

Tutorial for TUMME 2023

Rui Ming Zhang Xuefei Xu *Tsinghua University* and Donald G. Truhlar *University of Minnesota*

Outline

- Introduction
- Installation
- How to run
- Input file
- Output files
- Others

Example

Introduction – 1

What is TUMME ?

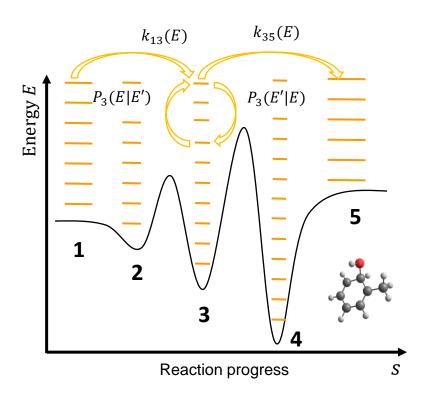
- TUMME (Tsinghua University Minnesota Master Equation solver) is a computer program for setting up and solving one-dimensional energy-dependent master equations for gas-phase chemical kinetics.
- TUMME can solve for the phenomenological rate constants and the time evolution of energy-bin populations for a gas-phase reaction network involving single or multiple intermediate energy-wells in a (*P*, *T*) ensemble.
- What can TUMME do ?
 - Construct the transition matrix of a master equation with discrete energy bins
 - □ Calculate rate constants for collisional energy transfer
 - Calculate microcanonical reaction rates including anharmonicity, recrossing, and tunneling
 - □ Calculate phenomenological rate constants for a complicated reaction map
 - □ Calculate the time evolution of energy populations
 - Characterize the pressure and temperature dependences of chemical kinetics

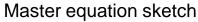
Introduction – 2

Basic assumptions of TUMME

Markov random process

The transition process depends on the current state and has no historical memory.


□ RRKM assumption


The intramolecular vibrational relaxation (IVR) is faster than reaction.

Bimolecular reagents equilibrated

Bimolecular pairs are always in thermal equilibrium.

- □ Pressure, temperature, and concentrations
 - a) Constant pressure, constant temperature
 - b) Bath gas is ideal gas
 - c) Bath gas concentration >> reactant and product concentrations

Introduction – 3

Features of TUMME

- Microcanonical flux coefficients by multistructural variational transition state
 theory (MS-VTST) with multidimensional tunneling (ZCT, SCT, LCT, or μ OMT)
- □ Inverse-Laplace transform for microcanonical rate flux coefficients
- \Box "Exponential-down" collision relaxation mode with energy-dependent $\langle \Delta E_d \rangle$
- D Phenomenological rate constants from chemically significant eigenmodes
- Pseudo-first order treatment when bimolecular reactions involved
- □ MPI and MP parallelism of computer code
- Double/quadruple/octuple precision for floating-point arithmetic
- □ Interfaces available for *Polyrate, MSTor,* and *Gaussian*

Installation

Installation command:

[user@~] tar -xvf TUMME2023.tar.xz
[user@~] cd TUMME2023/
[user@~/TUMME2023] ./configure

- D TUMME is written using Python3.
- D To run basic TUMME, Anaconda should be installed.
- To use high-precision libraries, you need the configure file to compile.
- To use MPI, you need to install *mpi4py* module according to this webpage:

https://mpi4py.readthedocs.io/en/stable/install.html#using-pip

#!/bin/bash path=`pwd` INTEL does NOT work! cd \$path/C++/qd/qd-2.3.7.1 ./configure --prefix \$path/C++/qd CXX=g++ CC=gcc FC=gfortran make clean make make install cd \$path/C++/mpack dd/src make clean make #comile mini mpack in gd (octuple precision) cd \$path/C++/mpack qd/src make clean make #compile muti-preicison tumme cd \$path/C++ sed -i "s#^ROOTPATH =.*#ROOTPATH =\$path#g" Makefile make clean make cd \$path/bin sed -i "s#^ROOT PATH=.*#ROOT PATH=\$path#g" tumme #set enviroment variable echo "# Enviroment variable of TUMME" >> ~/.bashrc echo 'export PATH=\$PATH:'\$path'/bin' >> ~/.bashrc

Details in the file configure

5/17/2023

How to run

Run command:

```
[user@~/TUMME2023] tumme param.in
```

```
    The script will run different commands according to
the keyword #PARALLEL defined in the input file.
```

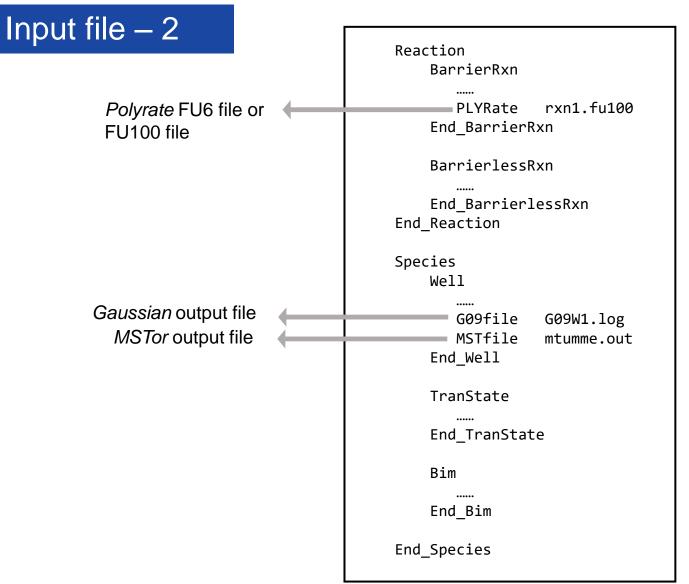
□ The name of the input file can be any file name.

```
#!/bin/sh
ROOT_PATH=/home/work/TUMME/
SRC_PATH=$ROOT_PATH/src
PYTHON_COMMAND=python3
TUMME_MAIN=tumme_main.py
INPUT=$1
# read parallelism
PARALLEL_STR=$(grep "#parallel" $INPUT|tr -d '\n'|sed -e 's/[ \t]*$//g')
PARALLEL_MODE=$(echo ${PARALLEL_STR##* })
NPROC_STR=$(grep "#nproc" $INPUT|tr -d '\n'|sed -e 's/[ \t]*$//g')
NPROC=$( echo ${NPROC_STR##* })
# omit some check code
```

```
# run command
if [ "$PARALLEL_MODE" == "MPI" ]
then
    MPI_COMMAND="mpirun -np "$NPROC
else
    MPI_COMMAND=' '
fi
$MPI_COMMAND $PYTHON_COMMAND $SRC_PATH/$TUMME_MAIN $INPUT
```

