395

value SMB regions in the mainland, south of the Ronne-Filchner Ice Shelf. On average,396

over the test period (second row in Figure 4a), both predictions of F̂P(UPRCM) and F̂I(GCM)397

are very similar to the average target SMB (RMSE of 0.09 and 0.15, respectively).398

However, when the perfect model framework makes predictions from GCM features, it399

cannot reproduce the extreme values of SMB (lower/higher than -5/5 mm w.e./day). In400

particular, F̂P(GCM) underestimates the high magnitude SMB values on the west coast401

of the Antarctic Peninsula (Figure 4b). This is reflected in its RMSE in Figures 4a, which402

is twice as high as the other two evaluations (0.53 for the random month and 0.22 on403

average).404

Overall, these results hint at the fact that both the imperfect and perfect model frame-405

work RCM-emulators, when evaluated on data similar to what they were trained on, have406

a solid capacity to reproduce the complex spatial structures of the RCM.407
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(a)

(b)

Figure 4: (a) Surface mass balance (SMB)predictions of the RCM-emulators on a random

month (May 1980) (top) and averaged over the test period (2090-2100) (bottom) over target

domain E . From left to right: SMB in target RCM, upscaled RCM, F̂P(UPRCM) - trained in

the perfect model framework and evaluated on upscaled RCM, F̂P(GCM) - trained in the per-

fect model framework and evaluated on GCM, and F̂I(GCM) - trained in the imperfect model

framework and evaluated on GCM. (b) Difference between average (top) or standard deviation

(bottom) of RCM and SMB predictions of the RCM-emulators over the test period. Legend:

spatial mean (µ) of SMB over domain E and spatial RMSE (rmse) between the emulated and

target RCM SMB pixel values.

3.2 Performance of the RCM-emulators408

3.2.1 Evaluation metrics409

Three statistical metrics (Appendix B2) were used to evaluate the overall performance410

of RCM-emulators F̂P and F̂I in the perfect and imperfect model framework, respectively411

(Figure 5). In addition to the general performance, we were also interested in seeing how412

the evaluation metrics differed for regions with high magnitudes of SMB, such as the tip413

and west coast of the Antarctic Peninsula, and dryer regions, such as the east coast and414

mainland over the Ronne-Filchner Ice Shelf.415

Pearson correlation coefficient:416

Figure 5d shows the box plot of the correlation values between SMB predictions of RCM-417

emulators F̂P and F̂I, and the target SMB. On average, SMB predictions from F̂P(UPRCM)418

and F̂I(GCM) have higher correlation values to the target RCM than F̂P(GCM) (0.59,419

0.62 and 0.45, respectively). This is especially visible on the tip and west coast of the420
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Antarctic Peninsula, where F̂P(UPRCM) and F̂I(GCM) have the highest correlation to421

the target (0.97 and 0.97, respectively) (Figure 5b-c). On the other hand, the east coast422

of the Antarctic Peninsula has the lowest correlation for all models but especially for F̂P(GCM).423

We suspect this is related to the regional precipitation amounts, as the RCM-emulators424

seem to perform less well for particularly dry regions.425

Wasserstein distance and RMSE:426

Figure 5h and Figure 5l show that F̂P(GCM) has the highest Wasserstein distance and427

RMSE values amongst all models, which indicates that the density probability functions428

of its emulated SMB series are the furthest from the target RCM. The Antarctic Penin-429

sula has a particularly high Wasserstein distance and RMSE, with outliers values up to430

10 and 14, respectively (Figure 5f-j). This hints that the RCM-emulator trained in the431

perfect model framework is not able to predict extreme SMB magnitudes when given GCM432

inputs, i.e, it does not generalize well to a new distribution.433

According to these three evaluation metrics, F̂P(UPRCM) and F̂I(GCM) perform very434

similarly, are close to the target RCM, and are consistently better than F̂P(GCM). This435

indicates that the imperfect model framework should be preferred. Pearson correlation436

shows that temporal patterns and seasonality are best reconstructed in regions of high437

precipitation, such as the tip and west coast of the Antarctic Peninsula. Still, the RCM-438

