

TUMME 2023

MANUAL

Rui Ming Zhang

Center for Combustion Energy, Department of Energy and Power Engineering, and Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China

and Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, USA

Xuefei Xu

Center for Combustion Energy, Department of Energy and Power Engineering, and Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China

and

Donald G. Truhlar

Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, USA

Date of final update to code: May 7, 2023 Date of most recent revision to this manual: May 14, 2023

ABSTRACT. TUMME (Tsinghua University Minnesota Master Equation solver) is a computer program for setting up and solving master equations for chemical kinetics of unimolecular and bimolecular reactions. The master equation is discretized in terms of reactant energy bins, and rate constants are calculated from chemically significant eigenmodes. TUMME has interfaces to Gaussian, Polyrate, and MSTor output files that allow the master equation code to provide the microcanonical flux coefficients needed for the kernel of the master equation as calculated by conventional transition state theory (TST), variational transition state theory (VTST) with various tunneling methods, or multi-structural or multi-path VTST (MS-VTST/SCT or MP-VTST) with various tunneling methods. The tunneling methods supported include small-curvature tunneling (SCT), large-curvature tunneling (LCT), and microcanonical optimized multidimensional tunneling (µOMT). For mechanisms involving only unimolecular isomerization (no bimolecular pairs), TUMME 2023 solves a conservative master equation for both rate constants and timedependent energy-bin populations. For mechanisms involving bimolecular pairs, TUMME 2023 can solve two kinds of master equation: (i) a nonconservative master equation for calculating rate constants of bimolecular reactions and (ii) a conservative master equation that includes bimolecular association in the transition matrix and that can be used for calculating the time evolution of the concentration of a pseudo-first-order bimolecular reactant. TUMME is written in double precision with Python 3; quadruple and octuple precision is also available for some subtasks in C++. The Python code can run in serial or parallel (MP or MPI), and C++ code can run on a single processor or on multiple processors with OpenMP. The program includes a manual and a tutorial.

License:

TUMME 2023 is licensed under the Apache License, Version 2.0.

The manual of TUMME 2023 is licensed under CC-BY-4.0.

Publications of results obtained with the TUMME 2023 software should cite the program and at least one of the articles describing the program.

Reference to the program: R. M. Zhang, X. Xu, and D. G. Truhlar, TUMME 2023, program reference and DOI available at https://zenodo.org

References to articles describing the program: See Section 8.

Table of Contents	
1. Introduction	
2. Theory	
2.1 Master equation	
2.1.1 Collisional relaxation energy transfer possibility	
2.1.2 Microcanonical flux coefficients	5
2.2 Phenomenological rate constant	
2.3 Time evolution	
2.4 Reversibility and conservation	8
3. Program Description	9
3.1 General workflow	9
3.2 The framework of source files	10
3.3 Input files	10
3.3.1 Options of input species properties	10
3.3.2 Options of microcanonical flux coefficients	11
4. Installation and Execution	14
4.1. Dependencies	14
4.2. Installation	14
4.3. Execution	16
4.3.1 Details in the executable script <i>tumme</i>	16
4.3.2 The parallelism	
5. Standard Input File	
5.1 Two pre-definition subkeywords	
5.2 Keywords in the PARAMETER block	
5.3 Keywords in the REACTION block	
5.4 Keywords in the SPECIES block	
5.5 Polyrate, Gaussian and MSTor Output Files	
5.5.1 <i>Polyrate</i> output file	
5.5.2 <i>Gaussian</i> output file	
5.5.3 <i>MSTor</i> output file	
 Detailed Implementation 	
6.1 Overview of all source files	
6.2 Normalization of the energy transfer kernel	
6.3 Bound isomers to CSE modes one-to-one	56
6.3 Bound isomers to CSE modes one-to-one6.4 Handling the merger condition	
6.3 Bound isomers to CSE modes one-to-one6.4 Handling the merger condition6.5 High-precision dynamic libraries	57
 6.3 Bound isomers to CSE modes one-to-one 6.4 Handling the merger condition	57 59
 6.3 Bound isomers to CSE modes one-to-one 6.4 Handling the merger condition	57 59 59
 6.3 Bound isomers to CSE modes one-to-one	57 59 59 59
 6.3 Bound isomers to CSE modes one-to-one	57 59 59 59 60
 6.3 Bound isomers to CSE modes one-to-one	57 59 59 60 60
 6.3 Bound isomers to CSE modes one-to-one	57 59 59 60 60 61
 6.3 Bound isomers to CSE modes one-to-one	57 59 59 60 60 61 61
 6.3 Bound isomers to CSE modes one-to-one	57 59 60 60 61 61 61
 6.3 Bound isomers to CSE modes one-to-one	57 59 59 60 60 61 61 62 63
 6.3 Bound isomers to CSE modes one-to-one	57 59 60 60 61 61 61 62 63 64

1. Introduction

The time development of a chemical reaction mechanism involving several species and/or several states can be approximately described as a stochastic process and in particular as a Markov chain. It has long been recognized that the time evolution of species concentration according to a give mechanism can be simulated by a multi-state master equation, and that chemical reaction rate constants can be extracted by eigenanalysis of such a master equation.¹ A master equation is a set of coupled ordinary differential equations with time as the independent variable. If all chemical species are at internal equilibrium, the dependent variables are the concentrations of the chemical species. Of more interest here is the case in which internal-state nonequilibrium is allowed, then the independent variables are the concentrations of chemical species summed over bins of internal states. An especially powerful method, applicable to all unimolecular processes and under many conditions extendable to second-order reactions, is to linearize the master equation in the various concentrations so the eigenvalues have units (s⁻¹) of unimolecular rate constants or pseudo first-order rate constants, and the rate constants can be related to the slowest eigenvalues.²

Because the master equation is especially powerful for modeling nonequilibrium effects, and because nonequilibrium effects are more important in unimolecular reactions than most bimolecular reactions (with bimolecular association reactions being the exception because they are the reverse of unimolecular reactions), master equations have found their main use in unimolecular reactions. Most modern theoretical treatments of unimolecular reactions make the Rice-Ramsperger-Kassel assumption^{3,4} that the rate of a unimolecular reaction depends only on the total energy content (E) of the molecule. In this case the internal-state bins of each species are specified by a single variable E, and the treatment is sometimes called a 1-D, energy-dependent master equations. In particular, the master equation is discretized in terms of chemical species in finite-width internal energy bins. In the present context, internal energy is the total vibrational–rotational energy. We note that some workers label the bins as grains or intervals.

The extraction of chemical kinetics rate constants by eigenanalysis of 1-D, energydependent master equations has come to be known as the method of chemically significant eigenmodes (CSE theory), and its use for the treatment of complex mechanisms has been greatly developed and clarified in recent years; we will build on this work, in particular using the method of Georgievskii et al.⁵ This method is applicable to unimolecular isomerization and dissociation reactions proceeding from one or multiple isomers. (In this manual, well and isomer are synonyms.) For the case where the concentrations of the bimolecular reactants do not change significantly on the relaxation time scale, association reactions from bimolecular pairs can also be considered. The resulting rate constants depend on temperature T and pressure p.

This program is written in Python 3 utilizing C++ high-precision dynamic libraries. For running multiple combinations of T and p, the execution can be parallelized on a single node using MP or across multiple nodes using MPI. The program can be run in double precision, quadruple, or octuple precision.

A key feature of the TUMME program is that it is interfaced to the *Polyrate* program for calculating rate constants and to the *MSTor* program for the treatment of torsional anharmonicity. By reading the minimum energy path and the transmission possibilities from a *Polyrate* output file and reading the multi-structural torsional density of states from an *MSTor* output file, TUMME can use pressure-independent MS-VTST/SCT rate constants for

TUM ME

elementary reactions as input data for the pressure-dependent master equation for complex reaction systems.

2. Theory

TUMME can treat both unimolecular reactions and bimolecular reactions, but bimolecular reactions are treated only in the limit of pseudo-first-order kinetics. TUMME can treat two kinds of master equation, with the difference being the way that one treats the bimolecular pairs. One kind of master equation is conservative (also called reversible or homogeneous); this kind of master equation leads to equilibrium. The other kind of master equation is nonconservative (also called irreversible or inhomogeneous); for mechanisms involving unimolecular dissociation, this kind of master equation leads to all isomers vanishing because one includes the dissociation reactions but not the reverse association reactions. If there are no bimolecular species in the mechanism, the master equation is always conservative master equation to extract phenomenological rate constants and uses the conservative master equation to calculate the time evolution of concentrations and energybin populations.

Here we only give a brief review of the theory. For more details, the user should refer to ref. 29 for the case of only unimolecular reactions and to ref. 31 for the case where bimolecular reactions are included.

2.1 Master equation

If we collect the microscopic concentrations of the isomers in their energy bins into a single vector \mathbf{y} (with dimension of N_y), and if we treat the bimolecular pairs by means of an inhomogeneous term, we can write the discrete master equation as an inhomogeneous equation in the following way

$$\frac{\mathrm{d}\mathbf{y}}{\mathrm{d}t} = -\mathbf{W}\mathbf{y} + \mathbf{B}\mathbf{s} \tag{1}$$

where *t* is time, **s** is the macroscopic concentration vector of bimolecular pairs, **B** is the association reaction flux coefficient matrix, and **W** is the transition matrix given by $\mathbf{W} = \hat{\mathbf{K}} + \mathbf{P}$

where $\widehat{\mathbf{K}}$ is the unimolecular chemical reaction flux coefficient matrix including isomerization and dissociation (the caret is used to distinguish reactive flux coefficients, which will have carets, from rate constants, which will not), and **P** is the collisional energy-relaxation matrix. We transform **W** to a symmetric matrix **G** with positive eigenvalues according to

$$\mathbf{G} = \mathbf{F}^{-1} \mathbf{W} \mathbf{F} \tag{3}$$

where \mathbf{F} is a diagonal matrix with diagonal elements

$$F_i = \sqrt{\rho_{\gamma}(E_{\eta})\exp(-\beta E_{\eta})} \tag{4}$$

where *i* is the state index; γ is the index of isomers; η is the index of each energy bin; ρ is the electronic-rotational-vibrational density of state; β is $1/k_BT$. This transformation leads to the following symmetrized master equation

$$\frac{\mathrm{d}\tilde{\mathbf{y}}}{\mathrm{d}t} = -\mathbf{G}\tilde{\mathbf{y}} + \widetilde{\mathbf{B}}\mathbf{s} \tag{5}$$

with $\tilde{\mathbf{y}} = \mathbf{F}^{-1}\mathbf{y}$ and $\tilde{\mathbf{B}} = \mathbf{F}^{-1}\mathbf{B}$.

(2)

2.1.1 Collisional relaxation energy transfer possibility

In TUMME, we use the "exponential-down" model to describe the relaxation of isomers by collisions with a bath gas; this model assumes that the probability of a collision changing the energy of isomer γ from initial energy $E_{\eta'}$ to final energy E_{η} is

$$P_{\gamma}(\eta|\eta') = \begin{cases} A(E_{\eta'})e^{-\frac{E_{\eta'}-E_{\eta}}{\langle \Delta E_{d} \rangle(E_{\eta'})}} & \text{for } E_{\eta'} \ge E_{\eta} \\ \left[A(E_{\eta})e^{-\frac{E_{\eta}-E_{\eta'}}{\langle \Delta E_{d} \rangle(E_{\eta})}}\right] \frac{\rho_{\gamma}(E_{\eta})e^{-\beta E_{\eta}}}{\rho_{\gamma}(E_{\eta'})e^{-\beta \eta'}} & \text{for } E_{\eta'} < E_{\eta} \end{cases}$$
(6)

2.1.2 Microcanonical flux coefficients

In the following part, we use ρ to denote the electronic-rotational-vibrational density of states, of which the Laplace transform is the electronic-rotational-vibrational partition function (Q_{ϕ}) , and we use ψ to denote the electronic-rotational-vibrational density of states including relative translation, of which the Laplace transform is the electronic-rotational-vibrational partition function (Q_{ϕ}) times the relative translational partition function per unit volume (Φ_{rel}) .

(1) Based on the framework of RRKM theory

Unimolecular reaction. For a unimolecular reaction, the microcanonical flux coefficient at energy E_{η} from configuration γ to configuration ϕ (an isomer or a bimolecular pair) is:

$$\widehat{k}^{\text{MS-VTST/SCT}}\left(\gamma \to \phi \mid E_{\eta}\right) = \kappa^{\text{SCT}}(E_{\eta})\Gamma^{\text{VTST}}(E_{\eta})F^{\text{MS}}(E_{\eta})\frac{N_{\gamma \to \phi}^{\text{\sharp,SHO}}(E_{\eta})}{h\rho_{\gamma}^{\text{SSHO}}(E_{\eta})}$$
(7)

where MS denotes that multi-structural effects and/or torsional anharmonicity are included; VTST denotes variational transition state theory, which may be canonical variational theory (CVT) or microcanonical variational theory (μ VT); SCT denotes small-curvature tunneling; κ^{SCT} , Γ^{VTST} , and F^{MS} are transmission coefficients; SSHO denotes single-structural harmonic oscillator or single-structural quasiharmonic oscillator; and a diesis (‡) denotes a conventional transition state, i.e., that the transition state properties are evaluated at a dividing surface passing through a saddle point on the potential energy surface. *N* denotes sum of states or cumulative reaction possibility. ρ denotes the electronic-rotational-vibrational density of state.

The transmission coefficients are approximated as follows. The microcanonical MS anharmonicity coefficient is evaluated by

$$F^{\rm MS}(E_{\eta}) = \frac{N_{\gamma \to \phi}^{\ddagger, \rm MS}(E_{\eta})}{N_{\gamma \to \phi}^{\ddagger, \rm SSHO}(E_{\eta})} \frac{\rho_{\gamma}^{\rm SSHO}(E_{\eta})}{\rho_{\gamma}^{\rm MS}(E_{\eta})}$$
(8)

the microcanonical tunneling transmission coefficient is evaluated by

$$\kappa^{\text{SCT}}(E_{\eta}) = \frac{N_{\gamma \to \phi}^{\ddagger, \text{MS/SCT}}(E_{\eta})}{N_{\gamma \to \phi}^{\ddagger, \text{MS}}(E_{\eta})}$$
(9)

and the microcanonical recrossing transmission coefficient is approximated evaluated by

$$\Gamma^{\text{VTST}}(E_{\eta}) \approx \frac{N_{\gamma \to \phi}^{\text{VTS,SSHO/SCT}}(E_{\eta})}{N_{\gamma \to \phi}^{\ddagger,\text{SSHO/SCT}}(E_{\eta})}$$
(10)

Note that the numerator of Eq. (10) is evaluated at a variational transition state, and the denominator is evaluated at a conventional transition state. When $N_{\gamma \to \phi}(E_{\eta})$ is marked with

tunneling superscript in Eqs. (9) and (10), it is the cumulative reaction probability (CRP); otherwise, it is the sum of states (SoS). When CVT specified, for each temperature, TUMME will choose a variational transition state along the reaction coordinate according to the maximum Gibbs free energy barrier. When μ VT specified, for each energy bin, the program will choose a variational transition state along the reaction coordinate according to the minimum SoS.

The cumulative reaction probability is evaluated as the convolution of the transmission probability with the density of states of the transition state:

$$N_{\gamma \to \phi}^{\text{VTS,MS/SCT}}(E_{\eta}) = \int_{\max\{E_{0,\gamma}, E_{0,\phi}\}-V_{a}^{\text{G}^{*}}}^{E_{\eta}-V_{a}^{\text{G}^{*}}} dE P_{\gamma \to \phi}^{\text{SCT}}(E) \rho_{\gamma}^{\text{VTS,MS}}(E_{\eta}-E)$$
(11)

where *E* is the energy (which can be negative) in the reaction coordinate at the VTS, $P_{\gamma \to \phi}^{\text{SCT}}$ is the small-curvature tunneling (SCT) approximation to the transmission probability of the reaction between γ and ϕ , $\rho_{\gamma \to \phi}^{\text{VTS,MS}}$ is the multi-structural torsional electronical-vibrationalrotational density of states of the variational transition state connecting γ and ϕ , and E_0^{VTS} , $E_{0,\gamma}$ and $E_{0,\phi}$ are the enthalpy respectively of the variational transition state, of isomer γ , and of isomer or bimolecular pair ϕ at 0 K. The transmission probability $P_{\gamma \to \phi}^{\text{SCT}}$ is evaluated by the SCT method implemented in *Polyrate*. The multi-structural density of states $\rho_{\gamma}^{\text{VTS,MS}}$ is evaluated as the inverse Laplace transform of the multi-structural torsional partition function with the first-order steepest descent method implemented in *MSTor*^{6,7,8,9,10}.

Bimolecular reaction. For a bimolecular reaction, we use the general microcanonical flux coefficients $\Delta \hat{k}(E)$ instead of $\hat{k}(E)$; $\Delta \hat{k}(E)$ is the following product of $\hat{k}(E)$ and the Boltzmann distribution:

$$\Delta \hat{k}^{\text{MS-VTST/SCT}} \left(\nu \to \gamma | E_{\eta} \right) = \Gamma^{\text{VTST}} (E_{\eta}) \kappa^{\text{SCT}} (E_{\eta}) F^{\text{MS}} (E_{\eta}) \frac{N_{\nu,\nu}^{\text{\ddagger,SSH0}} (E_{\eta}) e^{-\beta E_{\eta}} \Delta E}{h \Phi_{\text{rel}} Q_{\nu}^{\text{SSH0}}}$$
(12)

where ΔE is the width of an energy bin, Φ_{rel} denotes relative translational partition function per unit volume, $\Gamma^{\text{VTST}}(E_{\eta})$ and $\kappa^{\text{SCT}}(E_{\eta})$ are the same as in Eqs (9) and (10), and $F^{\text{MS}}(E_{\eta})$ is defined as

$$F^{\rm MS}(E_{\eta}) = \frac{N_{\nu,\gamma}^{\ddagger,\rm MS}(E_{\eta})}{N_{\nu,\gamma}^{\ddagger,\rm SSHO}(E_{\eta})} \frac{Q_{\nu}^{\rm SSHO}(E_{\eta})}{Q_{\nu}^{\rm MS}(E_{\eta})}$$
(13)

(2) Based on the inverse-Laplace transform

TUMME also provides an option for user to calculate the microcanonical flux coefficients according to the inverse-Laplace transform to the canonical flux coefficients (high-pressure-limit rate constants).