Details in the file tumme

Input file – 1


- Structure of the standard input
- Parallelism keywords
- Parameter section
- Reaction section
- □ Species section

#nproc 4 #parallel mpi Parameter LJCollision ••• End LJCollision Edown End Edown Temperature[K] End_Temperature Pressure[torr] End Pressure Energy End_Energy GroundSpecies W1 0.5 MergeThreshold Precision double Prints End Print End_Parameter

Reaction BarrierRxn ••••• End_BarrierRxn BarrierlessRxn End BarrierlessRxn End_Reaction Species Well End_Well TranState End_TranState Bim End_Bim End_Species

Structure of the standard input file "param.in"

Interface to external files

Species properties can be read from Polyrate file, Gaussian file, and Species-section, and the priority is

Polyrate file > Gaussian file > Species section

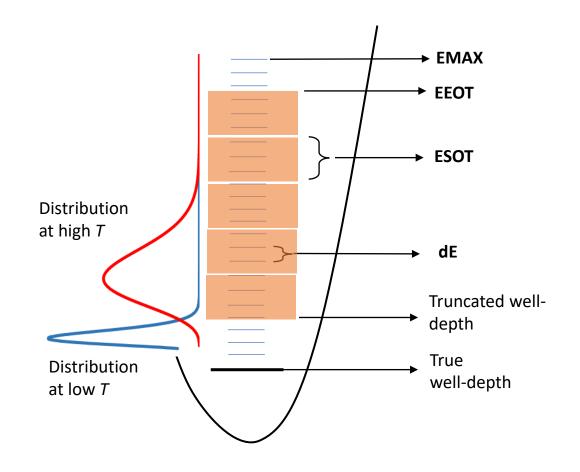
Output files

□ *.rate

Temperature-and-pressure-dependent rate constants and high-pressure limits.

□ *.out

Properties of species and reactions and parameters while solving master equation.


- □ File printing microcanonical flux coefficients
- □ File printing partition functions
- □ File printing collisional energy transfer functions
- □ File printing time evolution of energetic-bin populations
- □ File printing CSE eigenvalues
- □ File printing CSE eigenvectors
 - CSE ≡ chemically significant eigenmodes

Other notes – 1

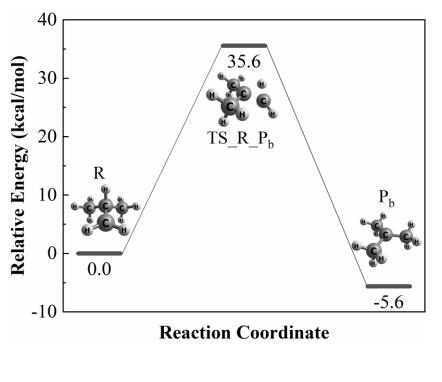
About energy

- Distinguish concepts of **dE**, **ESOT**, **EMAX**, and **EEOT**.
- □ Ensure **ESOT** > **dE** and **EMAX** > **EEOT**.
- The depth of an isomer well may be truncated due to the numerical method of normalization.
- If some energies of species are read from EO or EELE and others from GO9file, one should ensure they have consistent zeros of energy.
- At low temperatures, when molecules mainly populate low energy levels, one should decrease the value of ESOT.
- □ At high temperatures, when molecules populate high energy levels, one should increase the value of **ESOT**.

Other notes – 2

About symmetry number

Need to define Rotsigma when	Not need to define Rotsigma when
Read properties from Polyrate	Read density of state from MSTor
Read properties from Species section	Read properties from Gaussian


About frequency scaling factor

Need to define Freqscale when	Not need to define Freqscale when
Read properties from Gaussian	Read density of state from MSTor ^a
Read properties from Species section	Read properties from Polyrate ^a

^a If, as usual, the frequency scaling has been done in *MSTor* and *Polyrate*.

Example 1 1,2-H-shift isomerization of isobutyl

 $(CH_3)_2CHCH_2 \bullet \leftrightarrow (CH_3)_3CH \bullet$

This is an example for the simplest isomerization reaction. In this example, TST(RRKM) is used with the single-structurerigid-rotor-harmonic-oscillator approximation. The rate constant and time-evolution of species concentrations are extracted from the master equation

$$\frac{\mathrm{d}\mathbf{y}}{\mathrm{d}t} = -\mathbf{W}\mathbf{y} \tag{1}$$

where \mathbf{y} is a vector containing the population of R and P_b, and W is the transition matrix.

Input: the standard input file Output: rate constants and the time evolution of concentrations.

Zhang, R. M.; Xu, X.; Truhlar, D. G., *The Journal of Physical Chemistry A* **2021**, *125* (28), 6303-6313.

Example 1 (cont.)

