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Abstract: Among many purposes of science, analyzing nature may be the most important and beautiful part. We all know that 

Differential Equations (DEs) are the mathematical expression of many natural phenomena. In modern science, analyzing tools like 

Calculus, Measure, sequence, series etc. have been used very frequently. Every analysis of DEs has only one goal which is to get the 

solutions of a DE. In fact, most of these DEs don’t have exact solutions and many methods has been introduced to get some good 

solutions. Now-a-days, Functional Analysis plays an important role to analyze these methods. Some methods have solid foundation 

and flexibility. To make use all of these methods properly, we have to understand the nature of DEs and also realize the 

characteristics of the solutions. Without having any idea about solutions we don’t think more, this is why we have started our study of 

analysis to take more and more benefits of these methods. This analysis will give us a solid platform to select best methods among 

others and will help us to find new more accurate methods. 

 

         As usual, this analysis is covering the concepts of measure, which leads us to a more useful Integration concept. For finding the 

solutions of DEs some essential spaces have been introduced such as Lp spaces. The space concepts have been more specified into 

Sobolev Spaces. 
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I Introduction 

A. Normed Linear Spaces [1] 

Definition-1: Let X be a linear space over the field of 

scalars �. A real-valued function ‖. ‖ on X is called a norm on 

X if it satisfies the following conditions: 

(i) Non-negative; ‖�‖ ∈ [0, ∞) for x ∈ X. 

(ii) ‖�‖ = 0 if and only if x = 0 ∈ X. 

(iii) Positive homogeneity; ‖��‖ = |�|‖�‖ for x ∈ X and 

α ∈ �. 

(iv) Triangle inequality; ‖� + 	‖ ≤ ‖�‖ + ‖	‖ for x, y ∈ 

X. 

A linear space X with a norm ‖. ‖ defined on it is called 

a normed linear space and we write (X, ‖. ‖) for it. 

 

Let ‖. ‖ be a norm on a linear space X. Then |‖�‖ −‖	‖| ≤ ‖� − 	‖ for x, y ∈ X. 

 

Definition-2: A sequence ( ��: 
	∈	�)  in a normed 

linear space (X, ‖. ‖) is called a Cauchy sequence with respect 

to the norm ‖. ‖ if it is a Cauchy sequence with respect to the 

metric derived from the norm, that is, if for every ε ≥ 0 there 

exists N ∈ N such that ‖�� − ��‖ < ε for m, n ≥ N. 

 

Definition-3: A normed linear space (X, ‖. ‖ ) is 

complete with respect to the norm ‖. ‖  if every Cauchy 

sequence (�� ∶ 
	∈	�) with respect to the norm there exists x 

∈ X such that 

 0.
lim

x =−
∞→

x
n n

 

Definition-4: A normed linear space (X, ‖. ‖) is called a 

Banach space if (X, ‖. ‖)  is complete with respect to the 

norm‖. ‖. 

 

Definition-5: Given a sequence (��  : n ∈ N) in a 

normed linear space (X, ‖. ‖). Consider the sequence (�� : n ∈ 

N) in X defined by ∑
=

=
n

k
kn xs

1

for n ∈ N. If the sequence 

(�� : n ∈ N) converges in the norm, that is, if there exists s ∈ 
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X such that ,0
lim

=−
∞→

s
n

sn
then we say that the series 

∑ ���	∈	�  converges in the norm to the sum s and write ∑ ���	∈	�  = s. When no such s exists in X, we say that the 

series ∑ ���	∈	�  diverges. We call (�� : n ∈ N) the sequence of 

partial sums of the series∑ ���	∈	� . 

 

Theorem-1: Given a normed linear space (X,‖. ‖). The 

space X is complete with respect to the norm ‖. ‖ if and only if 

for every sequence (�� : n ∈ N) in X such that ∑ ‖��‖�	∈	�  < 

∞, the series ∑ ���	∈	�  converges in the norm. 