Unimolecular reaction. For a unimolecular reaction $\gamma \rightarrow \phi$, the canonical flux coefficients are

$$\hat{k}(\gamma \to \phi|T) = \frac{1}{Q_{\gamma}} \int_{0}^{\infty} \hat{k}(\gamma \to \phi|E) \rho_{\gamma}(E) e^{-\beta E} dE = \frac{1}{Q_{\gamma}} \mathcal{L}[\hat{k}(\gamma \to \phi|E) \rho_{\gamma}(E)]$$
(14)

Thus,

$$\hat{k}(\gamma \to \phi | E) = \frac{1}{\rho_{\gamma}(E)} \mathcal{L}^{-1} [\hat{k}(\gamma \to \phi | T) Q_{\gamma}](E)$$
(15)

We fit the canonical flux coefficients by a biexponential form as

TUM ME

$$\hat{k}(\gamma \to \phi | T) = A_1 \left(\frac{\beta_1}{\beta}\right)^{n_1} e^{-\beta E_{a_1}} + A_2 \left(\frac{\beta_2}{\beta}\right)^{n_2} e^{-\beta E_{a_2}}$$
(16)

One can get the microcanonical flux coefficients for $\gamma \rightarrow \phi$ according to Eqs (15) and (16) as

$$\hat{k}(\gamma \to \phi | E_{\eta}) = \frac{A_{1}\beta_{1}^{n_{1}}}{\rho_{\gamma}(E_{\eta})\Gamma(n_{1})} \int_{0}^{E_{\eta}} \rho_{\gamma}(E_{\eta} - \varepsilon) (\varepsilon - E_{a_{1}})^{n_{1}-1} \theta(\varepsilon - E_{a_{1}}) d\varepsilon + \frac{A_{1}\beta_{1}^{n_{2}}}{\rho_{\gamma}(E_{\eta})\Gamma(n_{2})} \int_{0}^{E_{\eta}} \rho_{\gamma}(E_{\eta} - \varepsilon) (\varepsilon - E_{a_{2}})^{n_{2}-1} \theta(\varepsilon - E_{a_{2}}) d\varepsilon$$
(17)

Bimolecular reaction. For the bimolecular reaction $\nu \rightarrow \gamma$, the canonical flux coefficients are

$$\hat{k}(\nu \to \gamma | T) = \frac{1}{\Phi_{\rm rel}Q_{\nu}} \int_0^\infty \hat{k}(\nu \to \gamma | E) \psi_{\nu}(E) e^{-\beta E} dE = \frac{1}{\Phi_{\rm rel}Q_{\nu}} \mathcal{L}[\hat{k}(\nu \to \gamma | E) \psi_{\nu}(E)]$$
(18)

The relative translational partition function is

$$\Phi_{\rm rel} = \left(\frac{2\pi m_{\nu}}{h^2 \beta}\right)^{3/2} \tag{19}$$

where m_{ν} is the reduced mass. Thus,

$$\hat{k}(\nu \to \gamma | E) = \frac{1}{\psi_{\nu}(E)} \mathcal{L}^{-1}[\hat{k}(\nu \to \gamma | T) \Phi_{\rm rel} Q_{\nu}](E)$$
⁽²⁰⁾

We fit the canonical flux coefficients by a biexponential form as

$$\hat{k}(\nu \to \gamma | T) = A_1 \left(\frac{\beta_1}{\beta}\right)^{n_1} e^{-\beta E_{a_1}} + A_2 \left(\frac{\beta_2}{\beta}\right)^{n_2} e^{-\beta E_{a_2}}$$
(21)

One can get the microcanonical flux coefficients for $\nu \rightarrow \gamma$ according to Eqs (19), (20), and (21) as

$$\hat{k}(\nu \to \gamma | E_{\eta}) = \frac{\frac{1}{h^{3}} (2\pi m_{\nu})^{\frac{3}{2}} A_{1} \beta_{1}^{n_{1}}}{\psi_{\nu}(E_{\eta}) \Gamma\left(n_{1} + \frac{3}{2}\right)} \int_{0}^{E_{\eta}} \rho_{\nu}(E_{\eta} - \varepsilon) (\varepsilon - E_{a_{1}})^{n_{1} + \frac{1}{2}} \theta(\varepsilon - E_{a_{1}}) d\varepsilon + \frac{\frac{1}{h^{3}} (2\pi m_{\nu})^{3/2} A_{2} \beta_{2}^{n_{2}}}{\psi_{\nu}(E_{\eta}) \Gamma\left(n_{2} + \frac{3}{2}\right)} \int_{0}^{E_{\eta}} \rho_{\nu}(E_{\eta} - \varepsilon) (\varepsilon - E_{a_{2}})^{n_{2} + \frac{1}{2}} \theta(\varepsilon - E_{a_{2}}) d\varepsilon$$
(22)

and the general microcanonical flux coefficients

$$\Delta \hat{k}(\nu \to \gamma | E_{\eta}) = \frac{e^{-\beta E_{\eta}} \Delta E}{\Phi_{\rm rel} Q_{\nu}^{\rm SSHO}} \left[\frac{\frac{1}{h^{3}} (2\pi m_{\nu})^{\frac{3}{2}} A_{1} \beta_{1}^{n_{1}}}{\Gamma(n_{1} + \frac{3}{2})} \int_{0}^{E_{\eta}} \rho_{\nu} (E_{\eta} - \varepsilon) (\varepsilon - E_{a_{1}})^{n_{1} + \frac{1}{2}} \theta(\varepsilon - E_{a_{1}}) d\varepsilon + \frac{\frac{1}{h^{3}} (2\pi m_{\nu})^{3/2} A_{2} \beta_{2}^{n_{2}}}{\Gamma(n_{2} + \frac{3}{2})} \int_{0}^{E_{\eta}} \rho_{\nu} (E_{\eta} - \varepsilon) (\varepsilon - E_{a_{2}})^{n_{2} + \frac{1}{2}} \theta(\varepsilon - E_{a_{2}}) d\varepsilon \right]$$

$$(23)$$

2.2 Phenomenological rate constant

The phenomenological rate constants are extracted from the inhomogeneous (irreversible) master equation (5) based on CSE theory. The derivation is complicated and lengthy, so we do not present here; users could refer to ref. 29 for the formula and derivation.

2.3 Time evolution

The irreversible master equation (5) cannot be solved directly since the bimolecular concentrations are unknown. Here in order to introduce more equations to describe the source term, we partition bimolecular pairs into two kinds, the reversible reactants and the irreversible products. For the bimolecular reactant, we introduce the pseudo-first order assumption; for the bimolecular product, we assume the bimolecular concentration constantly as zero. Supposing there are r reactant bimolecular pairs, thus the Eq (1) becomes

$$\frac{\mathrm{d}\mathbf{y}}{\mathrm{d}t} = -\mathbf{W}\mathbf{y} + \mathbf{B}^*\mathbf{s}^* \tag{24}$$

where \mathbf{B}^* and \mathbf{s}^* only contain *r* bimolecular pairs and each one bimolecular pair (A + B) has one control equation as

$$\frac{\mathrm{d}n_{\mathrm{A}}^{(\nu)}}{\mathrm{d}t} = -\left(n_{\mathrm{B}}^{(\nu)}\Sigma_{i}B_{i\nu}^{*}\right)n_{\mathrm{A}}^{(\nu)} + \Sigma_{i}\hat{k}(\gamma \to \nu \mid E_{\eta})y_{i} \tag{25}$$

where the index v ranges over 1 to r, and the macroscopic concentration $n_{\rm B}^{(v)}$ is assumed to

be in excess as compared to the macroscopic concentration $n_A^{(\nu)}$ and taken as a constant. Combined with Eq (25), the inhomogeneous master equation (24) can be transformed into the following homogeneous master equation:

$$\frac{\mathrm{d}\mathbf{y}^*}{\mathrm{d}t} = -\mathbf{W}^*\mathbf{y}^* \tag{26}$$

where

$$y_{i}^{*} = \begin{cases} y_{i} & 0 < i \le N_{y} \\ n_{A}^{(\nu)} & N_{y} < i \le N_{y} + r \end{cases}$$
(27)

Analogy to Eq (5), Eq (26) can be symmetrized as

$$\frac{\mathrm{d}\tilde{\mathbf{y}}^*}{\mathrm{d}t} = -\mathbf{G}^*\tilde{\mathbf{y}}^* \tag{28}$$

by a diagonal matrix \mathbf{F}^* with elements as

$$F_{ii}^{*} = \begin{cases} \sqrt{\rho_{\gamma}(E_{\eta})\exp(-\beta E_{\eta})}; & 0 < i \le N_{y} \\ \sqrt{\frac{\hat{k}(\gamma' \to \nu \mid E_{\eta'})}{B_{i'\nu}n_{\rm B}^{(\nu)}}}\rho_{\gamma'}(E_{\eta'})e^{-\beta E_{\eta'}}; & N_{y} < i \le N_{y} + r \end{cases}$$
(29)

where the index i' is an arbitrary value among 1 and $N_{\rm v}$. The result can be solved as

$$\mathbf{y}^{*}(t) = \mathbf{F}^{*} \mathbf{U}^{*} \mathbf{E}^{*} (\mathbf{U}^{*})^{\mathrm{T}} (\mathbf{F}^{*})^{-1} \mathbf{y}_{0}^{*}$$
(30)

where \mathbf{U}^* is the eigenvector matrix of symmetric transition matrix \mathbf{G}^* , \mathbf{E}^* is a diagonal matrix with elements $e^{-L_{\lambda}^* t}$ where L_{λ}^* is the eigenvalue of matrix \mathbf{G}^* , and \mathbf{y}_0^* is the initial condition.

2.4 Reversibility and conservation

Here we clarify some concepts. The distinction between "reversible/conservative" and "irreversible/nonconservative" is made according to whether the transition matrix \mathbf{W} contains all of the microscopic processes, i.e., whether the transition matrix \mathbf{W} has a zero eigenvalue. If a transition matrix \mathbf{W} has a zero eigenvalue, we call it reversible or conservative; otherwise we call it irreversible or nonconservative.

In the calculation of phenomenological rate constants, all bimolecular pairs are treated equally in the inhomogeneous term, i.e., we do not separate reactant bimolecular pairs from product bimolecular pairs. In the calculation of the time evolution, in order to transform the inhomogeneous equation into a homogeneous one, we partition bimolecular pairs as reactants and products, we use pseudo-first order assumption for bimolecular reactants. And we treat bimolecular products as a sink.

3. Program Description

3.1 General workflow

TUMME is written in Python 3. It can run in three different modes: serial, multi-process (MP) and message passing interface (MPI). Serial mode uses a single processor, whereas the latter two modes involve parallel execution on multiple processors by running various temperature– pressure pairs (T, p) simultaneously. The workflow is depicted in Fig. 1. The input file is described in Section 3. The general workflow can be summarized as follows.

- 1) First, the program reads a standard input file containing information about the species and the reactions in the mechanism and a variable determining the mode in which to execute the program. An especially useful option is to read *Polyrate* output from the *Polyrate fu100* file described in section 5.5.1. This part is done in *tumme_readin.py*.
- 2) After reading all the input information, the program will enter the initialization module to initialize (pre-set) some variables and to calculate the density of states. Alternatively, depending on settings in the input, the density of states of some species may be read from the *MSTor* output file. This part is done in *tumme_pre.py*.
- 3) Then the program will jump into the solver module shown as the standard process in Fig. 1. From this point on, the precision (double, quadruple or octuple) and mode (serial, MP, or MPI) may vary according to users' choice. This part is done in *tumme_solver.py*.

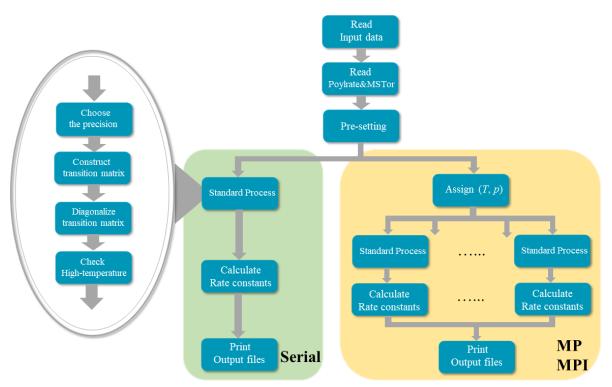


Figure 1. Workflow of the program

Simplified High-precision qd library Flow files Class object files mpack library library dd_lib.py ME_solver_dd.h qd_lib.py Simplified tumme main.py mpack ME_solver_dd.cpp me_lib.py library in mep lib.py Interface dd.h quadruple data lib.py precision Interface_dd.cpp qdtumme readin.py output_lib.py library const_lib.py parallel_lib.py tumme pre.py ME_solver_qd.h Simplified global lib.py mpack ME_solver_qd.cpp reaction lib.py library in molecule_lib.py tumme solver.py octuple Interface qd.h species_lib.py precision Interface_qd.cpp collision lib.py Location: Location: Location: Location Location C++/mpack_dd/ C++/qc/ C++/ src/ src/ C++/mpack_qd/

3.2 The framework of source files

Figure 2. Framework of all source files

The main body of TUMME is written by Python 3 and is located in the src/ folder. Because the accurate calculation of eigenpairs of the transition matrix often requires greater than double precision, we also provide options for quadruple and octuple precision as implemented by C++. The high-precision library, based on the simplified multi-precision math library *mpack* and multi-precision float library *qd*, are compiled into dynamic libraries to let the Python process call them. Fig. 2 give a general picture showing how the source files work together. Section 6 of this manual (Detailed implementation) gives further information about each of the files.

3.3 Input files

When the code is run, a standard input file which will be elaborated in section 5 will be read. *This standard input file is compulsory for any kind of job*. Besides, TUMME provides some features to let user use some advanced options. In those cases, some extra input files may be needed. For clarity, we listed here what kinds of options user can access and the required extra files for those options. The name of the standard input file is arbitrary; we recommend that it should end with the suffix ".in".

3.3.1 Options of input species properties

In a master equation calculation, all species properties involved should be input for the program, including the coordinate geometries, frequencies, energies, symmetry number and so on. In TUMME, we provided three ways for user to input the required species information:

- Read from the SPECIES block in the standard input file of TUMME; in this case, only the standard input file is needed.
- > Read from the standard output file of $Gaussian^{11}$; in this case, the standard output file of *Gaussian* is also needed.
- Read from the *fu6* or *fu100* output file of *Polyrate*^{12,13}; in this case, one of these output files of *Polyrate* is also needed.

The priority for the program to read species properties is

Polyrate output file > *Gaussian* standard output file > **SPECIES** block

Frequencies of species calculated from diagonalizing the mass-scaled Hessian matrix should always be scaled a factor to correct the electronic potential energy surface error and the harmonic approximation error. Frequencies in *Polyrate* output is already scaled while in *Gaussian* standard output is unscaled. Thus, if frequencies for a species are read from a *Gaussian* standard output file, user should always set the subkeyword **FREQSCALE**. See section 5 for the detailed description.

3.3.2 Options of microcanonical flux coefficients

3.3.2.1 Based on the framework of RRKM theory

The code can calculate the RRKM microcanonical flux coefficients under single-structural harmonic oscillator (SSHO) approximation (i.e., microcanonical conventional transition state theory flux coefficients in the harmonic approximation) without any other files (i.e., without any files beyond the standard input file). However, a key feature of TUMME is that – for reactions with an intrinsic barrier – the code can also calculate microcanonical flux coefficients that include anharmonicity, recrossing effects (i.e., variational effects), and tunneling. We list the available options for microcanonical flux coefficients in Table 1. This table shows that the program is capable of using any combination of these three effects.

We emphasize that TUMME does not read any microcanonical flux coefficients from external files; all flux coefficients are calculated internally. However, to go beyond microcanonical conventional transition state theory in the harmonic approximation, TUMME reads the necessary data from output files created by *Polyrate* and/or *MSTor*. These files must be available prior to the TUMME run; TUMME does not involve those packages, not does it run or spawn jobs involving those codes.

Note that whenever we refer to *Polyrate* output files, the meaning also includes files produced by *Polyrate* interface programs, for example, it could be a file produced by *Gaussrate*¹⁴, which is an interface of *Polyrate* with *Gaussian*, or it could be a file produced by *NWChemRate*¹⁵, which is an interface of *Polyrate* with *NWChem*.

It should be clearly pointed out that even though the keywords of these three effects are listed and set independently, effects per se are coupled with each other. E.g., the tunneling effect can have impact on the recrossing effect. Please refer to Ref.29 for details in theory.

TUMME reads only the following information from *Polyrate* output files:

• geometries, vibrational frequencies, electronic degeneracies, and energies of reactants,

conventional transition states, products, and generalized transition states along the minimum energy reaction path (MEP).

• transmission probabilities obtained by various types of tunneling approximations, in particular zero-curvature tunneling $[P^{\text{ZCT}}(E)]$, small-curvature tunneling $[P^{\text{SCT}}(E)]$, large-curvature tunneling $[P^{\text{LCT}}(E)]$, and microcanonical optimized multidimensional tunneling $[P^{\mu \text{OMT}}(E)]$.

The code will try to read all the above information. The portion of this information that will be used will depend on the specified keywords chosen for the TUMME run; other information is not used. The code will try to search particular key-strings to read the information (see Section 5.5.1); for example, if "transmission probability" is located in the file, the code will automatically find and read $P^{\text{ZCT}}(E)$, $P^{\text{SCT}}(E)$, $P^{\text{LCT}}(E)$, or $P^{\mu \text{OMT}}(E)$.

Effect	Method	Compulsory keyword	Compulsory extra files
Anharmonicity	SSHO ^a	Do not set MSTFILE	No extra file is needed.
5	MS^b	set MSTFILE	The standard output file of MSTor
	TST ^c	set VARIATION as tst	No extra file is needed
Recrossing	CVT^d	set VARIATION as cvt	An output file of <i>Polyrate^e</i>
	$\mu \mathrm{VT}^{f}$	set VARIATION as muvt	An output file of <i>Polyrate</i>
	LCT ^g	set TUNNELING as <i>lct</i>	An output file of Polyrate
	μOMT^h	set TUNNELING as omt	An output file of <i>Polyrate</i>
Tunneling	SCT^i	set TUNNELING as sct	An output file of <i>Polyrate</i>
	ZCT^{j}	set TUNNELING as <i>zct</i>	an output file of Polyrate
	Eckart ^k	set TUNNELING as Eckart	No extra file is needed.
	No tunneling	Do not set TUNNELING	No extra file is needed.

Table 1. Features in microcanonical flux coefficients

^{*a*} single-structure harmonic oscillator.¹⁶ If frequencies are scaled before input, the approximation will be the quasiharmonic oscillator (QHO), which means that one uses the harmonic oscillator formulas with scaled or other effective frequencies. (Users should scale frequencies themselves prior to inputting them; TUMME has no keyword to scale the frequencies.) Note that in the formulas of Section 2.1.2, we use "HO" to denote either the harmonic oscillator approximation or the quasiharmonic oscillator approximation.

^b multi-structural torsional approximation:¹⁷ MS-TST¹⁸ or MS-CVT¹⁸ or MS-µVT¹⁹

^c TST denotes conventional TST¹⁶

 d a VTST option for canonical variational theory^{20,21} or MS-CVT¹⁸. For each temperature, the program places the variational transition state at the point along the reaction path that maximizes the Gibbs free energy of activation. This selected variational transition state will be used for the microcanonical flux coefficient for all energy bins.

^{*e*} This can be an *fu6* file or an *fu100* file (see section 5.5.1).

 f a VTST option for microcanonical variational theory^{22,23} or MS- μ VT⁸. For each energy bin, the program places the variational transition state at the point along the reaction path that minimizes the cumulative reaction probability or sum of states.

^g large-curvature tunneling²⁴

^h microcanonical optimized multidimensional tunneling

- ^{*i*} small-curvature tunneling^{25,26,27}
- ^{*j*} zero-curvature tunneling²⁸
- k Eckart tunneling²⁹

Here we explain the difference between the CVT and μ VT options in TUMME for the variational effect. To begin we clarify two concepts, the generalized transition state and the variational transition state. The dividing surfaces through points along the MEP are generalized transition states. Only some of these are variational transition states. The actual structures on the MEP are generalized transition structures. Only some of these are variational transition structures. Generalized transition states and generalized transition structures that correspond to local maxima of the generalized free energy of activation for a given temperature are canonical variational transition states and canonical variational transition structures. Generalized transition states and generalized transition structures that correspond to a local minimum of the sum of states (or cumulative reaction probability) up to energy E are microcanonical variational transition states and microcanonical variational transition structures for that energy. Both canonical variational transition states and microcanonical variational transition states are called variational transition states. The difference between the CVT and μ VT options is in the location of the variational transition state. If the output from *Polyrate* contains the information about the generalized transition states (geometries, frequencies, and energies are read; the electronic degeneracy and symmetry number are set equal to that of the conventional transition state), the code will read them and calculate the generalized Gibbs free energy of activation or the sum of vibrationalrotational states (or cumulative reaction probability) along the reaction path according to the CVT or μ VT option. Under both options, TUMME computes microcanonical flux coefficients as functions of total energy. However, with the CVT option, it places the variational transition state at the location of the canonical variational transition state for the temperature in question, whereas with the μ VT option it places it at the minimum of the sum over vibrational-rotational states (or cumulative reaction probability) for the total energy under consideration. The free energies of activation, the densities of vibrational-rotational states, and the sum of vibrational-rotational states (or cumulative reaction probability) of the generalized transition states are calculated by quasiharmonic oscillator-rigid rotor approximation.