3

1 #nproc 15

41 End Reaction

Standard input file

Parallelism block 2 #parallel mp

Global parameter block 4 ~ Parameter

4 ∼ Pai	arameter GIUDAI Palaine	
5 ~	HSCollision	
6	Bmax[A] 9	O Collision section
7	MassM[amu] 28	8.0134
8	End_HSCollision	
9		
10 ~	Edown	
11	EdConst[cm-1] 156	^{.9204} Relaxation section
12	End_Edown	HeldAdtion Section
13		
14 ~	Temperature[K]	
15	^{1500.} Temperat	TIRE
16	End_Temperature	are
17		
18 ~	Pressure[torr]	
19	3E1 7E1 1E2 3E2 7E2 1E3 3E	E3 7E3 1E4 3E4 7E4 1E5 3E5 7E5 1E6
20	End_Pressure Pressure	
21		
22		Species where zero
23	C	of energy is placed
24 ~	Print	
25 🗸	Timeevolution	
26	Timefile time.txt	
27	TimeStep[s] 1E-9	
28	TimeNum 100	Time-evolution
29 🗸	Initspecies	
30	R	
31	END_Initspecies	
32	END_Timeevolution	
33	End_Print	
34		
35 End	nd_Parameter	
36		
37 ~ Rea	eaction Reaction	n block
38 🗸	BarrierRxn	ing the reactant transition
39	Info R-TS_R_Pb-Pb Den	ine the reactant, transition
40	End_BarrierRxn Stat	e, and product

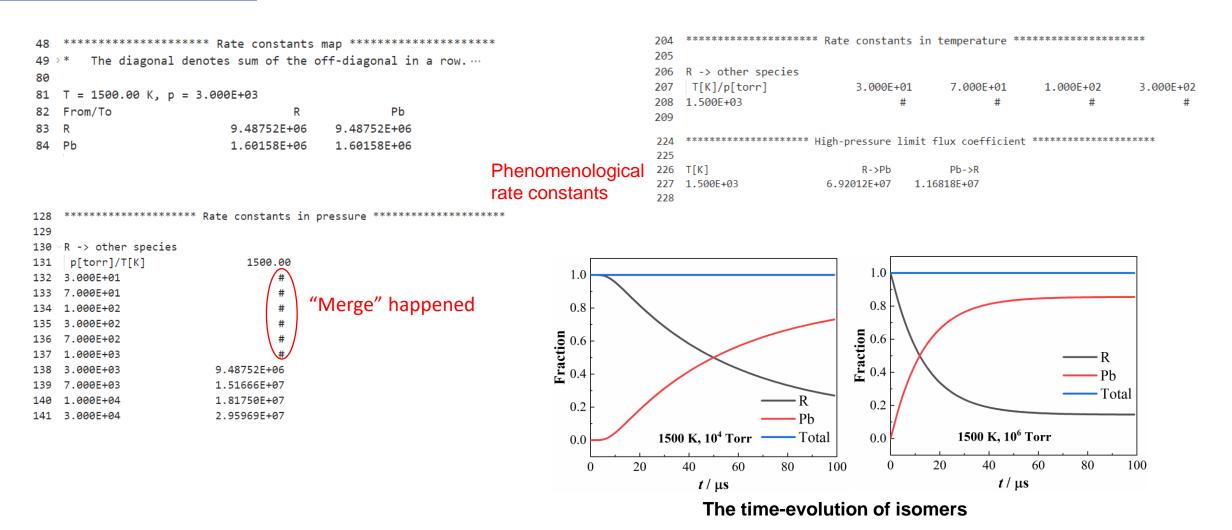
Species block

	opecies block			
43	Species			
44	Well Well/isomer			
45	Name R			
46	Geometry[A]			
47	C	0.00000500	0.05728400	-0.35846700
48		Geometr	٠v	
49	End_Geometry		,	
50	Frequency[cm-1]			
51	137.0475	235.0936		270.3191
52		Frequen	су	
53	End_Frequency			
54	E0K[a.u.] -157.62	103 Energy		
55	End_Well			
56				
57	Well			
58	Name Pb			
59	Geometry[A]			
60	С	0.00000000	1.47714300	0.01848500
61				
62	End Geometry			
63	Frequency[cm-1]			
64	132.2029	137.4214		137.4346
65				
66	End_Frequency			
67	E0K[a.u.] -157.6	37096		
68	Rotsigma 3			
69	End_Well			
70	_			
71	TranState Transition	state		
72	Name TS_R_Pb			
73	Geometry[A]			
74	C	0.00001700	0.02076500	-0.15960900
75				
76	End Geometry			
77	Frequency[cm-1]			
78	209.6066	217.8881		
79		217.0001		
80	End Frequency			
81	E0K[a.u.] -157.57	1112		
82	End TranState	1442		
83	ind_franstate			
84	End Species			
	Ling_opecies			

Example 1 (cont.)

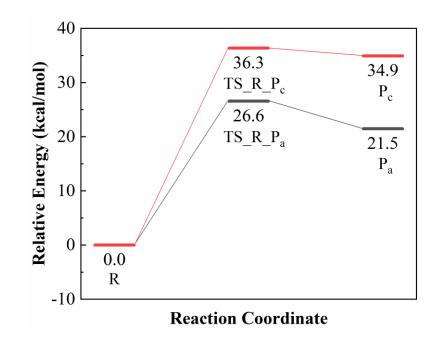
Standard output file

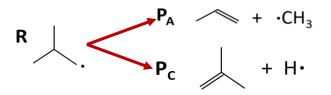
43	**************************************	al Parameter ******	******
44	Precision:	double	
45	MergeThreshold:	2.00000E-01	
46	GroundSpecies:	R	
47	<deltae_d>[a.u.] = (T/To</deltae_d>)^(exponent)[slope*	(E - E_gamma,0) + EdConst]
48	Tc[a.u.]:	9.50045E-04	
49	exponent:	0.00000E+00	
50	slope:	0.00000E+00	
51	EdConst[a.u.]:	7.14982E-04	
52	HSCollision		
53	bmax[a.u.]:	1.70075E+01	Global
54	massM[a.u.]:	5.10653E+04	Clobal
55	massA[a.u.]:	None	parameters
56			•
	************	Isomers **********	********
58	[MOLECULE PROPERTIES]		
59	Name:	R	
60	Read from:	SPECIES block	
61	Number of atoms:	13	
62 >			
76	Freuencies scaling factor:		
77 >	· · · · · · · · · · · · · · · · · · ·	-	
87	E(ele) [a.u.]:	-0.117201023357498	
88	ZPVE [a.u.]:	0.1172010233574981	.3
89	E(0K) [a.u.]:	0.0	
90	Eletronic level [a.u.]:		
91		00000E+00	
92	Islinear:	False	
93	IABC [a.u.]:	1.11925E+17	Isomer
94	Symmetry number:	1.00000E+00	isonici
95 96	Optical-isomer number: MSTor file:	1.00000E+00	properties
	Horor rarer	None	properties
97	[END OF MOLECULE]		