 

Theorem-2:  (Minkowski’s inequality for ),1[ ∞∈p ): 

Given a measure space (X, �, µ). Let ƒ and g be two extended 

complex-valued �-measurable functions on X such that

∞<gf ,
 
. Then for every ),,1[ ∞∈p we have 

gfgf
ppp

+≤+  

B. The �� Spaces for ]2)[,1[ ∞∈p  

Given a measure space (X, �, µ). Let ),0( ∞∈p and 

consider the linear space of functions	��(X, �,µ). The origin 

that is the identity of addition, of this linear space is the 

identically vanishing function 0 on X and for this function 0 

we have‖0‖� = 0. On the other hand if ƒ ∈ ��(X,�,µ) and ‖�‖� = 0 then ƒ(x) =0 for a.e. x ∈ X and ƒ need not be the 

identically vanishing function on X. For this reason ‖. ‖�  is 

not a norm on the linear space	��(X, �,µ). 
 

Theorem-1: Given a measure space (X, �,µ). Consider 

a sequence (�� ∶ 	
	∈		� ) and an element ƒ in��( , �, µ ) 

where p ∈ [0,∞). If the sequence converges to ƒ in the �� 

norm, that is, 0
lim

=
∞→

− ff nn p

, then 

(i) ff
ppnn

=
∞→

lim

 

and hence µµ dd
nn

X

p

X

p

ff ∫∫ =
∞→

lim
, 

(ii) (�� ∶ 	
	∈		�) converges to ƒ in measure µ on X, 

(iii) There exists a subsequence ( ��! ∶ 	
	∈		�)  such that 

f
nk

f
k

=
∞→

lim
 a.e. on X. 

Definition-1: Given a measure space (X, �, µ). Let ƒ be 

an extended complex-valued �-measurable function on X. We 

define the essential supremum of ƒ on X, ‖�‖∞ , as the 

infimum of the set of all essential bounds for ƒ on X, that is, 

            

{ }0))(:(:),0[inf =>∈∞∈=
∞

MxfXxMf µ  

If ƒ has no essential bound on X, that is, if the set of all 

essential bounds of ƒ on X is an empty set then we set ‖�‖∞ = 

∞. (This is consistent with the convention that the infimum of 

an empty subset of R, is equal to ∞. Recall that the smaller the 

set the greater the infimum over the set.) 

 

Thus ‖�‖∞  is defined for every extended complex-

valued �-measurable function ƒ on X; ‖�‖∞  ∈ [c, ∞]; and ‖�‖∞ = ∞ if and only if ƒ does not have an essential bound. 

We call ‖�‖∞  the essential supremum ofƒ. An alternate 

notation for ‖�‖∞ is ess. sup&	∈	'|�(�)|. 
 

C. Sobolev space [3] 

Definition: For 1 ≤ p ≤ ∞ and let k be a nonnegative 

integer. The Sobolev space Wk,p(U) consists of all locally 

summable functions u :U →R such that for each multiindex α 

with |α| ≤ k, D
α
(u) exists in the weak sense and belongs to 

L
p
(U). The natural number k is called the order of the Sobolev 

space Wk,p(U).  

 

D. Traces [4] 

Next we discuss the possibility of assigning “boundary 

values” along ∂U to a function u∈ (),�(*), assuming that ∂U 

is +). Now if u ∈ C(U), then clearly u has values on ∂U in the 

usual sense. The problem is that a typical function u ∈ (),�(*) is not in general continuous and, even worse, is only 

defined a.e. in U. Since ∂U has n-dimensional Lebesgue 

measure zero, there is no direct meaning we can give to the 

expression “u restricted to ∂U”. The notion of a trace operator 

resolves this problem. For this section we take 1 ≤ p< ∞.  