3.3.2.2 Based on the inverse-Laplace-transform to the high-pressure limits

For a specific elementary reaction, the high-pressure limit of rate constants (also called the canonical flux coefficient) equals the Laplace transform of the microcanonical flux coefficient, i.e., one can first get the canonical flux coefficients and then calculate the microcanonical one according to the inverse Laplace transform. In order to make TUMME more powerful and flexible, we also provide the inverse-Laplace-transform option for users. The inverse-Laplace transform option can be used by assigning **INVLAPLACE** subsection in the **BARRIERRXN** or **BARRIERLESSRXN** section.

TUM ME

4. Installation and Execution

4.1. Dependencies

 Table 2. Environmental requirements of TUMME 2023

Compulsory	>=Python 3.7.3
	>=Numpy 1.16.2
	>=Numba 0.43.1
	>=Scipy 1.2.1
Optional	GNU compiler
	MPI Executor
	mpi4py module

The program was developed and debugged under the environment of *Anaconda3.2019.03* and we recommend that users install the latest *Anaconda* package. It should be possible to run serial and MP calculations in double-precision on a variety of platforms when the Python environment is set properly. We note though MPI calculations with high-precision libraries have only been developed and tested under Linux. Restated in terms of the above chart (Table 2), we note that the compulsory part can be well run on various platform systems when the Python environment is well-set, and we note that the optional parts have only been developed and tested under Linux.

4.2. Installation

Table 2 gives the compulsory environments of the code. Provided that all compulsory environments set up properly, the program should run well in serial or MP mode in double precision. If the user wants to run it with MPI and/or with a quadruple-precision or octuple-precision library, one or both the following two steps should be carried out.

1) Install the python module *mpi4py*

To run it in MPI mode, make sure you have an MPI environment in your system; this should contain a *mpirun*-like command. Furthermore, you should install the *mpi4py* Python package. The installation of *mpi4py* is straightforward, and users can refer to the official website <u>https://mpi4py.readthedocs.io/en/stable/install.html</u>. If something goes wrong when you install the mpi4py, try to install the latest Anaconda beforehand.

2) Install the high-precision library

User can install the high-precision library by directly executing a script named *configure* located in the root path of TUMME as

./configure

4.2.1 Details in the configure script

The high-precision libraries can be run in serial, or they can be run in parallel with MP or MPI. To run with a quadruple-precision or octuple-precision library, you need to install some libraries in the C++/ folder. We provide a script called *configure* which is located at the root

folder of TUMME to help users compile the libraries. Usually, it can be automatically installed.

If the script fails, the user can compile the libraries manually as follows.

• Set the root path of TUMME

path=`pwd`

```
② Install the qd library.
```

```
cd C++/qd/qd-2.3.7.1
./configure -prefix $path/C++/qd CXX=g++ CC=gcc FC=gfortran
make
make install
```

③ Install the *mpack_dd* libraries.

cd \$path/C++/mpack_dd/src
make

④ Install the *mpack_qd* libraries.

cd \$path/C++/mpack_qd/src
make

 \mathfrak{S} Install the high-precision library.

```
cd $path/C++/
make
# Users should modify the variable $ROOTPATH in Makefile of the high-
# precision library to be the absolute root path of the program. For
# example, if the root path is /app/TUMME2023, then user should find
# the makefile /app/TUMME2023/C++/Makefile, and replace the sixth line
# ROOTPATH =[replace this line]
# by the following line
# ROOTPATH =/app/TUMME2023
```

6 Set environment variable for TUMME

echo "# environment variable of TUMME" >> ~/.bashrc echo 'export PATH=\$PATH:'\$path'/bin' >> ~/.bashrc

The library now works properly with the GNU compiler, but not with the Intel compiler. So, the user should make sure to use GNU compiler commands: gcc, g++, and gfortran. We have tested the compatibility of the high-precision library code with the 4.8.5, 4.9.2, 5.1.0, 5.4.0, 6.1.0, 6.3.0, 7.2.0, 8.1.0, 8.2.0 and 9.2.0 versions of the GNU compiler. Other versions have not been tested but should also work well.

The folder *example/2MH/highprecision/* contains benchmark outputs of the eigenvector in quadruple and octuple precision. To validate the high-precision library, the user can access this folder and run TUMME including print out of the CSE eigenvector (by setting **EVECNUM** as *1*) in quadruple and octuple precision (by setting **PRECISION** as *quadruple* or *octuple*). Since this example is a single-well dissociation reaction, all values in the CSE eigenvector should have the same sign, and the absolute value should decrease as the energy bin increases. (In this manual, well and isomer are synonyms.) The value of the eigenvector in high-energy bins can reflect the precision of the floating number you used. When the value in high-energy bins oscillates between negative and positive signs, it is an indication that one needs higher precision. In octuple precision, over the energy bins in the range 1–77 kcal/mol, the eigenvector values should have the same sign and the value should

be of the order of magnitude of 10^{-64} in the ~77 kcal/mol energy bin. In quadruple precision, in energy bins over the approximate range 1~54 kcal/mol, the eigenvector values should have the same sign and the value of energy bin at ~ 54 kcal/mol should be of the order of magnitude of 10^{-32} . If you used the high-precision option, but the values of high-energy bins oscillate at a magnitude of about 10^{-16} , your high-precision library is not properly installed, and you should reinstall it.

4.3. Execution

We provide an executable script called *tumme* to run the program located in the folder of bin/, so user can easily run TUMME in any directory as

tumme param.in

4.3.1 Details in the executable script *tumme*

1) Read parallelism mode and number of processors from the standard input file. Users should specify the "**#PARALLEL**" and "**#NPROC**" values in the standard input file if a parallel scheme is adopted (refer to Section 5.1). The parallel scheme is designed for running multiple temperatures and multiple pressures. The set of (T, p) will be divided evenly and each processor will run its own subset. So, if you only run one temperature and one pressure, you should not use a parallel scheme.

2) *Execute python according to the parallelism*. The general form of command to execute the program is:

```
$mpi $python3 $path/tumme_main.py $input
```

where *\$python3* is the command for Python 3; *\$path* is the absolute path for the folder src/ of TUMME; and *\$input* is the name of the standard input file.

For the serial and MP runs, *\$mpi* is a null string or spaces, e.g.

python3 /home/tumme/src/tumme_main.py param.in

For the MPI runs, \$mpi is 'mpirun -np 4'-like string, e.g.

mpirun -np 4 python3 /home/tumme/src/tumme_main.py param.in

4.3.2 The parallelism

The parallelism of the high-precision libraries in TUMME requires further clarification. The high-precision libraries are implemented in C++. In order to decrease the execution time, we utilized OpenMP to parallelize it. This use of OpenMP is independent of whether the program is run with the serial, MP, or MPI scheme in Python. MP and MPI are used for parallelizing the Python code, while OpenMP is used for parallelizing the C++ code. When the code is run in serial, MP, or MPI mode, the system will create *nproc* threads or processes running the Python code. Each thread or process will calculate its own subset of $\{(T, p)\}$. If the high-precision option is selected, each thread or process will call the C++ dynamic library and will further be parallelized into *m* threads by OpenMP. The user can control the value of *m* by setting the subkeyword **OMPNUMTHREAD**. If not set, the program will by default set *m* to be the total number of processors a node owns divided by **NPROC**. The total number of processors of a node will be obtained by Python using the *os.cpu_count()* command. This dynamic default value will maximize the efficiency of a single-node calculation but may be inappropriate for

multi-node computations because **NPROC** will not be the number of Python threads/processes running on a node. The user should change **OMPNUMTHREAD** according to the following rule: the total number of OpenMP threads created by the Python threads or processes on a node should not exceed the total number of processors on that node.

5. Standard Input File

The input file is divided into blocks. Each block has sections, and some sections have subsections. All blocks, sections, and subsections have a start-keyword and an end-keyword. All blocks, sections, and subsections can have keywords that define values; we call this kind of keyword a subkeyword. In this text, keywords and subkeywords are in bold Arial font.

There are three kinds of subkeywords: string subkeywords, value subkeywords, and list subkeywords. All the start-keywords and list subkeywords have an end-keyword. An end-keyword is equal to the corresponding start-keyword or list subkeyword with an added prefix **END_**, e.g., for a start-keyword **PARAMETER**, the end-keyword is **END_PARAMETER**. The end-keywords and end-subkeywords are not shown in Table 3, but they are shown in Tables 4–6.

Only subkeywords can have a value, e.g., string, float, or list of floats. (Throughout the manual we shorten "floating point number" to "float".) String values should not contain spaces. Floating point number subkeywords can accept formats like "1.234", ".234", "1.", ".23E2", "1.23E1"; it is not acceptable to replace "E" with "D". Values and subkeywords are separated by a space. Subkeywords can have a suffix string to tell the program the unit of the values, e.g., **PRESSURE**[torr]. The available suffix strings for units are:

energies	[kcal/mol]
	[kJ/mol]
	[a.u.]
	[eV]
	[cm-1]
frequency	[cm-1]
	[a.u.]
pressures	[bar]
	[atm]
	[torr]
	[a.u.]
distances	[A]
	[bohr]
temperature	[K]
	[a.u.]
mass	[amu]
	[a.u.]
time	[s]
	[ms]
	[ps]
	[fs]
	[a.u.]
rate constant	[cm3/molecule/s]
	[1/s]
· 1 TC	

The brackets are required. If the unit is not specified, the unit will default to atomic units.

All start-keywords, end-keywords, and subkeywords are case insensitive. We use upper case in the manual, but in the actual input file, they can be lower case or mixed case. But letters in a unit string and a value are case sensitive, so the user should use precisely the cases shown in this manual.

The standard input file has two pre-definition subkeywords, **#PARALLEL** and **#NPROC**, and three blocks: **PARAMETER** block, **REACTION** block, and **SPECIES** block.

#PARALLEL and **#NPROC** define the parallel mode and specify the number of processors. If the two pre-definition subkeywords do not appear, then serial mode is adopted.

The **PARAMETER** block sets all parameters needed for solving the master equation except for the elementary reactions and species properties.

The **REACTION** block specifies the properties of the elementary reactions.

The **SPECIES** block defines all species properties.

The **PARAMETER** block should appear before the **REACTION** block. The **REACTION** block should appear before the **SPECIES** block. The **PARAMETER** block and **REACTION** block are compulsory, but the **SPECIES** block is optional.

The user has three ways to provide species properties to the program: from a *Polyrate* output file, from a *Gaussian* output file, and/or from the **SPECIES** block. The priority for the program to read species properties is

Polyrate output file (*.fu6* file or *.fu100* file) > *Gaussian* output file > **SPECIES** block

In the **REACTION** block, if **PYRFILE** (a subkeyword to specify the name of the *Polyrate* output file) is defined for a **BARRIERRXN** section (a subkeyword to specify an elementary reaction that has a barrier), the species will be read from the *Polyrate* output file and be named according to the **INFO** string. When a species is read from a *Polyrate* output file, the species do not have to be defined in the **SPECIES** block. If it were redundantly defined anyway in the **SPECIES** block, all properties will be ignored except **ROTSIGMA**, **OPTICALNUM**, and **MSTFILE**, which are the three subkeywords for the rotational symmetry number, the optical-isomer number, and the name of *MSTor* output file. In the **SPECIES** block, if **G09FILE** is defined in a species section, then geometries, frequencies, symbols, rotational symmetry numbers, the imaginary frequency and energies will be read from the *Gaussian* output file; other properties e.g., name string, optical-isomer number, and *MSTor* file name string, will be read from the **SPECIES** block. If some species are read from *Gaussian* output files, the user should make sure that the zero of energy is consistent with those read from the **SPECIES** block.

Except **#PARALLEL** and **#NPROC**, any line started with # will be treated as a comment and skipped. Blank lines are acceptable in any place.

The general schematic of all keywords is presented in Table 3.

Keyword	Keyword type	Default
#PARALLEL	String subkeyword	serial
#NPROC	Value subkeyword	1
PARAMETER	Start-keyword of block	

Table 3. Keywords in the standard input file (excluding end-keywords)

	Start language of a set in a	
	Start-keyword of section	 Nono
DIAMETERA	Value subkeyword	None
	Value subkeyword	None
	Value subkeyword	None
EPSILONA	Value subkeyword	None
MASSM	Value subkeyword	None
MASSA	Value subkeyword	None
HSCOLLISION	Start-keyword of section	
BMAX	Value subkeyword	None
MASSM	Value subkeyword	None
MASSA	Value subkeyword	None
ENERGY	Start-keyword of section	 1.01
DE	Value subkeyword	1.0 cm^{-1}
EMAX	Value subkeyword	400 kcal/mol
ESOT	Value subkeyword	0.1
EEOT	Value subkeyword	30
PBIMOL	Start-keyword of section	
BIMOLNAME	List subkeywords	
EXCESSCONC	List subkeywords	
PRINT	Start-keyword of section	
EIGENVALUE	Start-keyword of subsection	
EVALFILE	String subkeyword	None
EVALNUM	Value subkeyword	None
EIGENVECTOR	Start-keyword of subsection	
EVECFILE	String subkeyword	None
EVECNUM	Value subkeyword	None
PARTITIONFUNCTION	String subkeyword	None
MICROFLUXCOEFFICIENT	String subkeyword	None
TIMEEVOLUTION	Start-keyword of subsection	
TIMEFILE	String subkeyword	None
TIMESTEP	Value subkeyword	$0.02/\lambda_0$
TIMENUM	Value subkeyword	50
INITSPECIES	List subkeyword	None
RELAXKERNEL	Start-keyword of subsection	
RELAXFILE	Value subkeyword	None
KERNELNAME	List subkeyword	None
MERGETHRESHOLD	Value subkeyword	0.2
PRECISION	String subkeyword	double
OMPNUMTHREAD	Value subkeyword	cpu_count /nproc
EDOWN	Start-keyword of section	
SLOPE	Value subkeyword	0
EDCONST	Value subkeyword	None
TC	Value subkeyword	300 K
EXPONENT		0
TEMPERATURE	Value subkeyword	•
PRESSURE	List subkeyword	None
GROUNDSPECIES	List subkeyword List subkeyword	None None
	List subkeyword	None
REACTION	List subkeyword List subkeyword String subkeyword Start-keyword of block	None None
	List subkeyword List subkeyword String subkeyword Start-keyword of block Start-keyword of section	None None None
REACTION	List subkeyword List subkeyword String subkeyword Start-keyword of block	None None None
REACTION BARRIERRXN	List subkeyword List subkeyword String subkeyword Start-keyword of block Start-keyword of section String subkeyword String subkeyword	None None None
REACTION BARRIERRXN INFO	List subkeyword List subkeyword String subkeyword Start-keyword of block Start-keyword of section String subkeyword	None None None
REACTION BARRIERRXN INFO PYRFILE VARITAION TUNNELING	List subkeyword List subkeyword String subkeyword Start-keyword of block Start-keyword of section String subkeyword String subkeyword	None None None None
REACTION BARRIERRXN INFO PYRFILE VARITAION	List subkeyword List subkeyword String subkeyword Start-keyword of block Start-keyword of section String subkeyword String subkeyword String subkeyword	None None None None None

TUM ME

RXNENERGY	Value subkeyword	None
AVGDIAMETER	Value subkeyword	None
SPECIES	Start-keyword of block	
WELL	Start-keyword of section	
EPSILON	Value subkeyword	None
BMAX	Value subkeyword	None
DIAMETER	Value subkeyword	None
TRANSTATE	Start-keyword of section	
IMAGFREQ	Value subkeyword	None
BIM	Start-keyword of section	
NAME	String subkeyword	None
E0	Value subkeyword	None
EELE	Value subkeyword	None
SP1MOL	Start-keyword of subsection	
SP2MOL	Start-keyword of subsection	
SP1ATOM	Start-keyword of subsection	
SP2ATOM	Start-keyword of subsection	
Subkeywords for molecular species ^a		
NAME	String subkeyword	None
GEOMETRY	List subkeyword	None
FREQUENCY	List subkeyword	None
ELELEVEL	List subkeyword	1 0
E0K	Value subkeyword	None
EELE	Value subkeyword	None
ROTSIGMA	Value subkeyword	1
OPTICALNUM	Value subkeyword	1
FREQSCALE	Value subkeyword	1.0
G09FILE	String subkeyword	None
MSTFILE	String subkeyword	None
Subkeywords for atomic species ^b		
• • •	String subkeyword	None
	String subkeyword	None
SYMBOL ELELEVEL	List subkeyword	1 0
ELELEVEL EOK	Value subkeyword	None
EELE	Value subkeyword	None
Subkeywords for inverse Laplace tran	•	
INVLAPLACE	Start-keyword of subsection	
EXPRESSION	String subkeyword	
PREFACTOR1	Value subkeyword	
T1	Value subkeyword	
N1	Value subkeyword	
EA1	Value subkeyword	
PREFACTOR2	Value subkeyword	
Τ2	Value subkeyword	
N2	Value subkeyword	
EA2	Value subkeyword	

a. These subkeywords are available for the molecular species sections/subsections: WELL, TRANSTATE, SP1MOL, and SP2MOL.

b. These subkeywords are available for the atomic species subsections: **SP1ATOM** and **SP2ATOM**.

c. The inverse Laplace transform subsection **INVLAPLACE** could be used in both **BARRERRXN** and **BARRIERLESSRXN** sections.

5.1 Two pre-definition subkeywords

To run the program in MP or MPI mode, the user should specify the value **#PARALLEL** in the first line of the input file. **#PARALLEL** can be *serial*, *mp*, or *mpi*. When *mp* is specified, **#NPROC** should be specified as the second line to determine how many processors to use; but for *mpi* the number of processors is determined by the **\$mpirun** command, and **#NPROC** is not needed for the *mpi* mode.

Example:

#PARALLEL mp **#NPROC** 4

See Section 4.3 for more discussion of parallelism.