187		tion Stack ************************************
188 189	[REACTION INFO] Reactant:	R Elementary
189	TS:	
190	Product:	reactions
191	Polyrate file:	None
192	Variation:	tst
194	Tunneling:	None
195	Lower limit of MEP:	None
196	Upper limit of MEP:	None
197		from the analytical expression.
198	[END OF INFO]	from the undrytical expression.
199		
200	[REACTION INFO]	
201	Reactant:	Pb
202	TS:	TS R Pb
203	Product:	R
204	Polyrate file:	None
205	Variation:	tst
206	Tunneling:	None
207	Lower limit of MEP:	None
208	Upper limit of MEP:	None
209	The k(E) will be calculated	from the analytical expression.
210	[END OF INFO]	
211		
212	************************** Rea	ction Map *******************************
213	(Barrier with ZPVE in a.u.;	X denotes none reaction)
214	From/to R	Pb
215	R X	^{5.66610E-02} Energies
216	Pb 6.56540E-02	x Energies
217		
218		in a.u.; X denotes none reaction)
219	From/to R	Pb
220	R X	-8.99300E-03
221	Pb 8.99300E-03	X
222		

224 225 226 ----- Cycle -----227 **Parameters** 228 Temperature[K]: 1.500E+03 229 Pressure[Torr]: 3.000E+01 for each (T, p) 230 Energy step[cm-1]: 1.04255E+02 condition. Energy reference[cm-1]: 4.37123E+04 231 232 233 RELAXATION INFO] 234 Name: R 235 Size: 418 236 bmax[a.u.]: 17.007535 237 Z[1/s]: 6.389267E+08 Truncated well E0[cm-1]: 237.776 238 True well E0:[cm-1] 239 0.000 END OF INFO] 240 241 242 [RELAXATION INFO] 243 Name: Pb 244 Size: 436 17.007535 245 bmax[a.u.]: Z[1/s]: 6.389267E+08 246 247 Truncated well E0[cm-1]: -1638.820 True well E0:[cm-1] 248 -1973.735 249 [END OF INFO] 250 251 [ME INFO] 252 Size 854 253 Min CSE eigenvalue[1/s]: 0.00000E+00 Max CSE eigenvalue[1/s]: 4.06206E+05 254 Min IERE eigenvalue[1/s]: 255 4.84188E+05 256 Max IERE eigenvalue[1/s]: 1.35205E+10 257 258 EPCS: 259 CSE No. 1 2 260 R -3.80037E-01 5.14525E-01 261 Pb -9.24971E-01 -2.11400E-01 262 263 Binding: 264 Pb well corresponds to eigen mode 1 R well corresponds to eigen mode 2 265 266 267 Merge Pairs: 268 R - Pb 269 270 [END OF INFO]

Example 1 (cont.)


Rate constants output file



Example 2

C-C and C-H β -scission of isobutyl

This is an example of competing unimolecular reactions. In this example, TST(RRKM) is used with the single-structure-rigid-rotor-harmonic-oscillator approximation. Rate constants are extracted from the master equation

$$\frac{\mathrm{d}\mathbf{y}}{\mathrm{d}\mathbf{t}} = -\mathbf{W}\mathbf{y} + \mathbf{B}\mathbf{s} \tag{2}$$

based on CSE theory, where y is a vector containing the population of R. For the time evolution, TUMME neglect the **Bs** term of eq (2) and uses the following homogeneous master equation:

$$\frac{\mathrm{d}\mathbf{y}}{\mathrm{d}t} = -\mathbf{W}\mathbf{y} \tag{3}$$

Input: the standard input file Output: rate constants and the time-evolution of concentrations.

Zhang, R. M.; Xu, X.; Truhlar, D. G., The Journal of Physical Chemistry A 2021, 125 (28), 6303-6313.

Example 2 (cont.)

Standard input file

```
1 #nproc 15
                      Parallelism block
 2 #parallel mp
 3
 4 Parameter
                       Parameter block
       HSCollision
 5
                                  9.0
28.0134 Collision section
 6
           Bmax[A]
           MassM[amu]
 7
       End_HSCollision
 8
9
10
       Edown
                               111.0324 Relaxation section
11
           EdConst[cm-1]
12
       End Edown
13
14
       Temperature[K]
15
           700.
                         Temperature
16
       End Temperature
17
18
       Pressure[torr]
                         Pressure
19
       1E-10 1E-9 1E-8 1E-7 1E-6 1E-5 1E-4 1E-3 1E-2 1E-1 1.0 1E1 1E2 1E4 1E6
20
       End_Pressure
21
                                 Species where zero of energy is placed
22
       GroundSpecies
                              R
23
       Precision guadruple Precision of the transition matrix
24
25
   End_Parameter
26
27
                  Reaction block
28
   Reaction
29
       BarrierRxn
           Info R-TS_R_Pa-Pa Define the reactant, transition state and product
30
       End_BarrierRxn
31
32
33
       BarrierRxn
34
           Info R-TS_R_Pc-Pc
       End BarrierRxn
35
36 End Reaction
```


Example 2 (cont.)