emulators’ predictions tend to underestimate extreme (high and low) SMB values, which439

is especially visible for F̂P(GCM) and in dry regions, such as the inland and east Antarc-440

tic Peninsula.441

3.2.2 Inconsistencies between upscaled RCM and GCM variables442

To assess the inconsistencies between the large-scale (low-resolution) and local-scale (high-443

resolution) atmospheric variables, temporal (Figure 6a) and spatial (Figure 6b-c) cor-444

relation were calculated between upscaled RCM and GCM features. As spatial and tem-445

poral inconsistencies might confuse an RCM-emulator, their presence could justify the446

need for the perfect model framework for training the emulator. Furthermore, this pro-447

vided information on the severity of inconsistencies the RCM-emulator had to accom-448

modate in the imperfect model framework to downscale the GCM.449

Temporal correlation:450

For most atmospheric variables in Figure 6a, the time series of upscaled RCM and GCM451

features are highly positively correlated, with values very close to one, indicating that452

every pixel shows a high temporal consistency between RCM and GCM for the atmo-453

spheric variables. However, the two wind variables (east/north-ward wind) show incon-454

sistencies between global GCM and regional upscaled RCM time series over the main-455

land and the Antarctic Peninsula, with minimal Pearson correlation values of -0.2, in-456

dicating inconsistencies in temporal behavior of wind in RCM and GCM. Figure 6a sug-457

gests that, except for the winds, there is temporal consistency in the seasonal patterns458

between regional high-resolution and global low-resolution variables. This indicates that459

for most of the variables, the RCM-emulator in the imperfect model framework learns460

the downscaling function between GCM and RCM images that are well aligned in time.461

Spatial correlation:462

Figure 6b shows the spatial correlation (Equation 7) between upscaled RCM and GCM463

features, indicating how well the spatial patterns in atmospheric variables between RCM464

and GCM correspond. Atmospheric variables, like temperature, specific humidity, ra-465

diation, and precipitation, differ significantly in spatial patterns between the upscaled466

RCM and GCM models. Their spatial correlation shows large variability over time and467

often reaches low correlation values. Shortwave downward radiation and precipitation468

are the variables that show the largest spatial inconsistency between RCM and GCM.469

Shortwave downward radiation has an annual spatial correlation pattern strongly oscil-470

lating between approximately 0.1 in Austral summer (Nov-Feb) and 0.8 in Austral win-471
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Figure 5: Evaluation metrics on predictions from RCM-emulators over target domain E and

test period (2090-2100). For each position p ∈ E , the time series of predicted SMB values are

compared to the target SMB using three different metrics (from top to bottom): Pearson cor-

relation coefficient, Wasserstein distance, and RMSE. Target SMB time series are compared to

predictions made by (from left to right): F̂P(UPRCM) - trained in the perfect model framework

and evaluated on upscaled RCM, F̂P(GCM) - trained in the perfect model framework and evalu-

ated on GCM, and F̂I(GCM) - trained in the imperfect model framework and evaluated on GCM.

Legend: spatial mean (µ), standard deviation (std), minimum (min) and maximum (max) of met-

rics over E . Right: box-plot of evaluation metrics over all positions p ∈ E , from lower to upper

quartile, with a line at the median and a triangle at the mean.

ter (June-Aug). On the other hand, precipitation has a very poor spatial correlation over472

the whole test period, with a maximum of only 0.38, indicating that the spatial precip-473

itation patterns in RCM and GCM are highly inconsistent.474

Figure 6c shows individual examples of precipitation and short/long-wave downward ra-475

diation to illustrate the biases and inconsistencies in spatial patterns between large-scale476

GCM and upscaled RCM. It shows that the spatial correlation of shortwave radiation477

is low between upscaled RCM and GCM maps during Austral summer because the GCM478

predicts higher radiation values in the mainland of Antarctica than upscaled RCM. On479

the other hand, spatial correlation is high for the Austral winter months; however, we480

suspect this is only because there was very little radiation at that time. This great dif-481

ference between Austral winter and summer months explains the strong yearly oscilla-482

tion of spatial correlation for shortwave radiation. The spatial patterns in the upscaled483