Available

subkeywords:

5.2 Keywords in the PARAMETER block

	·
PARAMETER	
Description:	Start-keyword for a block describing all global parameters. This block is compulsory in the standard input file.
Available sections and subkeywords:	LJCOLLISION, HSCOLLISION, ENERGY, PBIMOL, PRINT, MERGETHRESHOLD, PRECISION, OMPNUMTHREAD, EDOWN, TEMPERATURE, PRESSURE, GROUNDSPECIES
Example:	PARAMETER LJCOLLISION
	END_LJCOLLISION
	END_PARAMETER
LJCOLLISION	
Description:	Start-keyword for the Lennard-Jones collision section. Here we present two kinds of collision models, one for the Lennard-Jones collision model and the other for the hard-sphere collision model. The former is set by LJCOLLISION section, and the latter is set by HSCOLLISION . Users should define only one of them. The equation used to estimate the Lennard–Jones collision rate constant is
	$k_{\rm LJ} = \Omega_{2,2}^* \pi \left(\frac{d_{\gamma} + d_{\rm M}}{2}\right)^2 \sqrt{\frac{8k_{\rm B}T}{\pi m_{\gamma} m_{\rm M}/(m_{\gamma} + m_{\rm M})}}$
	$\left(\left[0.636 + 0.567 \log_{10} \left(\frac{k_{\rm B}T}{\sqrt{\varepsilon_{\rm V} \varepsilon_{\rm M}}} \right) \right]^{-1}, \frac{k_{\rm B}T}{\sqrt{\varepsilon_{\rm V} \varepsilon_{\rm M}}} \in [0.3,3] \right)$

Table 4. Glossary of the PARAMETER block

$\Omega_{2,2}^{*} = 0$	$\left[0.636 + 0.567 \log_{10} \left(\frac{k_{\rm B}T}{\sqrt{\varepsilon_{\gamma} \varepsilon_{\rm M}}}\right)\right]^{-1}, \ \frac{k_{\rm B}T}{\sqrt{\varepsilon_{\gamma} \varepsilon_{\rm M}}} \in [0.3,3]$
Δ2 _{2,2} —	$0.697 + 0.5185 \log_{10} \left(\frac{k_{\rm B}T}{\sqrt{\varepsilon_{\gamma} \varepsilon_{\rm M}}} \right) \right]^{-1} , \frac{k_{\rm B}T}{\sqrt{\varepsilon_{\gamma} \varepsilon_{\rm M}}} \in [3,300]$

where γ denotes an isomer; M denotes the bath gas; *d* denotes the diameter; ε is the Lennard-Jones energy parameter; and *m* denotes the mass. If the argument is not in the range from 0.3 to 300, the code will print a warning. The reference for these approximations to $\Omega_{2,2}^*$ is a 1977 paper by Troe.³⁰

DIAMETERM, DIAMETERA, EPSILONM, EPSILONA, MASSM, MASSA

Example:	LJCOLLISION	
1	DIAMETERM [A]	3.0
	DIAMETERA	4.0
	EPSILONM [cm-1]	3.0
	EPSILONA [cm-1]	3.0
	MASSM[amu]	40
	MASSA [amu]	90
	END_LJCÒLLÍSION	

DIAMETERM	
Description:	Subkeyword for the diameter $d_{\rm M}$ of a molecule of the bath gas. This is compulsory in the LJCOLLISION section.
Available values:	Positive float
Example:	DIAMETERM[A] 3.0
DIAMETERA	
Description:	Subkeyword for the general diameter d_{γ} of the isomers. (In this manual, well and isomer are synonyms.) If specified, all isomers will have the same diameter, DIAMETERA . If not, the diameter is isomer-specific, and in that case the DIAMETER subkeyword should be assigned in all WELL sections.
Available values:	Positive float
Example:	DIAMETERA[A] 3.0
MASSM	
Description:	Subkeyword for the mass $m_{\rm M}$ of the bath gas molecule. This is compulsory in the LJCOLLISION section.
Available values:	Positive Float
Example:	MASSM [amu] 40.0
MASSA	
Description:	Subkeyword for the general mass m_{γ} of the isomers. (In this manual, well and isomer are synonyms.) The masses of all WELL species must be the same. The user can specify this mass as MASSA ; however, if MASSA is not specified the program will calculate the mass from GEOMETRY data in the first WELL section.
Available values:	Positive float
Example:	MASSA [amu] 50.0
EPSILONM	
Description:	Subkeyword for the energy parameter ε_M of the bath gas molecule. This is compulsory in the LJCOLLISION section.
Available values:	Positive float
Example:	EPSILONM [cm-1] 3.0

EPSILONA Description:	Subkeyword for the general energy parameter ε_{γ} of the isomers If specified, all isomers will have the same Lennard-Jones energy parameter, which will be equal to EPSILONA . If not, the energy parameter is isomer-specific, and in that case the EPSILON subkeyword should be assigned in all WELL sections. (In this manual, well and isomer are synonyms.)
Available values:	Positive float
Example:	EPSILONA[cm-1] 3.0
HSCOLLISION	
Description:	Start-keyword for hard-sphere direct-dynamics collision section Note that this keyword relates to collisions between the bath ga and isomers (it is not related to collisions between two member of a bimolecular pair undergoing a barrierless reaction). This keyword is to be used if the user has used direct dynamics to calculate the relaxation parameter $\langle \Delta E_{\text{down}} \rangle$. If this option is chosen, user should input the maximum impact parameter b_{max} that was used in calculating $\langle \Delta E_{\text{down}} \rangle$, and the collision rate constant will be calculated by
Available	$k_{\rm HS} = \pi (b_{\rm max})^2 \sqrt{\frac{8k_{\rm B}T}{\pi m_{\gamma} m_{\rm M}/(m_{\gamma} + m_{\rm M})}}$ BMAX, MASSM, MASSA
subkeywords:	
Example:	HSCOLLISION BMAX[A] 9.0 MASSM[amu] 40 MASSA[amu] 90 END_HSCOLLISION
BMAX	
Description:	Subkeyword to be used when the same maximum impact parameter b_{max} is to be assigned to all isomers. If this subkeyword is not specified in HSCOLLISION section, BMA should be specified in each WELL section. (In this manual, we and isomer are synonyms.)
Available values:	Positive float
Example:	BMAX [A] 3.0
ENERGY	
Description:	Start-keyword for ENERGY section. This section is compulsor in the PARAMETER block.
Available subkeywords:	DE, EMAX, ESOT, EEOT

Example:	ENERGY DE[cm-1] 1 EMAX[kcal/mol] 40 ESOT 0.1 EEOT 30
Background:	END_ENERGY The internal energy of each well (i.e., each isomer) is discretized into bins. The energy of bin η is $E_{\eta} = E_{\text{max}} - (\eta - 1)\Delta E, \qquad \eta = 1, 2,, N_{\gamma}$
DE	
Description:	Subkeyword for the energy step dE used in calculating the density of states by the Beyer–Swinehart algorithm. The default value is 1 cm ⁻¹ .
	DE should be distinguished from the energy step set by ESOT . DE sets the energy step for calculating the density of states in the Beyer–Swinehart algorithm, whereas ESOT sets the energy step for the transition matrix. Usually, DE should be much smaller than the energy step set by ESOT .
Available values:	Positive float
Example:	DE [cm-1] 1.0
EMAX	
Description:	Subkeyword for the maximum energy relative to the enthalpy at 0 K of each isomer used in calculating the density of states by the Beyer–Swinehart algorithm. The default value is 400 kcal/mol. EMAX should be distinguished from the maximum energy set by EEOT . EMAX sets the energy upper boundary for calculating the density of states in the Beyer–Swinehart algorithm, whereas EEOT sets the energy upper boundary for the transition matrix. Usually, EMAX should be much greater than the maximum energy set by EEOT .
Available values:	Positive float
Example:	EMAX[kcal/mol] 400
ESOT	
Description:	Subkeyword for the ratio of energy bin width ΔE divided by k_BT . Based on this subkeyword, the energy step between energy bins in the master equation is set as follows,
	$\Delta E = ESOT \times k_{\rm B}T$
	The default value is 0.1.
	When the temperature is low, molecules tend to populate at low energy levels, so user should decrease ESOT to make the result converged.
Available values:	Positive float
Example:	ESOT 0.1

EEOT

Description:	Subkeyword used to set the maximum energy relative to the highest E_0^{sp} used in the transition matrix for solving the master equation. Note that E_0^{sp} is the energy at 0 K of reactants, transition states and products, where we use 0 K to specify the inclusion of ZPE but no thermal effects (ZPE denotes vibrational zero-point energy). The maximum energy in the master equation equals
	Maximum energy = max{ E_0^{sp} } + <i>EEOT</i> × k_BT
	When ESOT and EEOT are determined, the number of energy bins for the γ -th isomer is calculated as
	$N_{\gamma} = \operatorname{int}\left(\frac{\max\{E_{0}^{\operatorname{sp}}\} + EEOT \times k_{\mathrm{B}}T - E_{0,\gamma}}{\Delta E}\right)$
	where int denotes rounding down to an integer; ΔE is the energy step for each energy bin described in ESOT ; and $E_{0,\gamma}$ is the ground-state energy (including vibrational zero-point energy) of the γ -th isomer. In this manual, well and isomer are synonyms.
	When the temperature is high, molecules tend to populate at high energy levels, so user should increase EEOT to make the result converged.
	The default value is 30.
Available values:	Positive float
Example:	EEOT 30
PBIMOL	
Description:	Start-keyword of the subsection for the pseudo-first-order bimolecular pairs. In order to deal with the inhomogeneous term caused by a bimolecular (second-order) reaction, we treat bimolecular products as sinks, and we calculate bimolecular rate constants in the limit of pseudo-first-order kinetics in which one member of the reactant bimolecular pair is present in great excess so that its concentration is taken as a constant. The present subsection defines the bimolecular reactants and specifies the constant concentration of the excessive fragment. We stress here that in TUMME we assume that the pressure is caused by the bath gas, and the partial pressure of reagents is neglected in the collisional relaxation process. For a bimolecular reaction of A with B, with B present in great excess and M being the bath gas (present in even greater excess, we require $[M] \gg [B] \gg [A]$.

	in even greater excess, we require $[M] \gg [B] \gg [A]$.
Available subkeywords:	BIMOLNAME, EXCESSCONC
Example:	PBIMOL
	BIMOLNAME
	Bim1 Bim2 Bim3
	END_ BIMOLNAME
	EXCESSCONC[mol/L]
	1E-5 1E-4 1E-3
	END_ EXCESSCONC

	END_PBIMOL
BIMOLNAME	
Description:	Subkeyword for the name-list of pseudo-first-order bimolecular reactants. User can assign more than one bimolecular pair. Name strings should be split with spaces.
Example:	BIMOLNAME
	Bim1 Bim2 Bim3
EXCESSCONC	END_ BIMOLNAME
Description:	Subkeyword for the constant concentration of the excessive reagent of pseudo-first-order bimolecular reactants. Since there could be more than one pseudo-first-order bimolecular reaction, there could be more than one value for this subkeyword. Values should be entered as floating-point numbers separated by spaces. The number of values should be the same as the number of pseudo-first-order bimolecular reactants, also the name string in BIMOLNAME .
Example:	EXCESSCONC[mol/L]
	<i>1E-5 1E-4 1E-3</i> END EXCESSCONC
PRINT	
Description:	Start-keyword for an output section.
Available subsections and subkeywords:	EIGENVALUE, EIGENVECTOR, PARTITIONFUNCTION MICROFLUXCOEFFICIENT, TIMEEVOLUTION, RELAXKERNEL
Example:	PRINT EIGENVECTOR EVECFILE evec.txt EVECNUM 3 END_EIGENVECTOR PARTITIONFUNCTION Q.txt END PRINT
EIGENVALUE	
Description:	Start-keyword for the eigenvalues output subsection.
Available subkeywords:	EVALFILE, EVALNUM
Example:	EIGENVALUE EVALFILE eval.txt EVALNUM 3 END EIGENVALUE
EVALFILE	
Description:	Subkeyword for the file name of eigenvalues output. This is compulsory in the EIGENVALUE subsection. String value should not contain any space.
Available value:	String

Example:	EVALFILE eval.txt
EVALNUM	
Description:	Subkeyword for the number of eigenvalues to be printed. All eigenvalues are sorted in ascending order, and the first <i>evalnum</i> eigenvalues will be printed. If this value is not defined in the EIGENVALUE subsection, the program will print out all CSE eigenvalues and the minimum and the maximum IERE eigenvalues.
Available value:	Positive integer
Example:	EVALNUM 3
EIGENVECTOR	
Description:	Start-keyword for the eigenvectors output subsection.
Available subkeywords:	EVECFILE, EVECNUM
Example:	EIGENVECTOR EVECFILE evec.txt EVECNUM 3 END EIGENVECTOR
EVECFILE	
Description:	Subkeyword for the file name of eigenvectors output. String value should not contain any space.
Available value:	String
Example:	EVECFILE evec.txt
EVECNUM	
Description:	Subkeyword for the number of eigenvectors to be printed. All eigenvectors are sorted according to corresponding eigenvalues' sequence, and the first <i>evecnum</i> eigenvectors will be print. If this value is not defined in the EIGENVECTOR subsection, the program will print out all CSE eigenvectors.
Available value:	Positive integer
Example:	EVECNUM 3
PARTITIONFUNCT	ION
Description:	Subkeyword for the file name of partition function output. The partition function of all species in TEMPERATURE will be printed. If MSTFILE is not specified for a species, its partition function will be calculated by the single-structural rigid rotor and harmonic oscillator (SSHO) approximation. If MSTFILE is specified, the partition function of this species will be calculated by doing the Laplace transform of the read density of states (DoS). The electronic partition function wilrational

density of states (DoS). The electronic partition function, vibrational partition function, rotational partition function, and translational partition function of all isomers, transition states, members of bimolecular pairs

TUM ME

will be printed. When the generalized transition states are read from **PYRFILE**, only the partition function of GTS estimated by the SSHO approximation is printed. The program makes the approximation that

$$Q^{\text{MST}}(s) \approx \frac{Q^{\text{MST}}(s=0)}{Q^{\text{SSHO}}(s=0)} Q^{\text{SSHO}}(s)$$

and only prints $Q^{\text{SSHO}}(s)$.

String

Available value:

Example:

PARTITIONFUNCTION *Q.txt*

MICROFLUXCOEFFICIENT

Description:

Start-keyword for the file name of microcanonical flux coefficient output. All microcanonical flux coefficients used to construct a transition matrix will be printed. For the reaction from an isomer γ to an isomer/bimolecular ϕ , the microcanonical flux coefficient that is printed is

$$\hat{k}^{\text{MS-VTST/SCT}}(\gamma \to \phi \mid E_{\eta}) = \kappa^{\text{SCT}}(E_{\eta})\Gamma^{\text{VTST}}(E_{\eta})F^{\text{MS}}(E_{\eta})\frac{N_{\gamma,\phi}^{\ddagger,\text{SHO}}(E_{\eta})}{h\rho_{\gamma}^{\text{SSHO}}(E_{\eta})}$$

For the reaction from a bimolecular pair ν to an isomer γ , the flux coefficient that is

$$\Delta \hat{k}^{\text{MS-VTST/SCT}}(\nu \to \gamma \mid E_{\eta}) = \Gamma^{\text{VTST}}(E_{\eta})\kappa^{\text{SCT}}(E_{\eta})F^{\text{MS}}(E_{\eta})\frac{N_{\nu,\gamma}^{\ddagger,\text{SSHO}}(E_{\eta})e^{-\beta E_{\eta}}\Delta E}{h\Phi_{\text{rel}}Q_{\nu}^{\text{SSHO}}}$$

where Γ , κ and F are respectively the microcanonical recrossing transmission coefficient, the tunneling transmission coefficient, and the multiple-structure torsional coefficient, and they are dependent on the settings of **VARIATION**, **TUNNELING**, and **MSTFILE** subkeywords in a coupled way; N is the sum of states, Q is the electronic-vibrational-rotational partition function, and Φ_{rel} is the relative translation partition function per unit volume. A more detailed description is given in Ref. 29.

Available values:

Example:

MICROFLUXCOEFFICIENT kE.txt

String

TIMEEVOLUTION

Description:	Start-keyword of the subsection for the time evolution of populations. In TUMME, the initial conditions (populations at time zero) are set as a kronecker-delta condition. This means that the population of the ground-state energy bin of the reactant of the first reaction is 1, and the populations of all of the other energy bins of this reactant and all of the energy bins of other species are set to zero. The equations for the time evolution are presented in the <i>Faraday Discussions</i> paper. ³¹
Available subkeywords:	TIMEFILE, TIMESTEP, TIMENUM, INITSPECIES
Example:	TIMEEVOLUTION TIMEFILE time.txt TIMENUM 100 INITSPECIES Well_1 END_TIMEEVOLUTION
TIMEFILE	

Description:

Subkeyword for the output file name for the time evolution of

	populations. This is compulsory in the TIMEEVOLUTION subsection.
Available values:	String
Example:	TIMEFILE time.txt
TIMESTEP	
Description:	Subkeyword for the time step of time evolution of populations to be printed. The default value is
	$\Delta t = \frac{1}{50\lambda_0}$
	where λ_0 is the smallest non-zero eigenvalue.
Available values:	Positive float
Example:	TIMESTEP[fs] 0.1
TIMENUM	
Description:	Subkeyword for the number of steps of time (N_{time}) evolution output. The first N_{time} steps will be printed. The default value is
	$N_{\rm time} = 50$
Available values:	Positive integer
Example:	TIMENUM 100
INITSPECIES	
Description:	Subkeyword for names of the reactants of the first reaction. It can be either a bimolecular pair or a well. The bimolecular pair should be defined in the PSEUBIMOLECULAR . This subkeyword is compulsory in the TIMEEVOLUTION subsection.
Available values:	String List
Example:	INITSPECIES
	Well_1
	Bim_2
	END_INITSPECIES
RELAXKERNEL	
Description:	Start-keyword of the subsection for relaxation kernels $P(E E')$.
Available subsections and subkeywords:	RELAXFILE, KERNELNAME
Example:	RELAXKERNEL
	RELAXFILE kernel.out
	Well_1 Well_2 Well_3
	END_KERNELNAME

RELAXFILE Description: Subkeyword for a file name of the output of relaxation kernels. This subkeyword is compulsory in the **RELAXKERNEL** subsection. There is no default; the user must provide it. Available values: String RELAXFILE kernel.out Example: KERNELNAME Description: Subkeyword for the list of isomer names of which the relaxation kernel will be printed. Users can input multiple isomer names which should be separated by spaces or by a line break. This subkeyword is compulsory in the **RELAXKERNEL** subsection. Available values: String list **KERNELNAME** Example: Well 1 Well 2 Well 3 END KERNELNAME **MERGETHRESHOLD** Description: Subkeyword for the threshold to determine if a merger occurred. The **MERGETHRESHOLD** is compared to the squared projection of eigenvectors onto the IERE subspace (refer to Section 5). The default value is 0.2. Available values: Positive float 0.2 MERGETHRESHOLD Example: PRECISION Subkeyword for the precision of the transition matrix and the Description: eigenpairs. The default value is double. Double precision based on the float64 data type will provide ~16 decimal places; quadruple precision based on the double-double data type will provide ~32 decimal places; and octuple-precision based on the quadruple-double data type will provide ~64 decimal places. Available values: double, quadruple, octuple PRECISION Example: double **OMPNUMTHREAD** Description: Subkeyword for the number of threads set in OpenMP. The highprecision libraries are implemented by C++ where OpenMP is utilized in order to decrease the high-precision time consumption. We stress that the OpenMP parallelization is separate from the MP and MPI parallelization. The OMPNUMTHREAD subkeyword controls into how many threads each Python thread/process will be further parallelized, and it is equivalent to the system environment

END_RELAXKERNEL

variable OMP_NUM_THREADS. This subkeyword only works when the **PRECISION** subkeyword is set to be *quadruple* or *octuple*. If this subkeyword is not set, the program will by default set it to be the total number of processors a node owns divided by the **NPROC** value. The total number of processors will be obtained by Python using *os.cpu_count()*. This dynamic default value will maximize the efficiency of single-node calculations but may be inappropriate for multi-nodes computation because **NPROC** will not be the number of Python threads/processes run on a node, and the user should change this value accordingly.