37	Species	Spacias bl	ock			
38	Well	Species bl	OCK			
39	N	ame R				78 ~
40	G	eometry[A]				79
41		С	0.00000100	0.06835100	-0.36837900	80 ~
42						81
43	E	nd_Geometry				82 ~
44	F	requency[cm-1]				
45		76.5658	150.8529		176.9492	83
46						84 85
47	E	nd_Frequency				85
48	E	0K[eV] 2.9378	94765			86 ~
49	End_W	ell Wells / is	omers			87
50			omero			88
51						89
52	TranS	tate				90
53	N	ame TS_R_Pc				91 ~
54	G	eometry[A]				92
55		C	-0.00000900	0.10844500	0.01394900	93
56						94
57	E	nd_Geometry				95
58		requency[cm-1]				96
59		83.0861	115.2996			97 ~
60						98
61	E	nd_Frequency				99 ~
62			14114916			100
63		ranState				101
64	_					102
65	TranS	tate Transiti	on states			103 ~
66	N	ame TS_R_Pa				104
67	G	eometry[A]				105
68		C	-0.31875100	-0.23524300	-0.46905000	106
69						107
70	E	nd Geometry				108
71	F	requency[cm-1]				109
72		73.3727	118.3417			110
73						111
74	E	nd_Frequency				
75		0K[eV] 4.0893	17803			
76						
		ranstate 5/17/2023				TU

Standard input file

Sp1Mol The first molec	ular fragmen	it species			
Name Pa_1 #sp1	Ū.				
Geometry[A]				113	Bim
C	0.00000000	0.00000000	0.00000000	114	Name Pc
				115	Sp1Mol
End_Geometry				116	Name Pc_1 #sp1
Frequency[cm-1]				117	Geometry[A]
920.0904	1304.9899		1304.9899	118	C 0.000000 0.000000 1.45693
				119	
End_Frequency				120	End_Geometry
E0K[eV] 0.0				121	Frequency[cm-1]
<pre>EleLevel[a.u.]</pre>				122	29.8139 87.0421 393.0655
10				123	
End_EleLevel				124	End_Frequency
Rotsigma 6				125	E0K[kcal/mol] 0.0
End Sp1Mol				126	Rotsigma 2.0
				127	End_Sp1Mol
Sp2Mo1 The second mo	lecular fragm	nent specie	S	128	
Name Pa_2 #sp2				129	Sp2Atom The atomic fragment species
Geometry[A]				130	Name 13_r #sp2
C	-1.26496100	-0.21881800	0.03958700	131	Symbol H
				132	E0K[kcal/mol] 0.0
End_Geometry				133	End_Sp2Atom
Frequency[cm-1]				134	E0K[eV] 4.452257969
80.0033	438,0612		576.8934	135	End_Bim
				136	
End_Frequency				137 E	End_Species
EØK[kcal/mol] 0.0					
Rotsigma 1.0					
End_Sp2Mol					
E0K[eV] 3.868742222					

Example 2 (cont.)

Standard output file

Parameters for each (T, p) condition.

371 ~ ======= Cycle =========

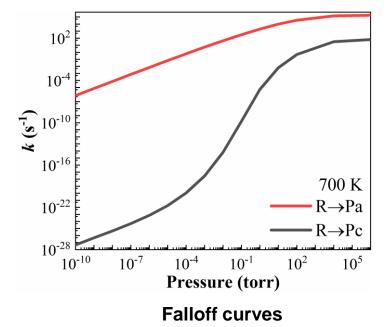
372

405 [END OF INFO]

							373	Temperature[K]:	7.000E+02	
							374	Pressure[Torr]:	1.000E-10	
							375	Energy step[cm-1]:	4.86525E+01	
43	********************************* Glo	bal Parameter ***	**********				376	Energy reference[cm-1]:	2.73088E+04	
44	Precision:	quadruple				Elementary reactions	377			
45	MergeThreshold:	2.00000E-01					378 ~	[RELAXATION INFO]		
46	GroundSpecies:	R				tion Stack ************************************	379	Name:	R	
47 48		<pre>c)^(exponent)[s1 9.50045E-04</pre>	ope*(E - E_gamma,0) + EdConst]	307 ~	[REACTION INFO]		380	Size:	560	
48 49	Tc[a.u.]: exponent:	9.00043E-04 0.00000E+00		308	Reactant:	R				
49 50	slope:	0.00000E+00		309	TS:	TS_R_Pa	381	bmax[a.u.]:	17.007535	
51	EdConst[a.u.]:	5.05901E-04		310	Product:	Pa	382	Z[1/s]:	3.117643E-03	
52	HSCollision		Global	311	Polyrate file:	None	383	Truncated well E0[cm-1]:	112.075	
53	bmax[a.u.]:	1.70075E+01		312	Variation:	tst	384	True well E0:[cm-1]	0.000	
54	massM[a.u.]:	5.10653E+04	parameters	313	Tunneling:	None	385	[END OF INFO]		
55	massA[a.u.]:	None	•	314	Lower limit of MEP:	None	386			
56				315	Upper limit of MEP:	None	387 ~	[ME INFO]		
	**************************	* Isomers ******	***********	316		from the analytical expression.	388	Size	560	
58	[MOLECULE PROPERTIES]			317	[END OF INFO]	from the undrytical expression.	389	Min CSE eigenvalue[1/s]:	7.19400E-07	
59	Name:	R		318			390	Max CSE eigenvalue[1/s]:	7.19400E-07	
60	Read from: Number of atoms:	SPECIES block 13			[REACTION INFO]		391	Min IERE eigenvalue[1/s]:	1.45896E-05	
61	Geometry [a.u.]:	13		319 ~		D	392	Max IERE eigenvalue[1/s]:	3.15746E+10	
62 → 76	Freuencies scaling factor			320	Reactant:	Pa	393	hax iene eigenvalue[1/3].	5.157402.10	
70 77→	Frequencies (scaled) [cm-			321	TS:	TS_R_Pa	394 ~	EPCS:		
87	E(ele) [a.u.]:	-0.10796549924	532348	322	Product:	R				
88	ZPVE [a.u.]:	0.107965499246		323	Polyrate file:	None	395	CSE No.	1	
89	E(0K) [a.u.]:	0.0		324	Variation:	tst	396	R	9.61931E-01	
90	Eletronic level [a.u.]:			325	Tunneling:	None	397			
91	1.00000E+00 0	.00000E+00		326	Lower limit of MEP:	None	398 ~	Kappa:		
92	Islinear:	False	1	327	Upper limit of MEP:	None	399	Bim Name	Pa	Pc
93	IABC [a.u.]:	1.11655E+17	lsomer	328	The k(E) will be calculated	from the analytical expression.	400	R	7.40531E-02	1.21092E-07
94	Symmetry number:	1.00000E+00	proportios	329	[END OF INFO]		401			
95	Optical-isomer number:	1.00000E+00	properties	525			402 ~	Binding:		
96	MSTor file:	None					403	R well corresponds to ei	gen mode 1	
97	[END OF MOLECULE]						404		mout 1	