RCM and GCM are also very different for precipitation. The upscaled RCM is much more484
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detailed in its predictions, showing upscaled representations of higher resolution. For ex-485

ample, for November 2093, the upscaled RCM shows a local high-intensity precipitation486

event on the tip of the Antarctic Peninsula, while the GCM predicts a more vague pat-487

tern of lower intensity over the Bellingshausen Sea. Overall, these results show that in488

the imperfect model framework, the RCM-emulator is faced with strong spatial incon-489

sistencies between the RCM and GCM when learning the downscaling function.490

3.3 Time series of predictions491

Figure 7 shows the emulated time series for four geographical points to assess how well492

the RCM-emulators can predict different temporal patterns and intensities of SMB. P1493

on the Larsen Ice Shelf has high precipitation levels, and SMB values oscillate annually494

between -5 and 5 mm w.e./day. P2, on the west coast of the Antarctic Peninsula, has495

SMB values reaching low extremes of -15 mm w.e./day. P3 on the east coast of the Antarc-496

tic Peninsula has low yearly precipitation and minor SMB variations (0-4 mm w.e./day).497

P4 on the Ronne Ice Shelf has a significantly drier climate (0-1.5 mm w.e./day).498

For each of these four points, F̂P(UPRCM) and F̂I(GCM) come very close to reproduc-499

ing the temporal patterns of the target RCM series. For P1 and P2, F̂P(UPRCM) and500

F̂I(GCM) reproduce the seasonality well, with high correlation values to the target SMB501

(for P1: 0.74 and 0.68; for P2: 0.91 and 0.93, respectively). F̂I(GCM) even outperforms502

F̂P(UPRCM) at emulating low drops in SMB. For P3 and P4, RCM-emulators can re-503

produce the time series pattern, even when the time series’ behavior is less seasonal, like504

for P3. We notice for P4 that F̂P(UPRCM) and F̂I(GCM) have difficulties reproducing505

multiple close peaks per year and tend to merge them into one prominent peak.506

When the perfect model framework makes predictions from the GCM, it tends to un-507

derestimate the high amplitude values of SMB. This is also noticeable in the time series508

for all four points in Figure 7b. The predictions of F̂P(GCM) can reproduce the seasonal509

patterns (reflected in a high correlation of 0.93 for P2, for example) but produce a ver-510

sion of the target RCM time series where extremes are underestimated (resulting in a511

higher RMSE). This is also visible in the probability density functions, where the peak512

of F̂P(GCM) is higher and centered around lower SMB values compared to F̂P(UPRCM)513

and F̂I(GCM), which reach extreme values and resemble more the target RCM. This pat-514

tern repeats in the annual SMB predictions for all RCM-emulators. F̂P(UPRCM) and515

F̂I(GCM) come very close to the target annual SMB values for all four points, with F̂I(GCM)516

again slightly better than F̂P(UPRCM) for almost all years. F̂P(GCM) consistently un-517

derestimates the truth by an approximate factor of two.518

4 Discussion519

This study compared two hybrid statistical frameworks that downscale GCMs to RCMs520

using deep learning. We explored the downscaling potential of these frameworks by ap-521

plying them to a complex climate variable, SMB, over the Antarctic Peninsula. The two522

RCM-emulators were developed based on the same U-Net architecture but with a dif-523

ferent training framework. (1) F̂P followed the perfect model framework with local/large-524

scale training features that both came from the RCM. For this, RCM features were up-525

scaled to GCM resolution (UPRCM) to serve as large-scale training inputs to the model.526

On the other hand, (2) F̂I was trained in the imperfect model framework where the large-527

scale features came from the GCM.528

4.1 Performance of the RCM-emulators529

In the perfect model framework, F̂P(UPRCM) competently reproduces the spatial and530

temporal pattern of the target RCM. However, when tested on GCM features, F̂P(GCM)531
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is not able to reproduce the extreme values of SMB and creates a less extreme version532

of the truth by underestimating the high magnitude SMB values (Figure 4).533

We also find significant inconsistencies between RCM and GCM variables(Figure 6a).534