Available values:	Positive integer.	
Example:	OMPNUMTHREAD	2
EDOWN		
Description:	This is used in the exponent (41) (in Section 6.2) for the is treated as having the follo	ge downwards energy transfer $\langle \Delta E_d \rangle$. tial down relaxation kernel. See Eq. definition $\langle \Delta E_d \rangle$. The $\langle \Delta E_d \rangle$ moment owing dependence on the temperature l internal energy of the isomer:
	$\left< \Delta E_{\rm d} \right> = \left(\frac{T}{T_{\rm d}} \right)$	$\sum_{j=0}^{n} \left[\alpha \left(E' - E_{0,\gamma} \right) + \beta \right]$
	EXPONENT , SLOPE , and initial internal energy; and energy + zero-point energy) isomers share the same TC ,	rameters that are specified by TC , d EDCONST , respectively; E' is the $E_{0,\gamma}$ is the 0 K energy (electronic of the γ -th isomer. We assume all EXPONENT , SLOPE and lsory in the PARAMETER block.
Available subsections and subkeywords:	SLOPE, EDCONST, TC,	EXPONENT
Example:	EDOWN	
	SLOPE 0	0.00123
	EDCONST[cm-1]	160
	TC [K]	700
	EXPONENT 1	.0
	END_EDOWN	
SLOPE Description:		er α . If users want to assume that nal energy, they can set $\alpha = 0$. Note t value is 0.
Available values:	Float	
Example:	SLOPE 0.00123	
EDCONST		
Description:	Subkeyword for the parameter	er β . Note that β has units of energy.

	This is compulsory in the EDOWN section.
Available values:	Positive float
Example:	EDCONST [cm-1] 130
тс	
Description:	Subkeyword for the parameter T_c . The default value is 300 K
Available values:	Positive float
Example:	TC [K] <i>1600</i>
EXPONENT	
Description:	Subkeyword for the parameter <i>n</i> . If a user wants to use a temperature-independent $\langle \Delta E_d \rangle$, this can be done by setting $n = 0$. The default value is 0.
Available values:	Float
Example:	EXPONENT 1.0
TEMPERATURE	
Description:	Subkeyword for temperatures. This is compulsory in PARAMETER block.
Available values:	Positive float list
Example:	TEMPERATURE [K] 100. 200. 300. 400. 500.
	END_TEMPERATURE
PRESSURE	
Description:	Subkeyword for pressures. This is compulsory in
Available values:	PARAMETER block. Positive float list
Example:	PRESSURE[torr] 1E-6. 1E-5. 1E-4. 1E1. 1E3. END_PRESSURE
GROUNDSPECIES	
Description:	Subkeyword for the name of an isomer or a bimolecular pair, of which the ground-state energy (energy at 0 K, by which we mean that vibrational zero-point energy is included) will be set as the zero of energy of all species. This is compulsory in the PARAMETER block.
Available values:	String
Example:	GROUNDSPECIES Well_1

5.3 Keywords in the REACTION block

	Table 5. Glossary for the REACTION block
REACTION	
Description:	Start-keyword for a block describing all elementary reactions. This is compulsory in the standard input file.
Available sections	BARRIERRXN, BARRIERLESSRXN
Example:	REACTION BARRIERRXN INFO Well_1-TS_1-Bim_1
	END_BARRIERRXN
	END_REACTION
BARRIERRXN	
Description:	Start-keyword of a section for the elementary reaction with a barrier.
Available sections and subkeywords:	INFO, PYRFILE, VARIATION, TUNNELING
Example:	BARRIERRXN INFO Well_1-TS_1-Bim_1 END BARRIERRXN
BARRIERLESSRXN	
Description:	Start-keyword of a section for a barrierless elementary reaction. Only works for bimolecular barrierless reactions.
Available subkeywords:	INFO, AVGDIAMETER, RXNENERGY
Example:	BARRIERLESSRXN INFO Well_1-Bim_1 AVGDIAMETER[A] 4.0 RXNENERGY[kcal/mol] -5.0 END BARRIERLESSRXN
INFO	
Description:	Subkeywords for the information of a reaction with a barrier or a barrierless elementary reaction. For an elementary reaction with a barrier, the value of this keyword should be the reactant name plus "-" plus the transition state name plus "-" plus the product name; for a barrierless elementary reaction, the value of this keyword should be the reactant name plus "-" plus the product name. If PYRFILE is also defined, the INFO will be used to name the species read from the <i>Polyrate</i> output file. For a bimolecular pair, the first member is named with the name of bimolecular pair followed by a string "_1", and the second member is named with the name of bimolecular pair followed by

 Table 5. Glossary for the REACTION block

	a string "_2". Spaces are not allowed in string values. This is compulsory in BARRIERRXN and BARRIERLESSRXN .
Available value:	String
Example:	INFOWell_1-TS_12-Well_2 (for barrier elementary reaction)INFOBim_1-Well_1 (for barrierless elementary reaction)
PYRFILE	
Description:	Subkeyword for the name of the <i>Polyrate</i> output file for an elementary reaction that has an intrinsic barrier. If specified, the reactant, transition state, and product specified are read from the <i>Polyrate</i> output file and their names will be specified according to INFO . The user should make sure that the reactant, transition state, and product in INFO are consistent with those in PYRFILE . Section 5.5 gives a detailed description of the <i>Polyrate</i> long output file.
	Notice that TUMME 2023 support two kinds of <i>Polyrate</i> files, one kind with an <i>fu6</i> extension and the other ending with an <i>fu100</i> extension. An <i>fu100</i> file is specifically designed to be a convenient interface between <i>Polyrate 2023</i> and TUMME 2023. The <i>fu100</i> file and the <i>fu6</i> file work equivalently, and the user should only specific one of them. However, we recommend using an <i>fu100</i> file because it works for all dynamics options in Polyrate except IVTST calculations, whereas the <i>fu6</i> file is not readable by TUMME for some <i>Polyrate</i> options (see further discussion in Section 5.5.1).
Available value:	String
Example:	PYRFILE rxn_1.fu100
Example: AVGDIAMETER	C C
	PYRFILE $rxn_1.fu100$ Subkeyword for the average diameter of the bimolecular reactant pair in a barrierless reaction. This is compulsory in the BARRIERLESSRXN section. If diameters of two species of the bimolecular are d_1 and d_2 , then the average diameter is
AVGDIAMETER	PYRFILE rxn_1.fu100 Subkeyword for the average diameter of the bimolecular reactant pair in a barrierless reaction. This is compulsory in the BARRIERLESSRXN section. If diameters of two species of the
AVGDIAMETER	PYRFILE $rxn_1.fu100$ Subkeyword for the average diameter of the bimolecular reactant pair in a barrierless reaction. This is compulsory in the BARRIERLESSRXN section. If diameters of two species of the bimolecular are d_1 and d_2 , then the average diameter is
AVGDIAMETER Description:	PYRFILE $rxn_1.fu100$ Subkeyword for the average diameter of the bimolecular reactant pair in a barrierless reaction. This is compulsory in the BARRIERLESSRXN section. If diameters of two species of the bimolecular are d_1 and d_2 , then the average diameter is $d_{Avg} = \frac{d_1 + d_2}{2}$
AVGDIAMETER Description: Available value:	PYRFILE $rxn_1.fu100$ Subkeyword for the average diameter of the bimolecular reactant pair in a barrierless reaction. This is compulsory in the BARRIERLESSRXN section. If diameters of two species of the bimolecular are d_1 and d_2 , then the average diameter is $d_{Avg} = \frac{d_1 + d_2}{2}$ Positive float
AVGDIAMETER Description: Available value: Example:	PYRFILE $rxn_1.fu100$ Subkeyword for the average diameter of the bimolecular reactant pair in a barrierless reaction. This is compulsory in the BARRIERLESSRXN section. If diameters of two species of the bimolecular are d_1 and d_2 , then the average diameter is $d_{Avg} = \frac{d_1 + d_2}{2}$ Positive float
AVGDIAMETER Description: Available value: Example: RXNENERGY	PYRFILE $rxn_1.fu100$ Subkeyword for the average diameter of the bimolecular reactant pair in a barrierless reaction. This is compulsory in the BARRIERLESSRXN section. If diameters of two species of the bimolecular are d_1 and d_2 , then the average diameter is $d_{Avg} = \frac{d_1 + d_2}{2}$ Positive float AVGDIAMETER [A]4.0Subkeyword for the 0 K reaction energy of a barrierless reaction, which equals the ground-state energy of the product (including vibrational zero-point energy) minus the ground-state energy of the reactant (including vibrational zero-point energy). This is
Available value: Example: RXNENERGY Description:	PYRFILE $rxn_1.fu100$ Subkeyword for the average diameter of the bimolecular reactant pair in a barrierless reaction. This is compulsory in the BARRIERLESSRXN section. If diameters of two species of the bimolecular are d_1 and d_2 , then the average diameter is $d_{Avg} = \frac{d_1 + d_2}{2}$ Positive float AVGDIAMETER [A]4.0Subkeyword for the 0 K reaction energy of a barrierless reaction, which equals the ground-state energy of the product (including vibrational zero-point energy) minus the ground-state energy of the reactant (including vibrational zero-point energy). This is compulsory in the BARRIERLESSRXN section.
AVGDIAMETER Description: Available value: Example: RXNENERGY Description:	PYRFILE $rxn_1.fu100$ Subkeyword for the average diameter of the bimolecular reactant pair in a barrierless reaction. This is compulsory in the BARRIERLESSRXN section. If diameters of two species of the bimolecular are d_1 and d_2 , then the average diameter is $d_{Avg} = \frac{d_1 + d_2}{2}$ Positive floatAVGDIAMETER[A]4.0Subkeyword for the 0 K reaction energy of a barrierless reaction, which equals the ground-state energy of the product (including vibrational zero-point energy) minus the ground-state energy of the reactant (including vibrational zero-point energy). This is compulsory in the BARRIERLESSRXN section.Float

	need the density of states (DoS) of a variational transition stat along the reaction coordinate either to calculate the cumulativ reaction probability (CRP) or the sum of states (SoS) during th calculation of the microcanonical flux coefficient. Th VARIATION subkeyword will determine which DoS will b chosen.	
	If VARIATION is <i>tst</i> , the conventional transition state (which is dividing surface passing through the saddle point) will be used.	
	If VARIATION is <i>cvt</i> , then – for each temperature – the program places the variational transition state at the point along the reaction path that maximizes Gibbs free energy of activation.	
	If VARIATION is <i>muvt</i> , then – for each energy bin – the program places the variational transition state at the point along the reaction path that minimizes the CRP or sum of states.	
	The values <i>cvt</i> and <i>muvt</i> will work only if PYRFILE is specified. The default value is <i>tst</i> .	
Available value:	tst, cvt, muvt	
Example:	VARIATION cvt	
TUNNELING		
Description:	Subkeyword for the method to consider the tunneling effect. The available values are <i>Eckart</i> , <i>zct</i> , <i>sct</i> , <i>lct</i> and <i>omt</i> .	
	If <i>zct</i> is specified, the transmission probability will be loaded from the zero-curvature tunneling probability in the <i>Polyrate</i> output fil	
	If s <i>ct</i> is specified, the transmission probability will be loaded from the small-curvature tunneling probability in the <i>Polyrate</i> output file.	
	If <i>Eckart</i> is specified, the enthalpy of activation profile at 0 K wi be fitted by an asymmetric Eckart potential; please refer to ref. 3 for details, but notice that ref. 32 did not include zero-poin energies. Note that for gas-phase species at 0 K, the enthalpy equa the energy, and both equal the potential energy plus the zero-poin energy.	
	The values <i>zct</i> , <i>sct</i> , <i>lct</i> and <i>omt</i> will work only if PYRFILE specified. If the TUNNELING subkeyword is not specified, r tunneling effect will be included.	
Available value:	Eckart, zct, sct, lct, omt	
Example:	TUNNELING sct	
NVLAPLACE		
Description:	Start-keyword for the subsection of inverse-Laplace-transform. W use a single-exponential or biexponential expression to fit th canonical flux coefficients (or so-called high-pressure-limit rat constant). Taking the biexponential expression as an example. W can express the canonical flux coefficients as	
	$\hat{k} = A_1 \left(\frac{T}{m}\right)^{n_1} e^{-\frac{E_{a_1}}{k_B T}} + A_2 \left(\frac{T}{m}\right)^{n_2} e^{-\frac{E_{a_2}}{k_B T}}$	

$$\hat{k} = A_1 \left(\frac{T}{T_1}\right)^{n_1} e^{-\frac{E_{a_1}}{k_B T}} + A_2 \left(\frac{T}{T_2}\right)^{n_2} e^{-\frac{E_{a_2}}{k_B T}}$$

The microcanonical flux coefficients can be obtained from the

inverse-Laplace-transform to the canonical flux coefficient.

For reaction from bimolecular pair ν to isomer γ , there will be

$$\begin{split} & \Delta \hat{k}(\nu \to \gamma | E) = \\ & \frac{e^{-\beta E} \Delta E}{\Phi_{\rm rel} Q_{\nu}^{\rm SSH0}} \bigg[\frac{\frac{1}{h^3} (2\pi m_{\nu})^{\frac{3}{2}} A_1 \beta_1^{n_1}}{\Gamma(n_1 + \frac{3}{2})} \int_0^E \rho_{\nu} (E_{\eta} - \varepsilon) (\varepsilon - E_{a_1})^{n_1 + \frac{1}{2}} \Theta(\varepsilon - E_{a_1}) \, \mathrm{d}\varepsilon \\ & + \frac{\frac{1}{h^3} (2\pi m_{\nu})^{\frac{3}{2}} A_2 \beta_2^{n_2}}{\Gamma(n_2 + \frac{3}{2})} \int_0^{E_{\eta}} \rho_{\nu} (E_{\eta} - \varepsilon) (\varepsilon - E_{a_2})^{n_2 + \frac{1}{2}} \Theta(\varepsilon - E_{a_2}) \, \mathrm{d}\varepsilon \bigg] \end{split}$$

where $\beta_1 = 1/T_1$ and $\beta_2 = 1/T_2$. And the reverse reaction can be estimated from the detailed balance.

For reaction from isomer γ to species ϕ (could be either unimolecular or bimolecular), there will be

$$\hat{k}(\gamma \to \phi | E) = \frac{A_1 \beta_1^{n_1}}{\rho_{\gamma}(E) \Gamma(n_1)} \int_0^E \rho_{\gamma}(E - \varepsilon) \left(\varepsilon - E_{a_1}\right)^{n_1 - 1} \theta \left(\varepsilon - E_{a_1}\right) d\varepsilon$$
$$+ \frac{A_1 \beta_1^{n_2}}{\rho_{\gamma}(E) \Gamma(n_2)} \int_0^E \rho_{\gamma}(E - \varepsilon) \left(\varepsilon - E_{a_2}\right)^{n_2 - 1} \theta(\varepsilon - E_{a_2}) d\varepsilon$$

where $\beta_1 = 1/T_1$ and $\beta_2 = 1/T_2$. And the reverse reaction can be estimated from the detailed balance. This is optional in the **BARRIERRXN** and **BARRIERLESSRXN** section.

Available value:	EXPRESSION, PREFACTOR1, T1, N1, EA1, PREFACTOR2, T2, N2, EA2	
Example:	INVLAPLACE EXPRESSION biexp PREFACTOR1[1/s] 10 T1[K] 300 N1 1 EA1[kcal/mol] 2 PREFACTOR2[1/s] 100 T2[K] 600 N2 1.2 EA2[kcal/mol] 3.1	
EXPRESSION	END_INVLAPLACE	
	Sublement for two of evenession (single evenes tiples	
Description:	Subkeyword for type of expression (single-exponential or biexponential) for fitting canonical flux coefficients. This is compulsory in the INVLAPLACE subsection.	
Available value:	<i>uniexp</i> or <i>biexp</i>	
Example:	EXPRESSION biexp	
PREFACTOR1		
Description:	Subkeyword for A_1 . The unit of it should be [1/s] for unimolecular reaction and [cm3/molecule/s] for bimolecular reaction. This is compulsory in the INVLAPLACE subsection.	
Available value:	Positive float	
Example:	PREFACTOR1[1/s] 10	
T1		

Description:	Subkeyword for T_1 . It has the unit of temperature. This is compulsory in the INVLAPLACE subsection both for EXPRESSION being <i>uniexp</i> or <i>biexp</i> .	
Available value:	Positive float	
Example:	T1 [K] 300	
N1		
Description:	Subkeyword for n_1 . It is unitless. This is compulsory in the INVLAPLACE subsection both for EXPRESSION being <i>uniexp</i> or <i>biexp</i> .	
Available value:	Positive float	
Example:	N1 1.0	
EA1		
Description:	Subkeyword for E_{a_1} . It has the unit of energy. This is compulsory in the INVLAPLACE subsection both for EXPRESSION being <i>uniexp</i> or <i>biexp</i> .	
Available value:	Float	
Example:	EA1 [kcal/mol] 2.3	
PREFACTOR2		
Description:	Subkeyword for A_2 . The unit of it should be [1/s] for unimolecular reaction and [cm3/molecule/s] for bimolecular reaction. This is compulsory in the INVLAPLACE subsection for EXPRESSION being <i>biexp</i> .	
Available value:	Positive float	
Example:	PREFACTOR2[1/s] 10	
T2		
Description:	Subkeyword for T_2 . It has the unit of temperature. This is compulsory in the INVLAPLACE subsection for EXPRESSION being <i>biexp</i> .	
Available value:	Positive float	
Example:	T2 [K] 300	
N2		
Description:	Subkeyword for n_2 . It is unitless. This is compulsory in the INVLAPLACE subsection for EXPRESSION being <i>biexp</i> .	
Available value:	Positive float	
Example:	N2 1.0	
EA2		
Description:	Subkeyword for E_{a_2} . It has the unit of energy. This is compulsory in the INVLAPLACE subsection for EXPRESSION being <i>biexp</i> .	
Available value:	Float	
Example:	EA2[kcal/mol] 2.3	

5.4 Keywords in the SPECIES block

	Table 6. Glossary for in the SPECIES block		
SPECIES			
Description:	Start-keyword of species block. This is not compulsory in the standard input file. If all species in the master equation are read from <i>Polyrate</i> long output files, the SPECIES block is not necessary. When the <i>Polyrate</i> long output file is defined, the SPECIES block can still be defined to give some supplementary information about species. The SPECIES block has three sections: one for isomers, which are the wells and are specified in WELL sections, one for transition states, which are specified in TRANSTATE sections, and the third kind for bimolecular pairs, which are specified in BIM sections.		
Available sections:	WELL, TRANSTATE, BIM		
Example:	SPECIES WELL		
	END_WELL		
	END_SPECIES		
WELL			
Description:	Start-keyword of well section. In the input for a reaction system, there must be at least one well (in this manual, well and isomer are synonyms); thus, if no well is defined in <i>Polyrate</i> output files, WELL is compulsory in the SPECIES block and can appear multiple times.		
Available Subkeywords:	NAME, GEOMETRY, FREQUENCY, ELELEVEL, E0K, EELE, ROTSIGMA, OPTICALNUM, BMAX, DIAMETER, EPSILON, G09FILE, MSTFILE, FREQSCALE		
Example:	WELL GEOMETRY[A] C 1.223 2.334 3.4456		
	END_WELL		
TRANSTATE			
Description:	Start-keyword of transition state section. TRANSTATE is not compulsory in the SPECIES block.		
Available Subkeywords:	NAME, GEOMETRY, FREQUENCY, ELELEVEL, E0K, EELE, ROTSIGMA, OPTICALNUM, IMAGFREQ, G09FILE, MSTFILE, FREQSCALE		

Example:	TRANSTATE GEOMETRY [A] <i>C 1.223 2.334 3.4456</i>		
	END_GEOMETRY		
	END TRANSTATE		
BIM			
Description:	Start-keyword of bimolecular pairs section. A bimolecular pair contains two species, which can be either atoms or molecules. The first species should be defined by SP1MOL or SP1ATOM ; the second species should be defined by SP2MOL or SP2ATOM . It does not matter which one appears first.		
Available subsections and subkeywords:	SP1MOL, SP2MOL, SP1ATOM, SP2ATOM, EELE, E0K, NAME		
Example:	BIM SP1MOL		
	END_SP1MOL SP2ATOM		
	END_SP2ATOM END_ BIM		
SP1MOL, SP2MOL			
Description:	Start-keyword of one of the molecules (the number of atoms should greater than 1) in bimolecular pair section. "SP1" denotes species 1 and choosing which one as species 1 does not matter.		
Available subkeywords:	NAME, GEOMETRY, FREQUENCY, ELELEVEL, E0K, EELE, ROTSIGMA, OPTICALNUM, G09FILE, MSTFILE, FREQSCALE		
Example:	SP1MOL		
	END_SP1MOL		
SP1ATOM, SP2ATC	DM		
Description:	Start-keyword of one of the atoms in a bimolecular pair section. "SP1" denotes species 1, and it does not matter which one is chosen as species 1.		
Available subkeywords:	NAME, SYMBOL, ELELEVEL, E0K, EELE		
Example:	SP1ATOM		
	END_SP1ATOM		