 

Theorem-1: (Trace theorem): Assume U is bounded 

and ∂U is +). Then here exists a bounded linear operator 

                               T: (),�(*) → ��(∂*) 
Such that  

(i) Tu = -.|∂/ if u ∈ (),�(*) ∩ C(*0), and 

(ii) ‖1.‖23(∂/) ≤ C‖.‖45,3(/) 
For each u ∈ (),�(*), with the constant C depending 

only on p and U. We call Tu the trace of u and ∂U. 

 

Theorem-2: (Estimates for (),�, 1 ≤ p < n): Let U be a 

bounded, open subset of 6�, and suppose ∂U is +). Assume 1 

≤ p < n, and u ∈ (),�(U). Then u ∈ ��∗(U), with the estimate  

                            ‖.‖23∗(/) ≤  C‖.‖45,3(/)                                                     
(4.28) 

The constant C depends only on p, n, and U. 

 

Theorem-3 [5]: (Estimates for (8),�, 1 ≤ p < n): Let U 

be a bounded, open subset of 6�, and suppose u ∈ (8),�(U) 

for some 1 ≤ p < n. Then we have the estimate 	                               ‖.‖29(/) ≤ C‖:.‖23(/)  �;< each q ∈ [1, =∗ ], the constant C depending only on p, q, 

n and U. 1�>�	?�@>A�@?	is sometimes called Poincare’s inequality.  

 

Theorem-4: (Morrey’s inequality: Assume n < p ≤ ∞. 

Then there exists a constant C, depending only on p and n, 

such that 
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                             ‖.‖BC,D(EF) ≤ C‖.‖45,3(EF) �;<	 all u ∈ +)(6�), where γ = 1-
 =G . 

 

II Methodology 

A. If ),(
,

Uu W
pk

∈ we define its norm to be 













∞=

∞≤≤
≤=

∑

∑ ∫

≤k
U

p

U

pu

p
k U

p

W
Des

dxuD
u

pk

α

α

α

α

)(

)1(

sup

)(

1

)(
,

 

(i) Let { } ).(,
,

1
Uu

m Wu
pk

m
∈

∞

=
 We say um

converges to u in )(
,

UW
pk

, written  

uum
→ in )(

,
UW

pk
, 

Provided 

0
)(

,lim =−∞→ uum
W U

m pk
 

(ii) We write 

uum
→ in )(

,
UW

pk

loc
, 

to mean 

uum
→ in )(

,
VW

pk
, 

for each .UV ⊂⊂  

B. We denote by
)(

,

0
UW

pk

, the closure of 
)(UCc

∞

in
)(

,
UW

pk

. 

Thus )(
,

0
Uu W

pk
∈ if and only if there exist a functions 

)(UCu cm

∞
∈  such that uum

→ in )(
,

UW
pk

. We 

interpret )(
,

0
UW

pk
as comprising those functions 

)(
,

Uu W
pk

∈ such that  

                                    0" =uD
α

on "U∂ for all 

1−≤ kα  

C. General Sobolev inequalities: Let U be a bounded 

open subset of	6�, with a +) boundary. Assume

)(
,

Uu W
pk

∈ . 

i. If 

,
p

n
k <  

  Then            

),(Uu L
q

∈  

Where, 

n

k

pq
−=

11
 

(?	��H? in addition the estimate 

,
)()(

,
uu

UU W
C

L
pkq

≤  

The constant C  depending only on npk ,, &U . 

ii. If 

,
p

n
k >  

Then, ),(
,1

Uu C p

n
k γ−−

∈ where 

I = J K��L + 1 − �� , >�	 �� 		>�	
;@	�
	>
@?N?<	�
		=;�>@>H?	
.AO?< < 1, >�	 �� 	>�	�
	>
@?N?<.- 
We have in addition the estimate  

,
)()(

,,1
uu

UU W
C

C
pk

p

n
k

≤
−− γ

 

The constant C  depending only on γ,,, npk &U . 