For example, the two wind variables showed high temporal discrepancies between large535

and local-scale simulations. Temporal inconsistencies might occur if there is an offset in536

the RCM time series compared to the GCM or if the patterns are completely different.537

Furthermore, we also found spatial inconsistencies for most atmospheric variables, es-538

pecially for precipitation and shortwave downward radiation. Some of this might exist539

because of errors during the computation of RCM simulations, such as inconsistent forc-540

ings or boundary conditions. However, we assume that the rest of the inconsistencies ex-541

ist because the RCM adjusts the low-resolution simulation, i.e., for a more fine-scaled542

simulation of the physical processes (Doury et al., 2022; Sørland et al., 2018; Misra, 2007;543

Noguer et al., 1998; Laprise et al., 2008). These inconsistencies might confuse an RCM-544

emulator, which could justify the need for the perfect model framework for training a545

model.546

To see whether an RCM-emulator could offset the inconsistencies between the RCM and547

GCM, we trained the second emulator F̂I in the imperfect model framework directly with548

large-scale GCM inputs. F̂I(GCM) misses some precision compared to F̂P(UPRCM) in549

emulating SMB patterns for regions with minor SMB variations (e.g., P4 in Figure 7,550

SMB smaller than 1.5 mm w.e./day). But for the other points, F̂I(GCM) comes very close551

to the target RCM. It is also performing exceedingly well in terms of predicting annual552

SMB values and is consistently better than F̂P(GCM).553

Our GCM downscaling method works well, even when tested on a complex variable, such554

as SMB, that is not originally present in the GCM. The RCM-emulator has a solid ca-555

pacity to reproduce the spatial and temporal patterns of the RCM, but only for F̂P(GCM)556

and F̂I(GCM), i.e., when evaluated on data similar to the model’s training set. However,557

F̂P(GCM) is not able to generalize to GCM data and reproduce SMB correctly.558

4.2 Implications of our main results559

The results of this study show that machine learning provides a valuable alternative to560

dynamical/statistical downscaling, especially for climate variables that are not in the GCM.561

Furthermore, the RCM-emulator’s process is very fast, i.e., approximately 4 minutes for562

30 epochs of training on a GPU and instantaneous predictions on CPU. This computa-563

tional time is significantly smaller than running an RCM simulation which can take mul-564

tiple weeks to calculate on a super-computer.565

Our results also show that the choice of training framework for the RCM-emulator mat-566

ters. Doury et al. (2022) state that the perfect model framework is necessary to learn567

the RCM downscaling function without any interfering biases between the GCM and RCM.568

However, to be useful, an RCM-emulator should give accurate reconstructions of SMB569

when given large-scale GCM variables as input. Otherwise, the model would not be valu-570

able if it needs upscaled RCM features to make predictions. In this study, while F̂P per-571

forms well when evaluated on an upscaled RCM, it underperforms on real GCM features,572

resulting in large biases and inconsistencies. The predictions of F̂P(GCM) follow the cor-573

rect temporal patterns of the target RCM, but they consistently underestimate the tar-574

get SMB time series. We suspect this is because the RCM-emulator cannot learn to com-575

pensate for RCM-GCM inconsistencies during its training under the perfect model frame-576

work. Consequently, when the model is given GCM inputs while trained on upscaled RCM,577

inconsistencies are preserved and appear in the local reconstructions. Therefore in this578

study case, the perfect model framework underperforms when used in a practical frame-579

work on real GCMs. However, when trained in the imperfect framework with low-resolution580

GCM data, the RCM-emulator can predict SMB values close to the truth, as if it learned581

the underlying RCM-GCM inconsistencies and dynamics.582
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4.3 Limitations of machine learning583

Although machine learning methods show strong potential to be surrogates of compu-584

tationally expensive climate models, they also come with important limitations. First,585

neural networks, as used here, have a reputation for being a black box algorithm and thus586

having a decision process that is hard to understand. Still, there are recent developments587

to make them more transparent (Rocca & Perna, 2022; Guidotti et al., 2019; Savage, 2022).588