NAME

Description:	Subkeyword for the name of species. This is compulsory in every WELL , TRANSTATE , or BIM section and also in the SP1MOL , SP2MOL , SP1ATOM , and SP2TAOM subsections. Spaces are not allowed in name strings. The length of a name has no limitation, but for output aesthetics we recommend it not contain more than 15 characters.	
Available value:	String	
Example 1:	NAME Well_1	
Example 2:	NAME 1-propyl	
GEOMETRY		
Description:	Subkeyword for the geometry of a species. This is not compulsory when the <i>Polyrate</i> output file or <i>Gaussian</i> output file is defined. There is no requirement on conditions that must be satisfied by the geometry; for example, it is not necessary to put the center of mass at the origin. Furthermore, there is no requirement on how the geometries of different species are related, even for coordinates of the two members of a bimolecular pair. The coordinates given here are not manipulated in the program.	
Available value:	List. Each line should contain four entries. The first is the atom symbol string; the other three are float numbers.	
Example:	GEOMETRY[A] C 1.234 2.345 3.456 C 4.567 5.678 6.789 H 7.890 8.987 1.670 END_GEOMETRY	
FREQUENCY		
Description:	Subkeyword for the real frequencies of a species. For a linear molecule, the user should input $3N - 5$ frequencies; for a nonlinear molecule, user should input $3N - 6$ frequencies. For a linear transition state, user should input $3N - 6$ frequencies; for a nonlinear transition state, user should input $3N - 7$ frequencies. The program will automatically determine whether a molecule or a transition state is linear. This keyword is not compulsory when the <i>Polyrate</i> output file or <i>Gaussian</i> output file is defined.	
Available value:	Positive float list	
Example:	FREQUENCY[cm-1] 3585.12 3506.34 1885.23 45.49 235.67 478.87 END FREQUENCY	
IMAGFREQ		
Description:	Subkeyword for the image frequency.	
Available value:	Negative float	
Example:	IMAGFREQ[cm-1] -298	

Subkeyword for the electronic energy level of species. The input can contain multiple lines, and each line should contain two number. The first number denotes degeneracy, and the second number denotes the energy relative to the electronical ground energy. The default value is $1 \ 0$.	
Positive float list	
ELELEVEL[a.u.] 2 0 2 0.023 END_ELELEVEL	
Subkeyword for the energy of species at 0 K, which equals the electronic energy (including, as usual, the nuclear repulsion) plus the zero-point vibrational energy. Note that for gas-phase species, the 0 K energy is the same as the 0 K enthalpy.	
This subkeyword is not compulsory when the <i>Polyrate</i> output file or <i>Gaussian</i> output file is defined for this species. If some species energies are defined by EOK subkeywords and some are read by <i>Gaussian</i> , please make sure that their zeros of energy are consistent.	
Float	
E0K [kcal/mol] 10.0	
Subkeyword for the classical energy of the species at 0 K, which equals the electronic energy (the electronic energy always includes the nuclear repulsion). This is not compulsory when a <i>Polyrate</i> output file or <i>Gaussian</i> output file is defined for this species. If some species energies are defined by EELE subkeywords and some are specified by <i>Gaussian</i> , the user should make sure that their zeros of energy are consistent.	
Float	
EELE[kcal/mol] 10.0	
Subkeyword for the rotational symmetry number of a species. The electronic-vibrational-rotational partition function, the sum of states, and the density of states will be divided by this number. The default value is 1. If the properties of a species are defined by a <i>Gaussian</i> output file, the program will automatically read ROTSIGMA from that file, and that will override the default. However, if the properties of a species are read from a <i>Polyrate</i> output file, the program will not be able to read ROTSIGMA because <i>Polyrate</i> output files do not include ROTSIGMA . Therefore, if one is reading the properties of a species from a <i>Polyrate</i> output file, and if the user does not want the rotational	

Available value:	symmetry number of the species to be unity, one must use the ROTSIGMA keyword to set it to another value. Positive integer	
Evenuela	ROTSIGMA 2	
Example:	RUISIGMA 2	
OPTICALNUM		
Description:	Subkeyword for the optical-isomer number α of a species; this is 2 for a chiral species and 1 for a species that can be rotated to coincide with its mirror image. The value of α will only be used when calculating the density of states, but it will be automatically included in variables derived from the density of states, e.g., the microcanonical flux coefficient and the sum of states. The default value is 1.	
	<i>Polyrate</i> and <i>Gaussian</i> outputs do not include the optical- isomer number, so you must define it if you want to assign a non- unit optical isomer number to a species.	
	Note that the MS-T method properly accounts for optical isomers, ³³ so if one uses MS-T, one should not use α .	
Available value:	Positive integer	
Example:	OPTICALNUM 2	
DIAMETER		
Description:	Subkeyword for the diameter of an isomer. This is compulsory for each WELL when LJCOLLISON is defined and the DIAMETERA is undefined in LJCOLLISION. When DIAMETER is defined in WELL and DIAMETERA is also defined in LJCOLLISION, DIAMETER will cover DIAMETERA.	
Available value:	Positive float	
Example:	DIAMETER[A] 4.0	
EPSILON		
Description:	Subkeyword for the Lennard-Jones energy parameter of an isomer. This is compulsory for each WELL when LJCOLLISON is defined and EPSILONA is undefined. When both EPSILON is defined in WELL, and EPSILONA is also defined in LJCOLLISION, EPSILON will cover EPSILONA.	
Available value:	Positive float	
Example:	EPSILON [cm-1] 40.	
FREQSCALE		
Description:	Subkeyword for the scaling factor of frequencies. The code has three possible ways to get frequencies for a species: from the <i>Polyrate</i> output, from the <i>Gaussian</i> standard output, or from the FREQUENCY subkeyword. If scaled frequencies are used in the <i>Polyrate</i> run, the frequencies extracted from the <i>Polyrate</i> output	

	are already scaled, but if <i>Gaussian</i> was not asked to scale the frequencies, then <i>Gaussian</i> will have outputted unscaled frequencies. This keyword only works for frequencies read from <i>Gaussian</i> standard output and from the FREQUENCY subkeyword. Our recommendation to the user is that frequencies should always be scaled to correct for anharmonicity and for systematic errors in electronic structure calculations; ³⁴ thus one of these options should be used (and the user should be sure that the frequencies are scaled only once). The default value of this keyword is 1.0.	
Available value:	Positive float	
Example:	FREQSCALE 0.972	
G09FILE		
Description:	Subkeyword for the name of the <i>Gaussian 09</i> output file for a species. Section 5.5 gives a detailed description of the <i>Gaussian</i> long output file. If specified, then geometries, frequencies, symbols, rotational symmetry number, imaginary frequency and energies will be read from the <i>Gaussian</i> output file.	
Available value:	String	
Example:	G09FILE Well_1.log	
MSTFILE		
Description:	Subkeyword for the name of the <i>MSTor</i> output file for a species. If specified, the MST density of state will be read from this file. This is optional. Section 5.5 will give a detailed description of the <i>MSTor</i> long output file.	
Available value:	String	
Example:	MSTFILE Well_1.out	

5.5 Polyrate, Gaussian and MSTor Output Files

5.5.1 Polyrate output file

The *Polyrate* output file specified in keyword **PYRFILE** can be the standard output file *xxx.fu6* of *Polyrate* (version 2016 or later) or the interface file *xxx.fu100* between *Polyrate* (version 2023 or later) and TUMME (version 2023 or later). When TUMME reads the information from *Polyrate* output files, it assumes the information is in a predefined format. In many cases, this information can be read correctly from standard *fu6* files. However, when some options are used, *Polyrate* puts the information in the *fu6* file in a different format that cannot be identified by TUMME. Users can modify *fu6* files manually to be readable by TUMME by taking account of the information below about the key-strings that TUMME searches for in the *Polyrate* output files. But, beginning with *Polyrate 2023* and TUMME 2023, there is a better option. Beginning with *Polyrate 2023*, the *Polyrate* user can use the PTUMME option to request *Polyrate* to write an *fu100* file. The *fu100* file has all the information that TUMME needs, and it has it in a convenient TUMME-readable format for all dynamics options except interpolated VTST (IVTST) calculations. When the **PTUMME** keyword is turned on in *Polyrate*, an *fu100* file will be written.

The species information, the minimum energy path (MEP) information, and the transmission possibilities are read from this file. The keyword "PRINTSTEP" should be specified in *Polyrate* when it is used in conjunction with TUMME. In case of compatibility issues, the user may want to check the output file of *Polyrate*; below we list the key-strings in the Polyrate output file that TUMME uses to look for the values. Note that the Polyrate program can be used with many interfaces - see http://truhlar.chem.umn.edu/content/software - but the choice of interface does not affect the essential elements of the *Polyrate* long output, so TUMME should work for every available electronic structure interface of *Polyrate*, including the very popular Gaussrate. When the code is reading the standard output file of Polyrate, the code will try to read all the values listed in Table 7. TUMME does not let user choose which values to read. The code will scan the file from the first line to the last line; if any of keystrings showed in Table 7 is met, the corresponding value will be read. So, the user should make sure that the *Polyrate* standard output file being used contains the generalized transition states if the user sets the VARIATION keyword as cvt or muvt; and the user should make sure that the transmission probability is in the *Polyrate* output file if the user sets **TUNNELING** as sct or zct.

If *Polyrate* uses scaled frequencies, the frequencies at stationary points or generalized transition states in the *Polyrate* standard output are always the scaled ones, so we do not scale frequencies again in TUMME.

	Ŭ	<i>v</i> 1
Values	Key-strings	Description
Atom symbols	"Atomic information:"	Atomic symbols will appear from the third line after the key-string line. The first entry of each line is the sequence number of each atom. The third entry of each line is the atom symbol. They will both be loaded. The reading will end with a blank line.
Temporary species objects	<pre>"Reactant #1"// "Reactant #2"// "Product #1"// "Product #1"</pre>	When one of four keywords is recognized in the output file, a temporary species object will be

Table 7. Keywords in Polyrate output file

		created. Then the species information will temporarily be stored in these objects and after all information read, the reactant, transition state and product objects will finally be created.
Geometries	<pre>"********* Reactants:"// "********* Products:"// "********* Saddle point:"</pre>	Geometries will appear from the fifth line after the key-string line and the last three entries of each line are coordinates in angstrom.
Species properties	<pre>"****** Reactant 1 ********" // "****** Reactant 2 ******** Product 1 ****************// "****** Product 2 ****************// "****** Saddle point ************************************</pre>	Number of atoms will appear in the second line after the key-string line, shown as "xx-atom" where "xx" denotes an integer; then electronic degeneracies and energies appear in the same line beginning with string "electronic degeneracies and energies (a.u.)"; then frequencies will appear beginning from the fourth line after the line containing string "Harmonic Frequencies"
Reaction energy	"Reaction energetics"	The reaction energy calibrated with ZPVE in atomic unit is the seventh entry of the 16-th line after the key-string line. This is the reaction enthalpy at 0 K.
Barrier energy	"V+ZPE w/re reactant V+ZPE"	The barrier energy including the change of ZPVE will appear in the same line. This is the enthalpy of activation at 0 K.
Geometries of generalized transition states in MEP	"Space-fixed cartesian coordinates vs reaction coordinate"	The first geometry of the generalized transition state will appear from the fifth line after the key-string line and the last three entries of each line are coordinates; after <i>Natom</i> lines, skipping three lines, the geometries of the next generalized transition state will begin. This will circulate again and again until the string " <i>Classical and adiabatic</i> <i>energies</i> " is met. The reaction coordinate <i>s</i> will also be recorded.
Frequencies and energies of generalized transition states in MEP	"s(angstrom) VMEP Va^G mu^CD-SC frequencies"	After a blank line, the frequencies and energies will appear. The sum of the potential energy and the ground-state local vibrational energy (ZPVE) in modes normal to the reaction path is called V_a^G (which denotes vibrationally adiabatic ground-state potential energy curve; ²¹ there are $3N - 7$ (for a nonlinear species) or $3N - 6$ (for a linear species) frequencies and they will be read until a blank line is encountered. The V_a^G will also be read for each value of the reaction coordinate <i>s</i> .
Transmission probability	"Transmission probabilities"	The transmission probability will appear beginning at the fourth lines after the key-string line. If the elementary reaction is barrierless, a string "The Classical barrier is less than zero!" should be found. The code will try to find the SCT probability if the user has chosen <i>sct</i> and will try to find the ZCT probability if the user has chosen <i>zct</i> . If found, the corresponding transmission probability will be read, otherwise this will default to a None-type in Python.

If the file *ful00* is specified in keyword **PYRFILE**, it means that *Polyrate 2023* or later is used and the keyword **PTUMME** has been turned on in the *Polyrate* input file. The *ful00* file contains the minimum-energy-path information, including geometries, frequencies, electronic degeneracy, and energies of the reactant, product, conventional transition state, and all generalized transition states and the transmission probabilities obtained by running *Polyrate* (version 2023 or later). All the information is written to the *ful00* file in atomic units, except for frequencies which are given in cm⁻¹.

Note, TUMME does not support the *Polyrate* output files of interpolated VTST (IVTST).

5.5.2 Gaussian output file

The *Gaussian* output file specified in keyword **G09FILE** is the standard *Gaussian* output file. When specified for a species, the geometries, frequencies, rotational symmetry number, and energy at 0 K will be read from the file. Note that "energy at 0 K" refers to the energy including zero-point energy; this can also be called the enthalpy at 0 K. The *Gaussian* version should be *Gaussian 09 or Gaussian 16*. The keyword "freq" should be specified in the *Gaussian* input file. Here we list the key-strings in the *Gaussian* output file used to look for the values.

If frequencies read from the *Gaussian* standard output file are unscaled, the user should set the **FREQSCALE** subkeyword.

Values	Key-strings	Description
Geometry	The last string "Standard orientation"	Geometries will appear in 4 lines afterwards. The second entry of each line are atom number and the last three are coordinate in angstroms. Read will end with a line full of "".
Frequency	"Frequencies"	Frequencies will appear on the same line that starts with the key-string.
Rotational symmetry number	"Rotational symmetry number"	Rotational symmetry number will appear in the same line afterwards
E0K	"Sum of electronic and zero-point Energies"	E0K will appear in the same line afterwards

Table 8. Keywords in Gaussian output file

5.5.3 MSTor output file

The *MSTor* output file specified in keyword **MSTFILE** can be the standard *MSTor* output file (*MSTor* version 2017 or later) or a specific interface file *mtumme.out* (*MSTor 2023* or later). When specified for a species, the density of states will be read from the file.

For *MSTor* 2017, the keywords "**estep**" and "**emax**" should be specified in the *MSTor* input file. These two keywords are not illustrated in the manual of *MSTor* 2017: here we give an explanation of these two keywords.

estep is the energy step used in calculating the density of states. The unit is kcal/mol. It should be specified in the \$GENERAL section of a *MSTor* input file. Notice that the energy step **estep** in *MSTor* should be the same as the energy step **DE** in TUMME.

emax is the maximum energy of energy level used for calculating the density of states. The unit is kcal/mol. Should be specified in \$GENERAL section of a *MSTor* input file. Notice that the maximum energy **emax** in *MSTor* should be the same as the energy step **EMAX** in TUMME.

For *MSTor 2023*, any one of the **MTUMME**, **EMAX**, or **ESTEP** keywords in *MSTor* input file will turn on the calculation of density of states (DOS), but only **MTUMME** prints the DOS in the separate *mtumme.out* file, which is a convenient procedure for users of TUMME 2023 and later.

6. Detailed Implementation

6.1 Overview of all source files

Table 9. Description of Python source files		
File Name	Description	
parallel_lib.py	This file contains a Mpv_class class which stores the variables like process rank number and total processor number for MP parallel mode. This file also contains a method to gather the stack of ME_class of each processor into rank 0 processor. We do not simply use the built-in <i>gather()</i> function in <i>mpi4py</i> because in this function there's memory limitation (< 2GB) for the communicated object.	
data_lib.py	This file contains some functions dealing with the "not a number" issue of the density of states in <i>MSTor</i> output file and the program will use a spline function to fit the density of states.	
dd_lib.py	This file contains an interface function for Python to call the quadruple-precision C++ dynamical library.	
qd_lib.py	This file contains an interface function for Python to call the octuple-precision C++ dynamical library.	
const_lib.py	This file contains physical constants, unit conversion constants, and the like.	
global_lib.py	This file contains global variables, keywords for standard input file and default values for global variables.	
molecule_lib.py	This file contains <i>Molecule_class</i> class and <i>Atom_class</i> class. They are father classes for species classes. The density of states and partition function can be calculated in the two classes. They contain some basic properties of a molecule or transition state.	
species_lib.py	This file contains classes for wells, transition states and fragments of a bimolecular pair. (In this manual, well and isomer are synonyms.) The relaxation kernel and Boltzmann population can be calculated in the class for wells. They are children classes of the father classes in <i>molecule_lib.py</i> .	
reaction_lib.py	This file contains <i>BarrierRxn_class</i> and <i>BarrierlessRxn_class</i> two classes. They both have method to estimate the microcanonical flux coefficient. <i>BarrierRxn_class</i> contains an object of <i>Mep_class</i> which will load the minimum energy path, stationary species, transmission probability from a <i>Polyrate</i> output file.	
mep_lib.py	This file contains a <i>Mep_class</i> class to extract the minimum energy path (MEP), stationary species, transmission probability from a <i>Polyrate</i> file.	

collision_lib.py	This file contains <i>HS_collision_class</i> and <i>LJ_collision_class</i> . The <i>HS_collision_class</i> is to store the collision information of the hard-sphere collision model. The <i>LJ_collision_class</i> is to store the collision information of the Lennard-Jones collision.
me_lib.py	This file contains a ME_class class to store all the information about a master equation for a given temperature and pressure. It has a method to construct a transition matrix, check whether a merger has occurred, and derive the phenomenological rate constants. For every working condition (T, p) , a ME_class class will be created. After solving for the phenomenological rate constants, the memory of most of the variables will not be released. The ME_class object will be pushed into a stack. For running in parallel, after all calculations are finished, the stack will be gathered into rank 0. Then rank 0 will deal with the printout of the rate constant/ eigenpair/microcanonical flux coefficient/partition function/time evolution.
output_lib.py	This file contains a <i>Std_out_class</i> , <i>Serial_out_class</i> , <i>Mp_out_class</i> , and <i>Mpi_out_class</i> classes, corresponding to the serial, MP, and MPI schemes. Due to the disparity of the printout arrangements between serial and parallel schemes, to make the printout compatible in serial and parallel schemes, we set a string stack. All the output information during a run is pushed into the string stack. When all the calculations are finished, the string stack is gathered into rank 0 and printed out to output files.
tumme_main.py	This file contains <i>serial_main</i> , <i>mp_main</i> , and <i>mpi_main</i> , which are three kinds of main routines for different run modes.
tumme_readin.py	This file contains two functions named <i>readParallel</i> (to read two parallelism subkeywords) and <i>std_readin</i> (to read other information including global parameters, elementary reactions, and species properties).
tumme_pre.py	This file contains <i>std_pre</i> , <i>serial_pre</i> , <i>mp_pre</i> , and <i>mpi_pre</i> functions for initialization of different types of runs. <i>std_pre</i> is the common code shared by serial, MP, and MPI runs. In the <i>std_pre</i> function, the energies of all species will be placed relative the 0 K energy set by GROUNDSPECIES ; the density of states of all species will be set; and a reaction map will be created. A reaction map is a matrix in which the (<i>i</i> , <i>j</i>) element is an object of the reaction classes in <i>reaction_lib.py</i> if the <i>i</i> -th species and <i>j</i> -th species are connected by an elementary reaction; otherwise (<i>i</i> , <i>j</i>) element is a None type of Python.

tumme_solver.py	This file contains <i>std_solver</i> , <i>serial_solver</i> , <i>mp_solver</i> , and <i>mpi_solver</i> functions for different solvers for different runs. <i>std_solver</i> is the common code shared by serial, MP and MPI runs. In the <i>mp_solver</i> and <i>mpi_solver</i> function, the entire set of temperature and pressure conditions $\{(T,p)\}$ will be divided into <i>nproc</i> subsets. Each rank of the processor will run its own subset. Finally, all the information will be gathered into
	the rank 0 processor and printed out there.

