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Abstract: Among many purposes of science, analyzing nature may be the most important and beautiful part. We all know that
Differential Equations (DEs) are the mathematical expression of many natural phenomena. In modern science, analyzing tools like
Calculus, Measure, sequence, series etc. have been used very frequently. Every analysis of DEs has only one goal which is to get the
solutions of a DE. In fact, most of these DEs don’t have exact solutions and many methods has been introduced to get some good
solutions. Now-a-days, Functional Analysis plays an important role to analyze these methods. Some methods have solid foundation
and flexibility. To make use all of these methods properly, we have to understand the nature of DEs and also realize the
characteristics of the solutions. Without having any idea about solutions we don’t think more, this is why we have started our study of
analysis to take more and more benefits of these methods. This analysis will give us a solid platform to select best methods among
others and will help us to find new more accurate methods.

As usual, this analysis is covering the concepts of measure, which leads us to a more useful Integration concept. For finding the
solutions of DEs some essential spaces have been introduced such as LP spaces. The space concepts have been more specified into
Sobolev Spaces.
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metric derived from the norm, that is, if for every € > 0 there

I Introduction exists N € N such that ||x,, — x,|| <€ form, n>N.

A. Normed Linear Spaces [1]

Deﬁnition-l: Let X be a linear Space over the field of Deﬁnition-j’: A normed linear space ()(7 ” ” ) is
scalars K. A real-valued function ||. || on X is called a norm on  complete with respect to the norm ||.|| if every Cauchy
X if it satisfies the following conditions: sequence (X, : n € N) with respect to the norm there exists x
@) Non-negative; ||x]|| € [0, =) for x € X. e X such that
(ii) [[x]| =0 if and only if x =0 € X. lim
(iii) Positive homogeneity; |lax|| = |a|||x|| for x € X and ||Xn - x" =0
oe K. n— e
(iv) Triangle inequality; ||lx + y|| < ||lx|| + ||ly|| for x, y € Definition-4: A normed linear space (X, ||. ||) is called a
X. Banach space if (X, ||.]]) is complete with respect to the

A linear space X with a norm ||. || defined on it is called norml|. ||.

a normed linear space and we write (X, ||. ) for it.
Definition-5: Given a sequence (x, : n € N) in a

Let ||.|| be a norm on a linear space X. Then |||x|| — normed linear space (X, ||.||). Consider the sequence (s, : n €

Iylll < 1lx = yll for x, y € X.

Definition-2: A sequence (x,:n € N) in a normed
linear space (X, ||.||) is called a Cauchy sequence with respect
to the norm |[|. || if it is a Cauchy sequence with respect to the

N) in X defined by S, = Z X, for n € N. If the sequence
k=1
(x, : n € N) converges in the norm, that is, if there exists s €
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lim
X such that |
n— oo
Yneo Xn converges in the norm to the sum s and write
Yneo Xp = s. When no such s exists in X, we say that the
series Y., ¢ [ X, diverges. We call (s,, : n € N) the sequence of

partial sums of the series)., ¢ N Xr-

S, s" =0, then we say that the series

Theorem-1: Given a normed linear space (X,||. ||). The
space X is complete with respect to the norm ||. || if and only if
for every sequence (s, : n € N) in X such that )}, ¢ /||x,]| <
oo, the series ), ¢ | X, converges in the norm.

Theorem-2: (Minkowski’s inequality for p € [1,00) ):

Given a measure space (X, 2, w). Let f and g be two extended
complex-valued U-measurable functions on X such that

|f

g| < oo . Then for every p&€ [1,00), we have

£+, [71, <l

B. The LP Spaces for p € [1,00)[2]
Given a measure space (X, 2, ). Let p € (0,00)and

B

p

consider the linear space of functions LP (X, %, ). The origin
that is the identity of addition, of this linear space is the
identically vanishing function 0 on X and for this function 0
we have|[0]|, = 0. On the other hand if f € L?(X,, 1) and
lf1l, = 0 then f(x) =0 for a.e. x € X and f need not be the
identically vanishing function on X. For this reason ||. ||, is
not a norm on the linear space LP (X, 2, ).

Theorem-1: Given a measure space (X, U,u). Consider

a sequence (f,: ne N) and an element f inL?(X, ¥, u)

where p € [0,0). If the sequence converges to f in e P
lim (ii)

n— oo ‘f”_f
~lim 3
o o =7,

lim P
and hence N oo’)[‘fn du = i‘f

@ii) (f, : n € N) converges to f in measure L on X,
(iii) There exists a subsequence ( f,, : n € N) such that
lim f
k —> 00 N«
Definition-1: Given a measure space (X, U, u). Let f be
an extended complex-valued 2U-measurable function on X. We
define the essential supremum of f on X, ||f|l,, as the
infimum of the set of all essential bounds for f on X, that is,

norm, that is,

=0, then
p

P
du,

=f ae.onX.