 

iii. Results 

A. Sobolev space as function space: For each k = 

1,2,……. And 1 ≤ p≤ ∞, the Sobolev space (Q,�(*)  is a 

Banach space. 

Proof: Let us first of all check that u
UW

pk
)(

, ′
is a 

norm. Clearly 

,
)()(

,,
uu

UU WW
pkpk ′′

= λλ  

and                     

0
)(,

=
′

u
UpkW

           if and only if u = 0  

Next assume )(,
,

Uvu W
pk

∈ .Then if 1 ≤ p < ∞, 

Minkowski’s inequality implies  

)(
)(

1

)(
,

∑
≤

= ++ ′

k

p

UL p
W

vDuDvu
p

U
pk

α

αα

 

))((
)()(

1

∑
≤

≤ +
k UL pUL p

p
vDuD

p

α

αα
 

)()(
)()(

11

vDuD
p

UL p

p

UL p

p

k

p

αα

α

+≤ ∑
≤

 

= vu
UU WW

pkpk
)()(

,,
+  
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It remains to show that )(
,

UW
pk

is complete. So 

assume { }um m

∞

=1
is a Cauchy sequence in )(

,
UW

pk
.Then 

for each { }uD m
k

m

αα
∞

=
≤

1
, is a Cauchy sequence in

)(UL
p

. Since )(UL
p

is complete, there exist function 

)(ULu
p

∈
α

such that  

uuD m α

α
→

            
in )(UL

p
 

For each k≤α in particular, 

uum )0,......,0,0(
→         in )(UL

p
. 

We now claim uDW uUu
pk

α

α
=∈ )(),(

,
)( k≤α  (1)                                                                

To verify this assertion, fix )(UCc

∞
∈φ  and then  

∫ ∫∞→
=

U U

m
dx

m
dxu DuD φφ

αα lim
 

= ∫−
∞→

U

m
dx

m
uD φ

αα

)1(
lim

 

= ∫−
U

dxu φ
α

α

)1(  

Thus (1) is valid. Since therefore uDuD m

αα
→

in )(UL
p

for all ,k≤α we see that uum
→ in 

),(
,

UW
pk

as required. 

B. Local approximation by smooth functions: Assume 

)(
,

Uu W
pk

∈ for some ∞<≤ p1 and set 

uu ∗=η
ε

ε
               In U ε

 

Then  

i. )(UCu c ε

ε ∞
∈ for each ,0>ε  

and  

ii. uu ∈
ε

in ),(
,

UW
pk

loc
as .0→ε  

Proof: Clearly (i) is true. We next claim that if 

,k≤α then 

                     

uDuD
α

ε

εα η ∗=)(  in *R .                                                                                                  
(2) 

That is, the ordinary α
th

- partial derivative of the 

smooth function u
∈

is the ε-mollification of the α
th

- weak 

partial derivative of u  to confirm this, we compute for 

Ux
ε

∈  

∫ −=
U

dyyuyxx DuD )()()( η
ε

αεα
 

= ∫ −
U

x
dyyuyxD )()(η

ε

α
 

= dyyuyx
U

yD )()()1( −∫− η
ε

αα
 

Now for fixed Ux
ε

∈ the function 

)()( yxy −=η
ε

φ belongs to Cc

∞
.Consequently the 

definition of the α
th

-weak partial derivative implies: 

∫ ∫− −=−
U U

y
dyyuyxdyyuyx DD )()()()( )1(

α

ε

α

ε

α ηη
 

Thus   

dyyuyxx DuD
U

)()()( )1(
α

ε

ααεα η∫− −=
+

 

= )]([ xuD
α

ε
η ∗  

This establishes (2). 

 

 

Now choose an open set UV ⊂⊂ .In view of (4.11), 

uDuD
αεα

→)( in )(VL
p

as 0→ε for each k≤α . 