5/17/2023

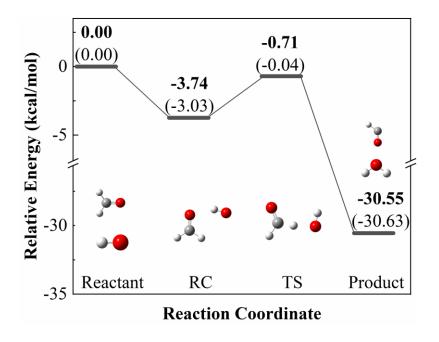
Example 2 (cont.) Rate constants output file


48	*******	Rate constants m	nap ***********	*****
49	* The diagonal denote	es sum of the of	ff-diagonal in a	a row.
50				
51	T = 700.00 K, p = 1.00	00E-10		
52	From/To	R	Pa	Pc
53	R	7.19400E-07	7.19400E-07	4.65869E-28
54	Pa	2.58261E-26	2.53198E-18	2.53198E-18
55	Pc	1.93973E-41	2.93664E-12	2.93664E-12

309	******	Rate constants	in temperature	*****	*****
310					
311	R -> other species				
312	T[K]/p[torr]	1.000E-10	1.000E-09	1.000E-08	1.000E-07
313	7.000E+02	7.19400E-07	7.19367E-06	7.19043E-05	7.16146E-04
349 350	*****	High-pressure li	imit flux coeff:	icient ********	*****
351	т[к]	R->Pa	R->Pc	Pa->R	Pc->R
352	7.000E+02	1.77507E+05	6.53738E+01	6.88689E-15	2.94171E-12

Phenomenological rate constants

143 ************************ Rate constants in pressure *************************


144		
	P > other species	
145	R -> other species	
146	p[torr]/T[K]	700.00
147	1.000E-10	7.19400E-07
148	1.000E-09	7.19367E-06
149	1.000E-08	7.19043E-05
150	1.000E-07	7.16146E-04
151	1.000E-06	7.01463E-03
152	1.000E-05	6.69286E-02
153	1.000E-04	6.14926E-01
154	1.000E-03	5.35435E+00
155	1.000E-02	4.32060E+01
156	1.000E-01	3.12770E+02
157	1.000E+00	1.94093E+03
158	1.000E+01	9.71923E+03
159	1.000E+02	3.61678E+04
160	1.000E+04	1.47466E+05
161	1.000E+06	1.76960E+05

Example 3

Hydrogen Abstraction from HCHO by OH (TST)

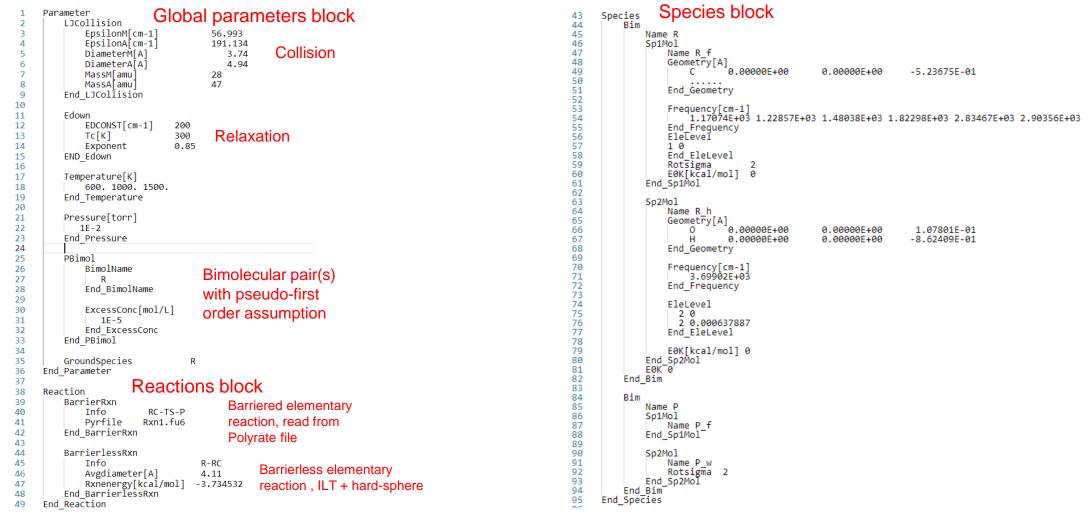
$$\text{HCHO} + \text{OH} \xrightarrow{1} \text{HCHO} \cdots \text{HO} \xrightarrow{2} \text{HCO} + \text{H}_2\text{CO}$$

This is an example of a bimolecular reaction. This example uses TST(RRKM) theory with the single-structure-rigid-rotor-harmonicoscillator is used for reaction 2, and the reaction 1 is estimated by the inverse-Laplacian transform to the hard-sphere model. Based on the CSE theory, the rate constant is extracted from

$$\frac{\mathrm{d}\mathbf{y}}{\mathrm{dt}} = -\mathbf{W}\mathbf{y} + \mathbf{B}n_{\mathrm{HCHO}}n_{\mathrm{OH}} \tag{4}$$

where the $n_{\rm HCHO}n_{\rm OH}$ is left unknown. For time-evolution calculations, the reaction is assumed to be pseudo-first order, and eq. (4) is converted to homogeneous form by appending the $n_{\rm HCHO}$ concentration to the population vector **y** to get vector **y**^{*},

$$\frac{\mathrm{d}\mathbf{y}^*}{\mathrm{d}t} = -\mathbf{W}^*\mathbf{y}^* \tag{5}$$


Input: the standard input file, *Polyrate* file for the reaction 2. Output: rate constants and the time-evolution of concentrations.