Secondly, training a neural network while relying on a GPU creates several sources of589

randomness, and reproducibility depends on using the exact same settings as the authors590

of a framework (Feng & Hao, 2020; Scardapane & Wang, 2017). Lastly, machine learn-591

ing models remain very specific, and their training dataset determines the application592

range. So, learning from small amounts of data and applying what a model learned to593

new domains (Transfer Learning) remains a significant challenge in machine learning (Dube594

et al., 2018). Therefore, despite the advantage of the imperfect framework, F̂I(GCM) has595

two major limitations: it is potentially region and model specific. This means the model596

would need to be retrained to make predictions on another region or RCM/GCM com-597

bination. Furthermore, it remains to be tested how the model would perform on a dif-598

ferent climate scenario or a related GCM. We suspect this will depend significantly on599

the similarity of this new setting to the original training data.600

4.4 Broader implications of this study601

This study has shown the potential of using deep learning methods to downscale GCMs.602

Machine learning provides an RCM-emulator that can make very fast and fine-scaled re-603

productions of an RCM variable, even when that variable is not present in the GCM.604

However, we also illustrated the importance of choosing the model’s training framework.605

In cases of significant inconsistencies between RCM/GCMs, the perfect model framework606

is limited and does not work well. On the other hand, we have shown that it is possi-607

ble with the imperfect model framework to make accurate predictions directly from GCM608

data. This deep learning emulator provides low-cost local-scale information while learn-609

ing the underlying RCM-GCM inconsistencies and dynamics.610

5 Conclusion611

This study aimed to explore the potential of using machine learning surrogate frameworks612

instead of the computationally expensive dynamical downscaling of GCMs. We built a613

deep learning RCM-emulator that learned the downscaling function of an RCM and tested614

the emulator by reconstructing local-scale SMB values over the Antarctic Peninsula. This615

means that the RCM-emulator, when given large-scale (low-resolution) atmospheric vari-616

ables from a GCM, can reconstruct a local-scale (high-resolution) image of SMB from617

an RCM. Compared to running an RCM, the RCM-emulator is designed to be compu-618

tationally faster.619

The RCM-emulator’s architecture is a U-Net model with convolutional block attention620

mechanisms. The U-net has depthwise-separable convolutions instead of normal convo-621

lutions to make a smaller and more efficient network.622

We proposed two training scenarios for the RCM-emulator: the perfect and imperfect623

model framework. The two frameworks differ in their source of low-resolution variables624

to train the RCM-emulator. In the perfect model framework, the RCM-emulator receives625

upscaled RCM features as low-resolution inputs. This setting was designed for the em-626

ulator to learn the RCM downscaling function undisturbed by potential RCM-GCM in-627

consistencies. In the imperfect model framework, the RCM-emulator is trained on large-628

scale features directly sourced from the GCM to evaluate whether it can make accurate629

predictions despite RCM-GCM inconsistencies.630
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We evaluated the emulator trained in the perfect model setting twice: (1) on large-scale631

upscaled RCM features and (2) directly with variables from the GCM. While the em-632

ulator evaluated on upscaled RCM features can almost perfectly reproduce the high-resolution633

SMB truth, predictions made with GCM features consistently underestimate it. This is634

not surprising as we find high spatial and temporal inconsistencies between GCM and635

RCM features. Because the perfect model framework focuses only on the downscaling636

function of the RCM, it does not allow the RCM-emulator to learn large-scale RCM-GCM637

inconsistencies. Thus they are conserved when making predictions with GCM variables,638

leading to underestimation by the RCM-emulator.639

The second RCM-emulator, trained in the imperfect model framework directly on GCM640

features, reproduces detailed and accurate high-resolution SMB maps. This RCM-emulator641

makes correct annual SMB predictions and reconstructs the temporal patterns of indi-642

vidual SMB time series and global spatial structures over the Antarctic Peninsula. The643

performance of the RCM-emulator in the imperfect model framework hints that it can644

accurately downscale the GCM despite RCM-GCM inconsistencies and that a perfect645

model framework might not be helpful.646

Training the emulator takes under four minutes on a GPU, and predictions are almost647

instantaneous. Hence, the RCM-emulator is significantly faster than an RCM simula-648

tion, which can take several weeks on a supercomputer. However, machine learning sur-649

rogates are limited by their specificity to their training dataset, and transferring their650

knowledge to other domains or climate models remains challenging.651

In conclusion, we built a machine learning surrogate model for the dynamic downscal-652

ing of GCMs. The RCM-emulator can make fast and fine-scaled SMB reproductions over653

the Antarctic Peninsula from GCM data. Therefore, this RCM-emulator can be an in-654

teresting tool for providing low-cost, high-resolution information on climate variables.655