Hme =inf{M € [0,00): u(xe X :|f ()] > M) =0}

If f has no essential bound on X, that is, if the set of all
essential bounds of f on X is an empty set then we set || ||, =
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oo, (This is consistent with the convention that the infimum of
an empty subset of R, is equal to . Recall that the smaller the
set the greater the infimum over the set.)

Thus ||f]l,, is defined for every extended complex-
valued UA-measurable function f on X; ||f|l, € [c, o]; and
[|f1lo = oo if and only if f does not have an essential bound.
We call ||f]l, the essential supremum off. An alternate
notation for ||f||., is ess.sup, o x|f(x)]|.

C. Sobolev space [3]

Definition: For 1 < p < « and let k be a nonnegative
integer. The Sobolev space W*P(U) consists of all locally
summable functions u :U —R such that for each multiindex a
with lal < k, D%u) exists in the weak sense and belongs to
LP(U). The natural number k is called the order of the Sobolev
space W*P(U).

D. Traces [4]

Next we discuss the possibility of assigning “boundary
values” along dU to a function ue WP (U), assuming that 9U
is C1. Now if u € C(U), then clearly u has values on dU in the
usual sense. The problem is that a typical function u €
WP (U) is not in general continuous and, even worse, is only
defined a.e. in U. Since dU has n-dimensional Lebesgue
measure zero, there is no direct meaning we can give to the
expression “u restricted to dU”. The notion of a trace operator
resolves this problem. For this section we take 1 < p< oco.

Theorem-1: (Trace theorem): Assume U is bounded

and dU is C1. Then here exists a bounded linear operator
T: WP (U) - LP (V)

Such that
Tu=1u|y ifue WP (U) N CU), and
”Tu”Lp(éU) < C”ullwlrl’(u)

For each u € WP (U), with the constant C depending
only on p and U. We call Tu the trace of u and dU.

Theorem-2: (Estimates for WP, I <p <n): Let U be a
bounded, open subset of R™, and suppose oU is C1. Assume 1
<p<n,andue W' (U). Thenu € L (U), with the estimate

lull gy < Clllly o)
(4.28)
The constant C depends only on p, n, and U.

Theorem-3 [5]: (Estimates for Wol’p, 1 <p <n): Let U
be a bounded, open subset of R™, and suppose u € %1’p(U)
for some 1 < p < n. Then we have the estimate
llwllawy < ClIDullp
foreach qe [1, p* ], the constant C depending only on p, q,
nand U.
Tllis estimate is sometimes called Poincare’s inequality.

Theorem-4: (Morrey’s inequality: Assume n < p < oo,
Then there exists a constant C, depending only on p and n,
such that
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”u”COY(Rn) C”ullWlp(Rn)
for allue C'(R™), where y= 1- Tl/p_

II  Methodology
k,
A TfueW "(U), we define its norm to be

IM<kU
Y.essup,

|o|<k

(1) Let {l/l m}::1 JUE Wk’p (U). We say U,
“r (U) , written

ey 0,7
W)

D" ==

converges to u in M/

w, —uin W)
Provided
lim,...||u m—uHWL,) o =Y
(i) We write
w,—uin W, ),
to mean

u, —uin W)
foreach V cc U.

k,p o
B. We denote by‘A/0 Cc )

W)

k,
Thus ue W/, "(U) if and only if there exist a functions

, the closure of

in

o . k.p
u,€< CC(U) such that gy —>uin P}/ (U). We
interpret |}/ f) 7

ue Wk’p (U) such that

(U') as comprising those functions

"Dau =0on oU"for all
o<k -1

C. General Sobolev inequalities: Let U be a bounded
open subset of R™, with a C* boundary. Assume

ue W' W)
i If
k< ﬁ,
p
Then
ue ['(U),
Where,

”D u‘ dx) (1< p <oo) it
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1_1 &k
q p n
We [Dave in addition the estimate
., =l .
L' W)
The constant C' depending only on k, p,n& U .
If
n
k>—,
p

" y(U ), where

n n
-+ 1——,if — isnot an integer
[p] p fp 9

any positive number < 1,if % is an integer.

We have in addition the estimate

el =l
U) W

The constant C depending only on k, p,n, ¥ & U .

iii. Results

A. Sobolev space as function space: For each k

1,2,....... And 1 < p< oo, the Sobolev space Wk’p(U) is
Banach space.