Zhang, R. M.; Chen, W.; Truhlar, D. G.; Xu, X., Faraday Discussions 2022, 238, 431-460. doi.org/10.1039/D2FD00024E.

Example 3 (cont.)

Standard input file

Example 3 (cont.)

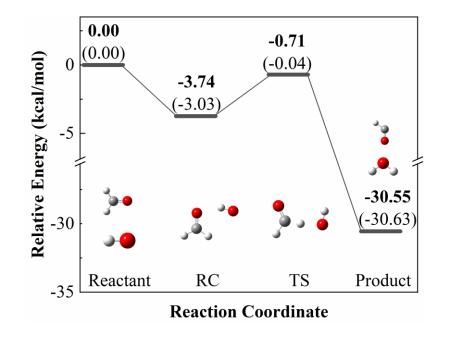
Time-evolution file

1 # # Time evolution ouput for TUMME 2 З # the unit for energy is kcal/mol; the unit for time is second 4 # 5 time 6 T = 100.00 K, p = 1.000E+01 torr 0.00000E+00 y(E)/time 2.00000E-07 4.00000E-07 6.0000E-07 8 RC 7.61593E-22 9 7.94883E+00 6.85012E-32 8.33291E-22 7.96635E-22 10 7.90908E+00 -1.07883E-27 9.98076E-22 9.54173E-22 9.12200E-22 11 7.86934E+00 -3.32792E-28 1.19544E-21 1.14285E-21 1.09258E-21 7.82959E+00 -2.60212E-28 1.43168E-21 1.36871E-21 12 1.30850E-21 3.93483E-26 1.71456E-21 13 7.78985E+00 1.63914E-21 1.56703E-21 14 7.75011E+00 -4.70048E-27 2.05319E-21 1.96287E-21 1.87653E-21 15 7.71036E+00 -4.78735E-27 2.45852E-21 2.35037E-21 2.24698E-21 16 7.67062E+00 -3.84387E-27 2.94387E-21 2.81437E-21 2.69057E-21 -5.38489E-29 3.52505E-21 3.36998E-21 3.22174E-21 17 7.63087E+00 2.27151E-27 4.22076E-21 18 7.59113E+00 4.03509E-21 3.85760E-21 7.55139E+00 -1.03427E-26 5.05372E-21 4.83142E-21 4.61889E-21 19 -4.83806E-27 6.05073E-21 20 7.51164E+00 5.78457E-21 5.53012E-21 -1.73190E-26 7.24373E-21 21 7.47190E+00 6.92509E-21 6.62047E-21 22 7.43215E+00 -2.21353E-26 8.67143E-21 8.28999E-21 7.92533E-21 23 7.39241E+00 -5.47684E-27 1.03799E-20 9.92332E-21 9.48681E-21 24 -2.23638E-26 1.24241E-20 7.35267E+00 1.18776E-20 1.13551E-20 25 7.31292E+00 -2.15904E-26 1.48711E-20 1.42169E-20 1.35915E-20 26 7.27318E+00 -1.11184E-26 1.77991E-20 1.70162E-20 1.62676E-20 27 7.23343E+00 -2.36191E-26 2.13020E-20 2.03649E-20 1.94691E-20 28 7.19369E+00 -1.19291E-26 2.54929E-20 2.43715E-20 2.32994E-20

energy microscopic population of RC

302 R 303 [n] 304

1.00000E+00 9.56011E-01 9.13957E-01 8.73754E-01 8.35318E-01


macroscopic concentration of R

The time-evolution of n_{OH} (solid lines) and n_{RC} (dash-dot lines). The initial condition is set as $n_{OH}(t)=0=10^{-7}$ mol/L, $n_{RC}(t)=0$ and n_{HCHO} is assumed to be constant at 10⁻⁵ mol/L.

Example 4

Hydrogen Abstraction from HCHO by OH (MS-VTST/SCT)

This is an example of a bimolecular reaction. In this example, MS-CVT/SCT is used for reaction 2, and rate constants for reaction 1 are estimated by an inverse Laplace transform applied to the hardsphere model. The rate constant is extracted from eq. (4) based on CSE theory, and the time evolution is estimated from eq. (5).

Input: the standard input file, *Polyrate* file for reaction 2, *MStor* files for RC and TS Output: rate constants and the time-evolution of concentrations.

 $\text{HCHO} + \text{OH} \xrightarrow{1} \text{HCHO} \cdots \text{HO} \xrightarrow{2} \text{HCO} + \text{H}_2\text{O}$

Zhang, R. M.; Chen, W.; Truhlar, D. G.; Xu, X., Faraday Discussions 2022, 238, 431-460. doi.org/10.1039/D2FD00024E.

Example 4 (cont.)

Standard input file

1	Parameter Global parameters block									
2	LJCollision									
3	EpsilonM[cm-1]	56.993								
4	EpsilonA[cm-1]	191.134								
5	DiameterM[A]	3.74 Collision								
6	DiameterA[A]	4.94								
7	MassM[amu]	28								
8	MassA[amu]	47								
9	End LJCollision									
10		_								
11	Edown Re	laxation								
12	EDCONST[cm-1]	200								
13	Tc[K]	300								
14	Exponent	0.85								
15	END_Edown									
16										
17	Temperature[K]									
18	100.									
19	End_Temperature									
20										
21	Pressure[torr]									
22	10 1E4 1E7									
23	End_Pressure									
24		Bimolecular pair(s)								
25	PseuBimolecular	with pseudo-first								
26	PseuBimName	order assumption								
27	R									
28	End_PseuBimName									
29	5	1								
30	ExcessConc[mol/L	.]								
31	1E-5									
32	End_ExcessConc									
33	End_PseuBimolecular									
34	ChoundEnsister	D								
35	GroundSpecies	R								
36	End_Parameter									