Appendix A Data pre-processing656

A1 Pre-processing of the GCM657

All RCM and GCM data pre-processing was done on Pangeo, a community platform for658

Big Data geoscience. First, the ACCESS 1.3 GCM data was downloaded from the Aus-659

tralian NCI website (https://esgf.nci.org.au/search/esgf-nci/). From their database,660

we chose the dataset with atmospheric variables (Amon) from the CMIP5 and r1i1p1661

ensemble. As a time frame, we decided to use the historical and future RCP8.5 simu-662

lations, which are monthly mean aggregations of daily values. This data can also be di-663

rectly downloaded using the wget script on our GitHub (https://github.com/marvande/664

RCM-Emulator).665

From this GCM dataset, we chose the eight variables as seen in Table 1. Next, we cut666

the data so that its latitude was between -40 and -90◦ so that it only contained the re-667

gion of Antarctica. Because the GCM is in latitude-longitude coordinates, but the RCM668

is in polar stereographic coordinates, the GCM was reprojected to the RCM coordinate669

system. For this, the RCM stereographic grid was upsampled to cover approximately the670

same resolution as the GCM (68×206 km), and then the GCM was interpolated on that671

grid. Finally, the GCM variables were smoothed by a 3×3 moving average filter to fol-672

low the same pre-processing procedure as Doury et al. (2022) for their near-surface tem-673

perature emulator.674

A2 Pre-processing of the RCM675

We acquired the MAR(ACCESS 1.3) RCM data from the Geoscience Institute of the Uni-676

versity of Grenoble. Because ACCESS 1.3 was in monthly frequency, we did a monthly677

mean aggregation on the RCM.678
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Variables like wind, temperature and specific humidity were initially provided for seven679

pressure levels (200, 500, 600, 700, 800, 850, and 925 hpa) while we needed surface-level680

values to coincide with the GCM. Each pressure level had NaN values where it intersected681

with the surface. So, for each point p in the RCM domain, we took the last non-NaN682

value as the surface value on the highest possible pressure level.683

RCM wind variables were given as x and y-components, while GCM winds were north-684

ward and eastward. Therefore, RCM wind components needed to be reprojected. First,685

we calculated a grid that gave the latitude (lat) and longitude (lon) coordinates for each686

point (i, j) ∈ X,Y ⊂ E in the RCM polar stereographic grid E . Then, for each point687

(i, j), we applied Algorithm 1.688

Finally, to create GCM-like low-resolution UPRCM features from the RCM, we repro-689

jected the RCM on the GCM grid by interpolation. Then, we used the same moving av-690

erage filter for the GCM to smooth the data. Finally, because there is no precipitation691

variable in the RCM, we created one by adding the snowfall and rainfall variables (PR =692

SF + RF).693

Algorithm 1 Transformation of wind x/y-components into north/eastward

1: GEddxx = 90
2: ∆ϕ = 90−GEddxx
3: dr = π/180
4: for i, j ∈ X,Y do
5: ϕ← −1 ∗ dr ∗ (lon[i, j] + ∆ϕ)
6: cphi← cos(−ϕ)
7: sphi← sin(−ϕ)
8: windEast[i, j]← cphi ∗ windX[i, j]− sphi ∗ windY[i, j] ▷ Eastward wind component
9: windNorth[i, j]← sphi ∗ windX[i, j] + cphi ∗ windY[i, j] ▷ Northward wind

10: end for

[1]