Table 10. Description of C++ sources files

File Name	Description	
Interface_dd.h	These files contain quadruple precision code of the	
Interface_dd.cpp	standard process in Fig. 1. The relaxation kernel for all	
ME_solver_dd.h	isomers and the symmetric transition matrix will be	
ME_solver_dd.cpp	constructed and diagonalized in quadruple precision;	
	then the quadruple-precision eigenpairs will be	
	transformed into double precision and returned to	
	Python. OpenMP is utilized in the C++ code to reduce	
	the computation cost.	
Interface_qd.h	These files contain octuple-precision of code of the	
Interface_qd.cpp	standard process in Fig. 1. The relaxation kernel for all	
ME_solver_qd.h	isomers and the symmetric transition matrix will be	
ME_solver_qd.cpp	constructed and diagonalized in octuple precision; then	
	the octuple-precision eigenpairs will be transformed	
	into double precision and returned to Python. OpenMP	
	is utilized in the C++ code to reduce computation cost.	
qd/	Original source code for <i>qd</i> library.	
mpack/	Simplified source code for <i>mpack</i> library.	

6.2 Normalization of the energy transfer kernel

The energy transfers are assumed to be governed by the exponential down model, which assumes that the probability that the isomer energy changes from E' to E in a single collision with the bath gas is

$$P_{\nu}(E|E') = A(E')e^{-\theta(E')\cdot(E'-E)} \qquad E' \ge E$$
⁽³¹⁾

where *A* is a normalization constant, and θ is a collision efficiency parameter. The probability for *E*' < *E* can be determined by the detailed balance, yielding

$$P_{\gamma}(E|E') = \begin{cases} A(E')e^{-\theta(E')\cdot(E'-E)} & E' \ge E\\ A(E)\frac{f_{\gamma}(E)}{f_{\gamma}(E')}e^{-\theta(E)\cdot(E-E')} & E' < E \end{cases}$$
(32)

where $f_{\gamma}(E)$ is the thermal population density $\rho_{\gamma}(E)e^{-\beta E}$ of isomer γ with energy *E*. After discretization, Eq. (2) becomes

$$P_{\gamma}[\eta,\eta'] = \begin{cases} A[\eta']e^{-\theta(E_{\eta'})\cdot(E_{\eta'}-E_{\eta})} & E_{\eta'} \ge E_{\eta} \\ A[\eta]\frac{f_{\gamma}[\eta]}{f_{\gamma}[\eta']}e^{-\theta(E_{\eta})\cdot(E_{\eta}-E_{\eta'})} & E_{\eta'} < E_{\eta} \end{cases}$$
(33)

where η and η' are indices of energy bins, and the bins are arranged in order of decreasing energy so $\eta = 1$ labels the highest-energy bin, and $\eta = N_{\gamma}$ denotes the zero-point energy of isomer species γ , where N_{γ} is the number of energy bins used for the γ -th isomer.

The normalization condition is

$$\Sigma_{\eta} P_{\gamma}[\eta, \eta'] = 1 \tag{34}$$

For
$$\eta' = 1$$
, $\Sigma_{\eta} P[\eta, 1] = 1$, and Eq. (4) gives

$$\sum_{\eta=1}^{N_{\gamma}} A[1] e^{-\theta(E_1) \cdot (E_1 - E_{\eta})} = 1$$
(35)

and

$$A[1] = \frac{1}{\sum_{\eta=1}^{N_{\gamma}} e^{-\theta(E_1) \cdot (E_1 - E_{\eta})}}$$
(36)

For $\eta' = 2$,

$$A[1]\frac{f_{\gamma}[1]}{f_{\gamma}[2]}e^{-\theta(E_{1})\cdot(E_{1}-E_{2})} + \sum_{\eta=2}^{N_{\gamma}}A[2]e^{-\theta(E_{2})\cdot(E_{2}-E_{\eta})} = 1$$
(37)

and therefore

$$A[2] = \frac{1 - A[1] \frac{f_{\gamma}[1]}{f_{\gamma}[2]} e^{-\theta(E_1) \cdot (E_1 - E_2)}}{\sum_{\eta=2}^{N_{\gamma}} e^{-\theta(E_2) \cdot (E_2 - E_{\eta})}}$$
(38)

For general $\eta' = n$,

$$\sum_{\eta=1}^{n-1} A[\eta] \frac{f_{\gamma}[\eta]}{f_{\gamma}[n]} e^{-\theta(E_{\eta}) \cdot (E_{\eta} - E_{n})} + \sum_{\eta=n}^{\eta=N_{\gamma}} A[n] e^{-\theta(E_{n}) \cdot (E_{n} - E_{\eta})} = 1$$
(39)

and therefore

$$A[n] = \frac{1 - \sum_{\eta=1}^{n-1} A[\eta] \frac{f_{\gamma}[\eta]}{f_{\gamma}[n]} e^{-\theta(E_{\eta}) \cdot (E_{\eta} - E_{n})}}{\sum_{\eta=n}^{N_{\gamma}} e^{-\theta(E_{n}) \cdot (E_{n} - E_{\eta})}}$$
(40)

In many cases, when *n* becomes large, the numerator of Eq. (10) becomes negative, for example at $n = N_t$. Then the energy levels $N_t + 1$, $N_t + 2$,..., N_{γ} are removed, and N_{γ} is decreased accordingly. After this removal, the normalization is re-calculated with the new, smaller N_{γ} . This process is repeated until the numerator of Eq. (10) is positive for all retained bins. This calculation is carried out in the file *species_lib.py*.

One finds that the average energy transferred per collision in the subset of collisions in which the isomer loses energy to the bath gas is approximately $1/\theta$ because

$$\frac{\int_{-\infty}^{E'} (E' - E) e^{-\theta(E' - E)} dE}{\int_{-\infty}^{E'} e^{-\theta(E' - E)} dE} = \frac{1}{\theta(E')}$$
(41)

Therefore, the program sets $\theta(E') = \frac{1}{\langle \Delta E_d \rangle \langle E' \rangle}$ where $\langle \Delta E_d \rangle \langle E' \rangle$ is set by the subsection **EDOWN** in the **PARAMETER** block.

6.3 Bound isomers to CSE modes one-to-one.

After constructing the symmetric transition matrix **G**, the program diagonalizes it to get eigenpairs. The eigenpairs are ordered in ascending order of eigenvalues. The λ -th eigenvector is denoted $\boldsymbol{u}^{(\lambda)}$. If a reaction system has *S* isomers, then there should be *S* CSE eigenvectors. We define the projection of $\boldsymbol{u}^{(\lambda)}$ on the chemical basis vector of isomer γ as EPCS:

$$EPCS_{\gamma}^{(\lambda)} = \frac{1}{\sqrt{Q_{\gamma}/\Delta E}} \sum_{i'=1}^{N_{y}} \delta_{\gamma\gamma'} u_{i'}^{(\lambda)} F_{i'}$$
(42)

where $\delta_{\gamma\gamma'}$ is a Kronecker delta; $F_{i'}$ is $\sqrt{\rho_{\gamma'}(E_{\eta'})}e^{-\beta E_{\eta'}}$, which is the square root of the Boltzmann population of unimolecular species γ' with internal energy $E_{\eta'}$; Q_{γ} is the electronic-vibrational-rotational partition function of isomer γ ; $u_{i'}^{(\lambda)}$ is the *i*-th element of the λ -th eigenvector; N_y is the size of the transition matrix; ΔE is the energy step between energy bins. Then we define the eigenvector projection squared on the relaxation subspace as EPSRS

$$EPSRS^{(\lambda)} = P^{(\lambda)} = 1 - \Sigma_{\gamma} \left[EPCS_{\gamma}^{(\lambda)} \right]^2$$
(43)

The program will associate each of the CSE eigenmodes in a one-to-one relationship with a specific isomer. The algorithm to determine the correspondence is as follows.

For an eigenmode λ' , the program looks for the maximum $|EPCS_{\gamma}^{(\lambda')}|$ among $\gamma = 1, ..., S$. Let γ' label the eigenmode thus located. This means the basis vector of isomer γ' has the greatest projection onto the eigenvector λ' . A correspondence tuple (λ', γ') that denotes the correspondence between isomer γ' and eigenmode λ' is assigned on this basis. When each isomer is associated with one eigenmode, one has achieved the desired one-to-one correspondence. The situation is more complicated in a case where an isomer corresponds to two or more eigenmodes. In order to make a one-to-one assignment for the eigenmode λ' , the program may need to assign isomers iteratively. If an isomer has multiple associated eigenvectors, the program finds the eigenvector that has the maximum projection and creates a corresponding tuple. This may then force the reassignment of other eigenvectors by

TUM ME

selecting the second largest $|EPCS_{\gamma}^{(\lambda')}|$ (or third or fourth largest – this will continue until all eigenvectors have been associated with an isomer).

γ_3	0.2	0.8	0.6
γ_2	0.2	0.1	0.5
γ_1	0.9	0.2	0.1
	λ_1	λ_2	λ_3

Figure 3. The elements of the $|EPCS_{\gamma}^{(\lambda)}|$ matrix for an artificial reaction system with 3 isomers. The eigenvectors are numbered in ascending order of the eigenvalues; therefore λ_1 , λ_2 , and λ_3 are CSE modes. In CSE theory the sum of the squares of the elements of a column will be close to one, which means that EPSRS will be small. In this case, it is easily calculated from the value in the figure that EPSRS is 0.11, 0.31 and 0.38 respectively for the λ_1 , λ_2 and λ_3 eigenmodes.

Let's take an artificial reaction system having three isomers as an example to illustrate the algorithm, and for this example we assume there is no merger. (The case of a merger is discussed in the next paragraph.) The relevant elements of $|EPCS_{\gamma}^{(\lambda)}|$ for this example are in Fig. 3. (Because this is a model system, the eigenvector components are assumed to be precisely the values stated, even though they have only one significant figure.) The eigenvectors are numbered in order of increasing eigenvalues, i.e., the slowest modes are assumed to be the CSE modes. The program always recognizes the first S eigenvectors as the CSEs, where S is the number of isomers. Thus, the three eigenmodes shown in Fig. 3 are the CSE modes. For eigenmode with eigenvalue λ_1 , we find that the maximum $|EPCS_{\gamma}^{(\lambda)}|$ over γ_1, γ_2 , and γ_3 is for γ_1 . Therefore, in this case the program would assign the first tuple as (λ_1, γ_1) . For eigenmode 2 (i.e., the one with eigenvalue λ_2), it is then straightforward to assign the tuple (λ_2, γ_3), and for eigenmode λ_3 , the tuple (λ_3, γ_3) is defined. At this stage, the isomer γ_3 corresponds two eigenmodes, λ_2 and λ_3 . Since $\left| EPCS_{\gamma_3}^{(\lambda_2)} \right| > \left| EPCS_{\gamma_3}^{(\lambda_3)} \right|$, the isomer γ_3 is viewed as being associated with eigenmode λ_2 , and the tuple (λ_3, γ_3) is accordingly deleted. Then the eigenmode λ_3 is searched for the second-highest value over γ_1, γ_2 , and γ_3 , which is $|EPCS_{\gamma_2}^{(\lambda_3)}|$, and therefore the tuple (λ_3, γ_2) is defined. The resultant set of tuples is (λ_1, γ_1) , (λ_2, γ_3) , and (λ_3, γ_2) . Now every eigenmode has been assigned to an isomer, and the set of correspondence tuples satisfies the one-to-one condition. The ranking of eigenvectors in an ascending order of eigenvalues is carried out for each (T, p) combination, and the first S eigenvalues are recognized as CSE modes for that (T, p); then the one-to-one assignment algorithm shown above is executed for that (T, p) combination.

For cases where a merger occurs (see Section 6.4 for a discussion of mergers), there is a probability that eigenvalues whose eigenvectors correspond to chemical reaction processes are faster than some internal relaxation processes. If this were to happen, the assumption that the first *S* eigenmodes are CSE modes and others are IERE modes would be invalid. So far, though, no systematic way has been presented to handle this case, and therefore TUMME will always recognize the first *S* modes (in order of increasing eigenvalues) as the CSE ones. After ranking the eigenmodes, recognizing CSE modes, and binding isomers to CSE modes one-to-one, the program checks all CSE modes as to whether they are merged with IERE modes. If a CSE eigenvector does merge with the IERE space, this eigenmode will be moved from the CSE space into the IERE space, but the one-to-one assignment of other CSE modes will not be changed.

This part is done in the *me_lib.py* file.

6.4 Handling the merger condition

When temperatures are very high or pressures are very low, some CSE eigenmodes may merge with IERE eigenmodes. In this part of the manual, we give the details of how the program detects the merger condition and how it deals with it.

The value of $EPSRS^{(\lambda)}$ provides the criterion to judge whether a CSE eigenmode is merging with the IERE space. If this value is greater than **MERGETHRESHOLD**, the merge is assumed to have occurred; otherwise not.

If a CSE eigenmode is determined to have merged with the IERE space, the corresponding isomer is viewed as merging with some other species. There is no unambiguous prescription for assigning which species it has merged with. In TUMME, we adopted the viewpoint of Georgievskii et al. in their statement: "For an eigenvector describing equilibration with bimolecular products, the macroscopic population for each unimolecular species has the same sign. For an eigenvector that describes equilibration between two groups of unimolecular species, the cumulative populations for those groups are generally approximately equal in magnitude and opposite in sign, at least at not too high a temperature."⁵ For a merged eigenmode λ' , let the one-to-one isomer determined by Section 6.3 be γ' ; then the algorithm to determine the other merged species is as follows:

- 1) For all $\gamma = 1, ..., S$, all positive $EPCS_{\gamma}^{(\lambda')}$ values are summed together, and all negative values are summed together. The absolute values of the two sums are compared. The larger one will be a normalization constant to scale the $EPCS_{\gamma}^{(\lambda')}$ for all $\gamma = 1, ..., S$.
- 2) The program then finds the two largest absolute values of the normalized $EPCS_{\gamma}^{(\lambda')}$ over $\gamma = 1, ..., S$; let the isomer index for them be γ_1 and γ_2 . If the absolute value of the normalized $EPCS_{\gamma_1}^{(\lambda')}$ and $EPCS_{\gamma_2}^{(\lambda')}$ are both greater than 0.5 and $EPCS_{\gamma_1}^{(\lambda')}$ and $EPCS_{\gamma_2}^{(\lambda')}$ have different sign, this eigenmode will be recognized as the equilibration between isomer γ_1 and isomer γ_2 . Further, if both γ_1 and γ_2 are not equal to γ' , the program reports an error and exits.

- 3) If one of the absolute values of the normalized $EPCS_{\gamma_1}^{(\lambda')}$ or $EPCS_{\gamma_2}^{(\lambda')}$ is less than 0.5, this eigenmode will be recognized as the equilibrium between isomer γ' and a bimolecular pair. The kappa matrix (defined next) will be analyzed to further determine which bimolecular pair it is.
- 4) The (γ, ν) element of the kappa matrix is defined as ^{5,29}

$$\kappa_{\gamma,\nu} = \sum_{\lambda=S+1}^{N_{y}} \frac{1}{L_{\lambda}} \Big[\Sigma_{i'} \delta_{\gamma\gamma'} F_{i'} u_{i'}^{(\lambda)} \Big] \Big[\Sigma_{i} u_{i}^{(\lambda)} F_{i}^{-1} B_{iv} \Big] \frac{\Phi_{\text{rel}} Q_{\nu}}{Q_{\gamma}}$$
(44)

where L_{λ} is the λ -th eigenvalue; B_{iv} is a generalized microcanonical bimolecular flux coefficient for the bimolecular pair ν to form unimolecular species γ with internal energy E_{η} ; Q_{γ} is the electronic-vibrational-rotational partition function of the isomer γ ; Q_{ν} is the product of the electronic-vibrational-rotational partition functions of the members of the bimolecular pair ν ; Φ_{rel} is the relative translational partition function per unit volume; and S is the number of isomers.

5) For the merged eigenmode corresponding to isomer γ' , the program will find the maximum $\kappa_{\gamma',\nu}$ among bimolecular pairs $\nu = 1, 2, ..., m$. Let it be ν' . Then the isomer γ' and bimolecular pair ν' will be recognized as in equilibrium.

This part is done in the *me_lib.py* file.

Note that the value of 0.5 in step 2 has nothing to do with **MERGETHRESHOLD**; **MERGETHRESHOLD** is EPSRS, whereas 0.5 is the normalized EPCS. We emphasize that EPSRS is used to judge if a CSE eigenvector is merged, and the normalized EPCS is used to determine which two species are described by the merged eigenvector. The threshold 0.5 of the normalized EPCS in TUMME cannot be changed by users; **MERGETHRESHOLD** should be specified by the user.

6.5 High-precision dynamic libraries

In some cases where the magnitudes of eigenvalues span a very wide range of values, it is necessary to use quadruple or octuple precision to obtain full accuracy. TUMME includes the quadruple and octuple precision code in C++. The quadruple precision version is in $dd_{lib.py}$ file, and the octuple precision version is in $qd_{lib.py}$ file. TUMME compiles the higherprecision code into dynamic libraries to let Python call them. We used *numpy.ctypes* as an interface between Python and C++. In the C++ code, all relaxation kernels of the isomers are re-calculated in high precision, and the construction of the symmetric transition matrix **G** and its diagonalization are carried out in high precision. Finally, the C++ libraries will return eigenpairs of the symmetric transition matrix to the Python process to continue the analysis.

Users who wish to use quadruple precision or octuple precision to diagonalize their own transition matrix can use our simplified *mpack* library. First go into *mpack_dd/src* and *mpack_qd/src* and modify the include path and library path of the *qd*/ folder in the *Makefile* and compile them. If it succeeds, you will get two dynamic library files called *libmpack_dd.so* and *libmpack_qd* under *mpack_dd/lib* and *mpack_qd/lib*, respectively. Then you can call these dynamic libraries by C++ under the GNU compiler. And remember to add the path of the dynamic library to your system library path or compile your own code in which you specify the -Wl,-rpath option. There are two examples, namely *mpack_dd/example/eigenvector_dd.cpp* and *mpack_dd/example/eigenvector_qd.cpp*, that

show how to call *mpack* to diagonalize a matrix. The C++/qd folder is necessary for both libraries and should be pre-installed by using the GNU compiler. If you use the simplified *mpack*, please cite the references of *mpack*³⁵ and qd^{36} in your work.