38	Reaction	Reactions I	olock						
39		Porriorod	elementary reaction, read from Delyrate file						
40	BarrierRx		elementary reaction, read from Polyrate file						
41	Info	RC-TS-	-						
42	Pyrfi		-						
43	Varia		Variation						
44	Tunne	ling sct	Tunneling						
45		r[A] -0.12	Range of reaction coordinates						
46	suppe		Nalige of reaction coordinates						
47	End_Barri	erRxn							
48		- Porrie	arlage elementary reaction. II T , hard enhance						
49	Barrierle	SSRXN Darre	erless elementary reaction, ILT + hard-sphere						
50	Info		R-RC						
51		ameter[A]	4.11						
52		Rxnenergy[kcal/mol] -3.734532 End BarrierlessRxn							
53	End_Barri	eriesskxn							
54 55	End Deaction								
55	End_Reaction								
57	Species	0	1.11						
58	Bim	Species	DIOCK						
59	Name	D							
60									
61		Sp1Mol Name R_f							
62		eometry[A]							
63		concery[A]							
64									
65									
		•							

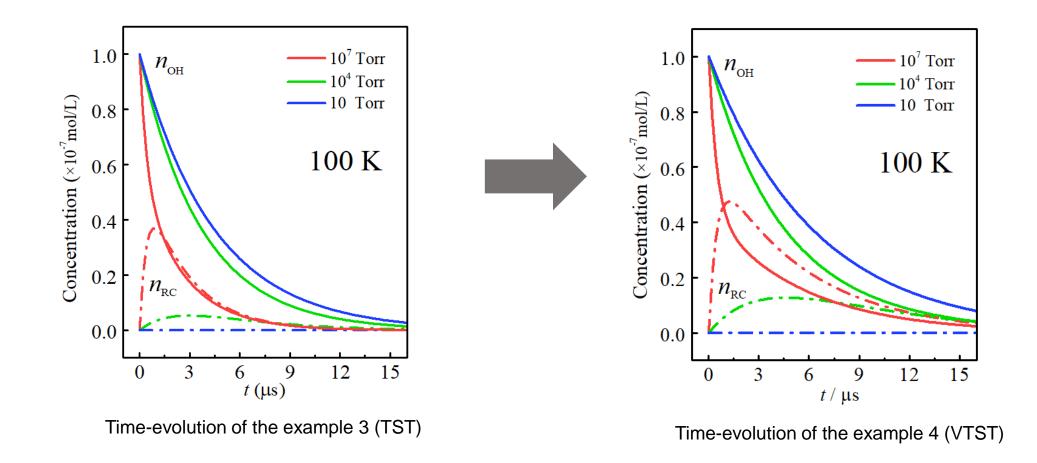
Example 4 (cont.)

Time-evolution file

1	#											
2	# Time evolution ouput for TUMME											
3	# the unit fo	# the unit for energy is kcal/mol; the unit for time is second										
4	#											
5						time						
6	T =	= 100.00 K, p = 1.000E-03 torr				ume						
7	y(E)/time		0.00000E+00	2.00000E-07	4.00000E-07	6.0000E-07	8.00000E-07					
8	RC											
9	9.93603E+00		-7.69770E-42	4.93115E-26	4.77741E-26	4.62847E-26	4.48416E-26					
10	9.91602E+00		0.00000E+00	5.40583E-26	5.23729E-26	5.07401E-26	4.91581E-26					
11	9.89601E+00		2.30931E-41	5.92603E-26	5.74127E-26	5.56227E-26	5.38885E-26					
12	9.87599E+00		-6.15816E-41	6.49632E-26	6.29379E-26	6.09756E-26	5.90746E-26					
13	9.85598E+00		1.53954E-41	7.12143E-26	6.89940E-26	6.68430E-26	6.47590E-26					
14	9.83596E+00		0.00000E+00	7.80675E-26	7.56336E-26	7.32755E-26	7.09910E-26					
15	9.81595E+00		7.69770E-41	8.55779E-26	8.29098E-26	8.03249E-26	7.78206E-26					
16	9.79594E+00		-1.53954E-41	9.38099E-26	9.08852E-26	8.80516E-26	8.53064E-26					
17	9.77592E+00		1.53954E-41	1.02833E-25	9.96269E-26	9.65208E-26	9.35115E-26					
18	9.75591E+00		-3.07908E-41	1.12723E-25	1.09209E-25	1.05804E-25	1.02505E-25					
19	9.73589E+00		9.23724E-41	1.23566E-25	1.19713E-25	1.15981E-25	1.12365E-25					
20	9.71588E+00		-1.53954E-40	1.35448E-25	1.31225E-25	1.27134E-25	1.23170E-25					
21	9.69587E+00		9.23724E-41	1.48469E-25	1.43840E-25	1.39355E-25	1.35010E-25					
22	9.67585E+00		3.07908E-41	1.62743E-25	1.57669E-25	1.52754E-25	1.47991E-25					
23	9.65584E+00		-6.15816E-41	1.78390E-25	1.72828E-25	1.67440E-25	1.62219E-25					
24	9.63582E+00		1.84745E-40	1.95535E-25	1.89439E-25	1.83533E-25	1.77811E-25					
25	9.61581E+00		-1.53954E-40	2.14328E-25	2.07646E-25	2.01172E-25	1.94900E-25					
	energy microscopic population of RC											

691 R 692 [n] 693

1.00000E+00 9.68821E-01 9.38616E-01 9.09352E-01 8.81001E-01


macroscopic concentration of R

The time evolution of n_{OH} (solid lines) and n_{RC} (dash-dot lines). The initial condition is set as $n_{OH}(t=0)=10^{-7}$ mol/L; $n_{RC}(t=0)$ and n_{HCHO} are assumed to be constant at 10⁻⁵ mol/L.

Example 4 (cont.)

Comparison with example 3

Thank you for your interest in TUMME.

You are invited to provide feedback to: <u>xuxuefei@tsinghua.edu.cn</u> and <u>truhlar@umn.edu</u>

The authors gratefully acknowledge Wenqi Chen for assistance with the tutorial.