Appendix B Machine learning background694

B1 Machine learning terms695

• Attention: technique developed for neural networks to simulate cognitive atten-696

tion so that the network pays more attention to the essential parts of the data,697

even if they are small. Attention mechanisms enhance some parts of the input data698

while reducing others (Soydaner, 2022).699

• Batch normalization: standardizes the inputs given to the next layer in a deep neu-700

ral network for each mini-batch. Usually, the mean and standard deviation of each701

input variable to a layer per mini-batch are calculated during training, and these702

statistics are then used to perform the standardization (Ioffe & Szegedy, 2015).703

• Convolutional block attention mechanisms (CBAM): attention module for con-704

volutional neural networks. CBAMs sequentially create two attention maps from705

a feature map along the channels and space dimensions. Then the attention maps706

are multiplied with the feature map (Woo et al., 2018; Trebing et al., 2021).707

• Depth-wise separable convolutions (DSC): DSCs are divided into depth and point708

operations. First (depth-wise) convolutions are applied to one channel at a time709

(as opposed to traditional convolutions, where it’s applied over all channels). Then,710

in a second step (point-wise), convolutions of 1 × 1 are applied to all channels.711

The advantage of DSCs over traditional convolutions is that they are computa-712

tionally cheaper, i.e., they require fewer calculations and have a smaller number713
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of parameters, i.e., they reduce the risk of overfitting (Trebing et al., 2021; Chol-714

let, 2017).715

• (Max) pooling layers: usually added after a convolution layer and downsample a716

feature map by reducing its size (the number of channels is maintained). They in-717

dependently apply a function (typically taking the average or maximum) over patches718

in each feature map. More specifically, max-pooling layers calculate the maximum719

value for each area (e.g., 2×2) of the feature map, and thus the size of the fea-720

ture map is divided by the kernel size (e.g., 2).721

• Rectified linear activation function (ReLU): a piecewise linear function that out-722

puts an input feature map if it is positive. Otherwise, it returns zero.723

B2 Evaluation metrics724

For the evaluation of the RCM-emulator from the (im)perfect training frameworks, their725

predictions of SMB over the test period were compared to the target SMB from the RCM726

using different statistics: Pearson correlation coefficient, Root Mean Square Error (RMSE),727

and Wasserstein distance. For each emulator and point in the target domain p ∈ E , we728

compared the target SMB time series Yp to the predicted values Ŷp over the test period729

Ttest.730

• Pearson correlation coefficient: measures how two continuous time series change
over time as a number between -1 (negatively correlated), 0 (uncorrelated), and
1 (perfectly correlated)

r
(
Yp, Ŷp

)
=

cov(Yp, Ŷp)

σ(Yp)σ(Ŷp)
∀p ∈ E (B1)

where cov(·) is the covariance and σ(·) is the standard deviation.731

• Root Mean Squared Error (RMSE): measures the square root of the average squared
differences between predicted and target observations. It is also defined as the square
of the MSE

RMSE
(
Yp, Ŷp

)
=

√
MSE

(
Yp, Ŷp

)
(B2)

=

√
1

Ttest

∑
t

(ŷtp − ytp)
2 ∀p ∈ E (B3)

where ŷtp is SMB value predicted by the RCM-emulator and ytp the target SMB732

value at location p ∈ E and time step t ∈ Ttest.733

• Wasserstein distance: measures the distance between two probability density func-
tions f(· ), in our case f(Yp) and f(Ŷp). It is the numerical cost of an optimal trans-
portation problem, i.e., the cost of the optimal transport plan for moving the mass
in the predicted measure to match that in the target

W
(
f(Yp), f(Ŷp)

)
=

∑
t

|ytp − ŷtp| ∀p ∈ E (B4)

where ŷtp is SMB value predicted by the RCM-emulator and ytp the target SMB734

value at location p ∈ E and time step t ∈ Ttest.735

Appendix C Open Research736

C1 Data availability737

The ACCESS 1.3 GCM data was obtained from the Australian NCI website (https://738

esgf.nci.org.au/search/esgf-nci/). The MAR(ACCESS1.3) RCM data is from Kittel739
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et al. (2021). The MAR version used for the present work is tagged as v3.11.1, and the740