®

Proof: Let us first of all check that ‘uH . is a
W' w
norm. Clearly
A, = A
H WA P ) | | Wk P
and
HMH =0 if and only if u=0
W k.p'(U)
Next assume U,V € W (U) Then if 1 < p < o,

Minkowski’s inequality implies

P
o o
U+ vH
‘ D LP(U))

Jp
—(Z

<

et
W’

b

a0
Jr
,%:k( HLP(U)) +(HD HLP(U))

oL
W W) W @)
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k,
It remains to show that |}/ "(U)is complete. So
assume {I/l } is a Cauchy sequence in W "(U) Then
for each |0(| < k,{Daum};:l is a Cauchy sequence in

lll7 (U) . Since Lp (U) is complete, there exist function
U,< Lp (U) such that

Du,.~u in [ "(U)
For each |0{| < k in particular,
. P
Un ™ Uyp....0 in [, ).

We now claim ue W' (U), D" ) =y, (e <k) (1)

To verify this assertion, fix @€ C “(U) and then

IuDan— J.I/t D gdx

lim

m—>oo( 1)‘ ‘J.D u,,fax
- (=1)" Ju o

Thus (1) is valid. Since therefore Daum - Dau

in LP(U) for all |0!|Sk, we see that gy —u in

w"

B. Local approximation by smooth functions: Assume

ue Wk’p

(U), as required.

(U) for some 1< p < ooand set

2778*1/! In (]‘g
Then

i uSE C?(Ug)foreach >0,
and
.. £ . k.p
ii. U €uin WIDE U),as € = 0.
Proof: Clearly (i) is true. We next claim that if
|0{| < k, then

a, € a .
D w )=775*D u in U,.
@
h
That is, the ordinary a” - partial derivative of the

smooth function I/l is the e-mollification of the a - weak

partial derivative of # to confirm this, we compute for

xe U,
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D u’ @ =D [N (x=yudy

=[ DN (x=yu(y)dy

=(— 1)‘04 [ D = yuady
Xe Ug

¢(y)=77 (x—y) belongs to CZO .Consequently the
&

Now for fixed the function

h
definition of the at -weak partial derivative implies:

[ D1 = yumdy=(=1)"[1 = D udy
U U

Thus

D u'@=(=D""[n - » D uwa
= * D ulx)

This establishes (2).

Now choose an open set V CC U .In view of (4.11),
Da(ug) - Dauin Lp (V)as € = Ofor each|0{| <k.
Consequently

-0
L'

W zlD

|o|<k

E__ a &
u u—>D MH

as € — 0 . This proves assertion (ii).

C. Global approximation by smooth functions: Assume

k,
U is bounded, and suppose as well that u € |}/ "(U) for
some 1< p<oo Then there exist functions
I~ k,
u, € C W)L W "(U)such that

k,
w, —uin W)
Proof: We have U =[] ;U ;» Where
U.= [xe Uldist(x,0U) > %} (i=1.2,......).
Write Vi = Ui+3 - Ui+1'
Choose also any open set V 0 CC U so that

U= U oV - Now let g } be a smooth partition of

unity subordinate to the open sets {V i}' 0; that is, suppose
=
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o<l <1, {eClV)
>, =1 onU.
Next, choose any function u € Wk’p (U). According
to theorem 4.1, é,'u € Wk'p (U)and Spt(é/u) cV.

Fix O >0. Choose then €i>0 so small that

l/ti =ng* (;_u) satisfies

‘W“’m 2

<6y L os

Take the supremum over sets V CC U, to conclude
ol e
W w)
If { € C2(U), then Lue W*P(U) and
D(4it) = Yp<q (%) DPLD Pu (Leibiz' formula) (3)

a) _ al
Where ( ﬂ) Ty,
Now prove (3) by induction on|a/|. Suppose first || =

1. Choose any ¢ € C°(U). Then

[&u D" gx = [u D" (&) —u(D" &)

=~ [ D" @ +u D (&)gx

Thus D*(Cu) =€ D%u + uD*C, as required.

Next assume 1 < k and formula (3) is valid for all |a| <
1 and all functionsf. Choose a multi-index o with |a|=1+1.
Then o = 3 + vy for some | S| =1, || = 1. Then for ¢ as above,

[& D" gdx=[& D" (D'$)ax

- (D[S D7E D! u D i oy
U osp
induction assumption)

_ (_1)ﬂ+ﬂJ‘Z(ﬁ)D}'(Daé:Dﬁ—au)wxb (by
U osp
the induction assumption sign)
= (_l)ajzg(g)[DofDap”"'Dpraau]Wx

(Where p =0 +7)

Available at www.ijsred.com

Write VZZZO ul. This function belongs to

C “(U), since for each open set V cC U there are at most

finitely many nonzero terms in the sum. Since
u= Z%og u,we have foreach V cc U
i=0 D
! (I
=i, < S’ =C ] .
W v i W W)

- (=) [IZ & D7D wias

U osa

Since (U’jy) + (g) =(Z)
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