7. Test Runs

7.1 2-Methylhexyl radical single-channel unimolecular dissociation

$C(\dot{C})CCCCC \rightarrow \dot{C} + C = CCCCC$

Note that hydrogens are not shown, and parentheses are used to show branching.

Figure 4. Reaction for the first test case

Anharmonicity:	SSHO
Variational effect:	None (TST)
Tunneling:	Eckart
Parallelism:	MPI with 4 processors
Precision:	Double
Standard input file:	param.in
Extra input files:	None
Output files:	param.out, param.rate, kE.out, evec.out, eval.out
Location:	example/2MH/Eckart/
Run command:	tumme param.in

7.2 2-Methylhexyl radical multi-channel unimolecular dissociation

$$\begin{array}{cccc} & \overset{\dot{H}+C=C(C)CCCC}{\checkmark} & \dot{C}+C=CCCCC\\ & \overleftrightarrow{C}+C=CCCCC\\ & \searrow & CCC\dot{C}+C=CC \end{array}$$

Note that hydrogens are not shown, and parentheses are used to show branching.

Figure 5. Reactions for the second test case.

Anharmonicity:	SSHO
Variational effect:	None (TST)
Tunneling:	No tunneling
Parallelism:	Serial
Precision:	Quadruple
Standard input file:	param.in
Extra input files:	None
Output files:	param.out, param.rate, kE.out, evec.out, eval.out, time.txt
Location:	example/2MH/highprecision/
Run command:	tumme param.in

7.3 Toluene + OH radical *ipso-* site addition reaction with reactive complex

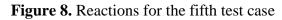
 $C_6H_5CH_3 + OH \rightarrow C_6H_5CH_3 \cdots OH \rightarrow ipso-C_6H_5 (OH) CH_3$

Figure 6. Reaction for the third test case

Anharmonicity:	MS for $C_6H_5CH_3$; SSHO for other species.	
Variational effect:	None (TST)	
Tunneling:	No tunneling	
Parallelism:	MPI with 13 processors	
Precision:	Double	
Standard input file:	param.in	
Extra input files:	R_m.out	
Output files:	param.out, param.rate, evec.out, eval.out	
Location:	example/T+OH/ipso_w_RC/	
Run command:	tumme param.in	

7.4 Toluene + OH radical *ipso-* site addition reaction

 $C_6H_5CH_3 + OH \rightarrow ipso-C_6H_5$ (OH) CH_3


Figure 7. Reaction for the fourth test case

Anharmonicity:	SSHO all species.
Variational effect:	CVT
Tunneling:	SCT
Parallelism:	Serial
Precision:	Double
Standard input file:	param.in
Extra input files:	addition-ipso.fu100
Output files:	param.out, param.rate, Q.txt
Location:	example/T+OH/ipso_wo_RC/
Run command:	tumme param.in

7.5 Toluene + OH radical addition reactions: TST

$$C_{6}H_{5}CH_{3}+OH \rightarrow C_{6}H_{5}CH_{3}\cdots OH \xrightarrow{ipso-C_{6}H_{5}(OH) CH_{3}}{\rightarrow} ortho-C_{6}H_{5}(OH) CH_{3}$$

$$\xrightarrow{} ortho-C_{6}H_{5}(OH) CH_{3}$$

$$\xrightarrow{} para-C_{6}H_{5}(OH) CH_{3}$$

Anharmonicity:	SSHO
Variational effect:	None (TST)
Tunneling:	No tunneling
Parallelism:	MP with 6 processors
Precision:	Double
Standard input file:	param.in
Extra input files:	None
Output files:	param.out, param.rate
Location:	example/T+OH/all_plain/
Run command:	tumme param.in

7.6 Toluene + OH radical addition reactions: VTST

$$C_{6}H_{5}CH_{3}+OH \rightarrow C_{6}H_{5}CH_{3}\cdots OH \xrightarrow{ipso-C_{6}H_{5}(OH) CH_{3}}{\rightarrow ortho-C_{6}H_{5}(OH) CH_{3}}$$

$$\xrightarrow{ipso-C_{6}H_{5}(OH) CH_{3}}{\rightarrow ortho-C_{6}H_{5}(OH) CH_{3}}$$

$$\xrightarrow{ipso-C_{6}H_{5}(OH) CH_{3}}{\rightarrow ortho-C_{6}H_{5}(OH) CH_{3}}$$

Figure 9. Reactions for the sixth test case.

Anharmonicity:	MS for all species except OH
Annai momency.	NO IOI di species except OII
Variational effect:	CVT for four C ₆ H ₅ CH ₃ ···OH association reaction channels.
Tunneling:	SCT for four C ₆ H ₅ CH ₃ ···OH association reaction channels.
Parallelism:	MPI with 4 processors
Precision:	Double
Standard input file:	param.in
Extra input files:	P_add_ortho.out, P_add_ipso.out, P_add_meta.out, P_add_para.out, TS_add_ortho.out, TS_add_ipso.out,
	TS_add_meta.out, TS_add_para.out, R_m.out
	Rxn2_ipso.fu6, Rxn2_para.fu6, Rxn2_meta.fu6, Rxn2_ortho.fu6
Output files:	param.out, param.rate, Q.txt, kE.txt
Location:	example/T+OH/all_calibrated/
Run command:	tumme param.in

7.7 H₂CO + OH radical abstraction reaction

HCHO + OH	$\stackrel{1}{\Leftrightarrow}$ HCHO…HO -	2 HCO + H ₂ O
Bimolecular reactant	Van der Waals complex	Product sink

Figure 9. Reactions for the seventh test case.

Anharmonicity:	MS for van der Waals complex and the transition state of reaction 2
Variational effect:	CVT for reaction 2
Tunneling:	SCT for reaction 2
Parallelism:	MPI with 11 processors
Precision:	Quadruple
Standard input file:	param.in
Extra input files:	mstor_complex.out, mstor_TS.out, Rxn2.fu6
Output files:	param.out, param.rate, eval.out, time.txt
Location:	example/H2CO+OH/
Run command:	tumme param.in

TUM ME

8. Bibliography of TUMME research articles

- "Energy Dependence of Ensemble-Averaged Energy Transfer Moments and its Effect on Competing Decomposition Reactions," R. M. Zhang, X. Xu, and D. G. Truhlar, Journal of Physical Chemistry A **125**, 6303-6313 (2021). doi.org/10.1021/acs.jpca.1c03845 (Special Virtual Issue entitled "125 Years of The Journal of Physical Chemistry")
- "TUMME: Tsinghua University Minnesota Master Equation program," R. M. Zhang, X. Xu, and D. G. Truhlar, Computer Physics Communications **270**, 108140/1-17 (2021). doi.org/10.1016/j.cpc.2021.108140
- "Master Equation Study of Hydrogen Abstraction from HCHO by OH via a Chemically Activated Intermediate," R. M. Zhang, W. Chen, D. G. Truhlar, and X. Xu, Faraday Discussions **238**, 431-460 (2022). doi.org/10.1039/D2FD00024e

9. Version History of TUMME

Date	Log	Version No.
12/17/2020	The first version of TUMME.	1.0
06/18/2021	 Added the dependence of (ΔE_d) on bath temperature and on initial isomer internal energy Changed subkeywords from TIMEMAX to TIMENUM Added a print option for the relaxation kernel matrix Improved the output Fixed bugs 	2.0
08/05/2021	• Fixed some bugs.	2.1
08/25/2021	 Changed EEOT from "relative to the max 0 K energy of transition states" to "relative to the max 0 K energy of all species including reactants, transition states, and products" Made it available for a reaction system without any transition state Fixed some bugs for reading standard files and <i>Polyrate</i> output files 	2.2
7/03/2022	 Added the pseudo-first order assumption for bimolecular pairs in time evolution calculations, making this also available in high precision Added inverse-Laplace-transform in REACTION block Abandoned rounding the size of the energy bins into integer numbers of wavenumbers (ESOT) Changed the way to run TUMME and provided an executable bash script Slightly adjusted the strategy for merges to deal with some unexpected cases Adjusted the output for partition functions Fixed some bugs 	3.0
10/15/2022	 Add the LCT and µOMT options for the tunneling Fixed some bugs 	3.1
05/07/2023	 Make the keyword PYRFILE supports the Polyrate file ended with a suffix <i>.fu100</i>. 	2023

10. References

10.1. References to articles describing the program

- "TUMME: Tsinghua University Minnesota Master Equation program," R. M. Zhang, X. Xu, and D. G. Truhlar, Computer Physics Communications 270, 108140/1-17 (2021). doi.org/10.1016/j.cpc.2021.108140
- "Master Equation Study of Hydrogen Abstraction from HCHO by OH Via a Chemically Activated Intermediate," R. M. Zhang, W. Chen, D. G. Truhlar and X. Xu, Faraday Discussions **238**, 431-460 (2022). doi.org/10.1039/D2FD00024e
- "TUMME 2023: Tsinghua University Minnesota Master Equation program. New Version Announcement," R. M. Zhang, X. Xu, and D. G. Truhlar, Computer Physics Communications, to be published (submitted in May, 2023).

10.2. Cited references

- S. J. Klippenstein, V. Pande, and D. G. Truhlar, Chemical Kinetics and Mechanisms of Complex Systems: A Perspective on Recent Theoretical Advances, *J. Am. Chem. Soc.* 2014, 136, 528-546. doi.org/10.1021/ja408723a
- 2 B. Widom, Molecular Transitions and Chemical Reaction Rates. *Science* **1965**, *14*8, 1555–1560. doi.org/10.1126/science.148.3677.1555
- 3 O. K. Rice and H. C. Ramsperger, Theories of Unimolecular Gas Reactions at Low Pressures. J. Am. Chem. Soc. **1927**, 49, 1617-1629. doi.org/10.1021/ja01406a001
- 4 L. S. Kassel, Studies in Homogeneous Gas Reactions I. J. Phys. Chem. **1928**, 32, 225-242. doi.org/10.1021/j150284a007
- 5 Y. Georgievskii, J. A. Miller, M. P. Burke, and S. J. Klippenstein, Reformulation and Solution of the Master Equation for Multiple-Well Chemical Reactions. *J. Phys. Chem. A* **2013**, *117*, 12146–12154. doi.org/10.1021/jp4060704
- 6 W. Chen, J. Zheng, J. L. Bao, D. G. Truhlar, and X. Xu, MSTor 2023: A new version of the computer code for multistructural torsional anharmonicity, now with automatic torsional identification using redundant internal coordinates. *Computer Phys. Commun.* **2023**, *288*, 108740. doi.org/10.1016/j.cpc.2023.108740
- 7 J. Zheng, W. Chen, S. L. Mielke, J. L. Bao, K. L. Clarkson, R. Meana-Pañeda, X. Xu, and D. G. Truhlar, *MSTor 2023*, Tsinghua University, Beijing and University of Minnesota, Minneapolis, **2023**. doi .org /10 .17632 /t4y5wds856 .1
- 8 J. Zheng, S. L. Mielke, J. L. Bao, R. Meana-Pañeda, K. L. Clarkson, and D. G. Truhlar, *MSTor* computer program – version 2017, University of Minnesota, Minneapolis, MN, 2017. https://comp.chem.umn.edu/mstor/
- 9 J. Zheng, S. L Mielke, K. L Clarkson, and D. G. Truhlar, MSTor: A program for calculating partition functions, free energies, enthalpies, entropies, and heat capacities of complex molecules including torsional anharmonicity. *Computer Phys. Commun.* 2012, 183, 1803-1812. doi.org/10.1016/j.cpc.2012.03.007
- 10 J. Zheng, R. Meana-Pañeda, and D. G. Truhlar, *MSTor* version 2013: A new version of the computer code for the multistructural torsional anharmonicity with a coupled torsional potential. *Computer Phys. Commun.* 2013, 184, 2032-2033. doi.org/10.1016/j.cpc.2013.03.011

- (a) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, *Gaussian 09*, Gaussian, Inc., Wallingford CT, 2009.
 - (b) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, *Gaussian 16*, Gaussian, Inc., Wallingford CT, **2016**.
- 12 R. Meana-Pañeda, J. Zheng, J. L. Bao, S. Zhang, B. J. Lynch, J. C. Corchado, Y.-Y. Chuang, P. L. Fast, W.-P. Hu, Y.-P. Liu, G. C. Lynch, K. A. Nguyen, C. F. Jackels, A. Fernandez Ramos, B. A. Ellingson, V. S. Melissas, J. Villà, I. Rossi, E. L. Coitiño, J. Pu, T. V. Albu, R. M. Zheng, X. Xu, A. Ratkiewicz, R. Steckler, B. C. Garrett, A. D. Isaacson, and D. G. Truhlar, *Polyrate 2023*, University of Minnesota, Minneapolis, **2023**.
- 13 J. Zheng, J. L. Bao, R. Meana-Pañeda, S. Zhang, B. J. Lynch, J. C. Corchado, Y.-Y. Chuang, P. L. Fast, W.-P. Hu, Y.-P. Liu, G. C. Lynch, K. A. Nguyen, C. F. Jackels, A. Fernandez Ramos, B. A. Ellingson, V. S. Melissas, J. Villà, I. Rossi, E. L. Coitiño, J. Pu, T. V. Albu, A. Ratkiewicz, R. Steckler, B. C. Garrett, A. D. Isaacson, and D. G. Truhlar, Polyrate – version 2017-C (University of Minnesota, Minneapolis, MN, 2017). https://comp.chem.umn.edu/polyrate/
- 14 J. Zheng; J. L. Bao, S. Zhang, J. C. Corchado, R. Meana-Pañeda, Y.-Y. Chuang, E. L. Coitiño, B. A. Ellingson, and D. G. Truhlar, *Gaussrate 17*; University of Minnesota: Minneapolis, 2017. https://comp.chem.umn.edu/gaussrate/
- 15 L. G. Gao, J. Zheng; J. Zheng, M. A. Iron, B. A. Ellingson, J. C. Corchado, Y.-Y. Chuang, and D. G. Truhlar, *NWChemrate 2019*; University of Minnesota: Minneapolis, 2019. https://comp.chem.umn.edu/nwchemrate/
- 16 H. Eyring, The Activated Complex in Chemical Reactions, J. Chem. Phys. 1935, 3, 107-115. doi.org/10.1063/1.1749604
- 17 J. Zheng, T. Yu, E. Papajak, I. M.Alecu, S. L. Mielke, and D. G. Truhlar, Practical Method For Including Torsional Anharmonicity in Thermochemical Calculation on Complex Molecules: The Internal-Coordinate Multi-structural Approximation. 2011, 13, 10885-

10907. doi.org/10.1039/C0CP02644A

- 18 T. Yu, J. Zheng, and D. G. Truhlar, Multi-Structural Variational Transition State Theory. Kinetics of the 1,4-Hydrogen Shift Isomerization of the Pentyl Radical with Torsional Anharmonicity, *Chem. Sci.* 2011, 2, 2199-2213. doi.org/10.1039/C1SC00225B
- 19 J. Zheng and D. G. Truhlar, Including Torsional Anharmonicity in Canonical and Microcanonical Reaction Path Calculations, J. Chem. Theory Comput. 2013, 9, 2875-2881. doi.org/10.1021/ct400231q
- 20 B. C. Garrett and D. G. Truhlar, Criterion of Minimum State Density in the Transition State Theory of Bimolecular Reactions, *J. Chem. Phys.* **1979**, *70*, 1593-1598. doi.org/10.1063/1.437698
- 21 A. D. Isaacson and D. G. Truhlar, Polyatomic Canonical Variational Theory for Chemical Reaction Rates. Separable-Mode Formalism with Application to OH + H₂ → H₂O + H, *J. Chem. Phys.*, **1982**, *76*, 1380-1391. doi.org/10.1063/1.443130
- 22 Generalized Transition State Theory. Quantum Effects for Collinear Reactions of Hydrogen Molecules," B. C. Garrett and D. G. Truhlar, J. Phys. Chem. 1979, 83, 1079-1112 (1979). doi.org/10.1021/j100471a032
- 23 A. D. Isaacson, M. T. Sund, S. N. Rai, and D. G. Truhlar, Improved Canonical and Microcanonical Variational Transition State Theory Calculations for a Polyatomic System: OH + H₂ → H₂O + H, J. Chem. Phys., **1985**, 82, 1338-1340. doi.org/10.1063/1.448963
- 24 Liu, Y.-P.; Lu, D.-h.; González-Lafont, A.; Truhlar, D. G.; Garrett, B. C. J. Am. Chem. Soc. 1993, 115, 7806.
- 25 D. G. Truhlar and A. Kuppermann, Exact Tunneling Calculations, *J. Am. Chem. Soc.*, **1971**, *93*, 1840-1851. doi.org/10.1021/ja00737a002
- 26 D. G. Truhlar and A. Kuppermann, A Test of Transition State Theory Against Exact Quantum Mechanical Calculations, *Chem. Phys. Lett.* **1971**, *9*, 269-272. doi.org/10.1016/0009-2614(71)85049-2
- 27 B. C. Garrett, D. G. Truhlar, R. S. Grev, and A. W. Magnuson, Improved Treatment of Threshold Contributions in Variational Transition State Theory, J. Phys. Chem. 1980, 84, 1730-1748. doi.org/10.1021/j100450a013
- 28 Y.-P. Liu, G. C. Lynch, T. N. Truong, D.-h. Lu, D. G. Truhlar, and B. C. Garrett, Molecular Modeling of the Kinetic Isotope Effect for the [1,5]-Sigmatropic Rearrangement of *cis*-1,3-Pentadiene, *J. Am. Chem. Soc.* **1993**, *115*, 2408-2415. doi.org/10.1021/ja00059a041
- 29 R. M. Zhang, X. Xu, and D. G. Truhlar, "TUMME: Tsinghua University Minnesota Master Equation program," *Computer Phys. Comm.* **2022**, *270*, 108140. doi.org/10.1016/j.cpc.2021.108140
- 30 J. Troe, Theory of Thermal Unimolecular Reactions at Low Pressures. II. Strong Collision Rate Constants. Applications. J. Chem. Phys. 1977, 66, 4758-4775. doi.org/10.1063/1.433838
- 31 R. M. Zhang, W. Chen, D. G. Truhlar, and X. Xu, Master Equation Study of Hydrogen Abstraction from HCHO by OH Via a Chemically Activated Intermediate. *Faraday Discuss.* **2022**, *238*, 431-460.
- 32 H. S. Johnston and J. Heicklen, Tunneling Corrections For Unsymmetrical Eckart Potential Energy Barrier J. Phys. Chem. **1962**, *66*, 532-533. doi.org/10.1021/j100809a040
- 33 J. L. Bao, R. Meana-Pañeda, D. G. Truhlar, Multi-Path Variational Transition State Theory for Chiral Molecules: The Site-Dependent Kinetics for Abstraction of Hydrogen from

Hydroperoxyl Radical, Analysis of Hydrogen Bonding in the Transition State, and Dramatic Temperature Dependence of the Activation Energy. *Chem. Sci.* **2015**, *6*, 5866-5881. doi.org/10.1039/C5SC01848J

- 34 I. M. Alecu, J. Zheng, Y. Zhao, and D. G. Truhlar, Computational Thermochemistry: Scale Factor Databases and Scale Factors for Vibrational Frequencies Obtained from Electronic Model Chemistries. J. Chem. Theory Comput. 2010, 6, 2872-2887. doi.org/10.1021/ct100326h
- 35 M. Nakata, *The MPACK (MBLAS/MLAPACK); A Multiple Precision Arithmetic Version of BLAS and LAPACK*, **2010**, Version 0.6.7, http://mplapack.sourceforge.net/
- 36 Y. Hida, X. S. Li and D. H. Bailey, Library for Double-Double and Quad-Double Arithmetic, *NERSC Division Lawrence Berkeley National Laboratory*, **2007**.