MAR outputs used in this study are available on Zenodo (https://doi.org/10.5281/741

zenodo.4459259; Kittel, 2021). In addition, the pre-processed GCM/RCM data to run742

the code and the saved PyTorch RCM-emulator models are available on Zenodo (https://743

doi.org/10.5281/zenodo.7875882).744

C2 Code availability745

The RCM-emulator architecture was implemented in PyTorch 1.11, and the machine learn-746

ing training was done on Google Colab’s GPU (NVIDIA Tesla K80). The up-to-date work-747

ing versions of these experiments and source code are available on Zenodo (https://748

doi.org/10.5281/zenodo.7875967). All scripts needed to obtain and process input data749

(as described in Appendix A) can be found under the following directory (RCM-Emulator/scr/Pre-750

processing/). All scripts for training and evaluating the RCM-emulator are located in751

the (RCM-Emulator/scr/Machine-Learning/) directory. Model results are published in752

this directory (RCM-Emulator/results/).753

Additional information about the code and data is also available via email (vandermeer@vaw.baug.ethz.ch).754

Acronyms755

CBAM Convolutional block attention mechanisms756

DSC Depth-wise separable convolutions757

GCM Global Climate Model758

MAR Modèle Atmosphérique Régional759

RCM Regional Climate Model760

SMB Surface mass balance761

UPRCM RCM upscaled to GCM resolution762

GPU Graphics Processing Unit763

CPU Central Processing Unit764

Notation765

D Input Domain (dim: J1, IK× J1, JK)766

E Target Domain (dim: J1,KK× J1, LK)767

(i, j) Spatial indexes over input grid (dim: D)768

(k, l) Spatial indexes over target grid (dim: E)769

X Input: 2D variables over D (dim: T × J1, IK× J1, JK× C1)770

Z Input: 1D variables over D (dim: T × C2)771

Y Target: SMB over E (dim: T × J1,KK× J1, LK)772

t Monthly temporal index (dim: T )773

x 2D variables index (dim: C1)774

z 1D variables index (dim: C2)775

F Downscaling function of the RCM776

F̂ Emulator: estimation of F777

F̂P(UPRCM) Emulator trained on UPRCM, prediction on UPRCM (dim: E)778

F̂P(GCM) Emulator trained on UPRCM, prediction on GCM (dim: E)779

F̂I(GCM) Emulator trained on GCM, prediction on GCM (dim: E)780
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Figure 6: Temporal (a) and spatial (b, c) correlation between time series (a) and images (b,

c) of upscaled RCM and GCM variables given as input to RCM-emulators over input domain D
and test period (2090-2100). (a) Pearson correlation coefficient between upscaled RCM and GCM

time series for each point in E . Legend: mean (µ), standard deviation (std) and minimum (min)

of correlation values over E . (b) Spatial correlation between upscaled RCM and GCM variables

over E at each time step. Legend: specific humidity (QQP), temperature (TT), long/short wave

downward radiation (LWD/SWD), eastward/northward wind (EW/NW), precipitation (PR),

and surface pressure (SP). (c) Example of months with lowest (left) and highest (right) spa-

tial correlation (sc) between upscaled RCM and GCM for long/short-wave downward radiation

(LWD/SWD) and precipitation (PR). Chosen months are illustrated with dots on the time series

in (b).
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Figure 7: SMB predictions of RCM-emulators F̂P(UPRCM) (blue line), F̂P(GCM) (dotted

green) and F̂I(GCM) (dashed orange) compared to target RCM (grey line) over test period

(2090-2100). (b) Time series, daily probability density functions (PDF), and bar-plots of an-

nual sums of SMB predictions for four different geographical points (a) in target domain E .
Legend: Pearson correlation coefficient (r), RMSE (RMSE), and normalized RMSE (NRMSE)

between the time series of emulated and target SMB. For these metrics PU = F̂P(UPRCM), PG

= F̂P(GCM) and I = F̂I(GCM).
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Figure B1: Training (blue) and validation NRMSE loss (orange) in the perfect (left) and imper-

fect model framework (right). Models trained over a maximum of 50 epochs (with early stopping)

with a batch size of 100.
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