Consequently 

0
)()(

,

→= ∑ −−
≤k

p

V

p

V

uDuDuu
LW

ppk
α

αεαε
 

 as 0→ε . This proves assertion (ii). 

 

C. Global approximation by smooth functions: Assume 

U  is bounded, and suppose as well that )(
,

Uu W
pk

∈ for 

some ∞<≤ p1 . Then there exist functions 

)()(
,

UU WCu
pk

m
Ι

∞
∈ such that  

uum
→  in )(

,
UW

pk
 

Proof: We have ,
1UU ii

U
∞

=
= where 

{ }
i

UxdistUxU i
1),( >∂∈=      (i =1,2,…….). 

Write .
13 UUV iii ++

−=  

Choose also any open set UV ⊂⊂
0

so that 

.
0VU ii

U
∞

=
= Now let { }ζ i i

∞

=0
be a smooth partition of 

unity subordinate to the open sets { } ;
0V i i

∞

=
that is, suppose 
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





=

∈≤≤

∑
∞

=

∞

.1

)(,10

0
onU

i i

icii VC
ζ

ζζ
 

Next, choose any function ).(
,

Uu W
pk

∈ According 

to theorem 4.1, )(
,

Uu W
pk

i
∈ζ and .)( V ii

uspt ⊂ζ  

Fix .0>δ Choose then 0>ε i
so small that 

)( u
ii

i

u ζεη ∗= satisfies 









=⊂

=≤
+−

,......),1(

,......)1,0(

2
1

)(
,

ispt

i
i

i

W

Wu

uu

i

i

i
U

pk

δ
ζ

 

For ,......).1(
4

=⊃−=
+

iVUUW iiii
 

Write ∑
∞

=
=

0
.

i

i

uv
 
This function belongs to 

),(UC
∞

since for each open set UV ⊂⊂ there are at most 

finitely many nonzero terms in the sum. Since 

∑∞

=
=

0
,

i i
uu ζ we have for each UV ⊂⊂  

∑ −−
∞

=

≤
0 )()( ,,

i UV
uuuv

i
i

WW pkpk ζ  

.
1

0
1

2
δδ =≤ ∑

∞

=
+

i
i

 

Take the supremum over sets ,UV ⊂⊂ to conclude 

.
)(

,
δ≤−uv

UW
pk

 

If ζ ∈ +S∞(U), then ζu∈ (Q,�(*) and  :T(ζ.) = ∑ UTβVβ	≤	T  :Wζ:TXW.   (Leibniz’ formula)    (3) 

Where UTβV =
T!

β!(TXβ)!. 
Now prove (3) by induction on|�|. Suppose first |�| = 

1. Choose any φ ∈ +S∞(U). Then 

dxuudxu DDD
U U

φξξφφξ
ααα

)()( −=∫ ∫  

= dxuu
U

DD φξξ
αα

))()((∫ +−  

Thus :T(ζu) =ζ :Tu + u:Tζ, as required. 

Next assume l < k and formula (3) is valid for all  |�| ≤ 

l and all functionsζ. Choose a multi-index α with  |�| = l+1. 

Then α = β + γ for some |β| = l, |γ| = 1. Then for φ as above, 

 

dxudxu
U U

DDD )( φξφξ
γβα

∫ ∫=  

     = dxu DDD
U

φξ
σ

β γσβσ

βσ

β −

≤
∫∑− )()1(  (by the 

induction assumption) 

       = dxuDDD
U

φξ
σ

β σβσγ

βσ

γβ
)()()1(

−

≤

+

∫∑− b (by 

the induction assumption sign) 

         = dxuu DDDD
U

φξξ
σ

β σαρρασ

βσ

α
][)()1(

−−

≤

+∫∑−  

(Where ρ = σ +γ) 

         = dxuDD
U

φξ
σ

α σασ

ασ

α
])([)1(

−

≤
∫ ∑−

 

Since U WYXZV +  [WY\ =[TY\. 
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