
LSTM acceleration with FPGA and GPU devices
for edge computing applications in B5G MEC

Dimitrios Danopoulos1, Ioannis Stamoulias1,2, George Lentaris1, Dimosthenis
Masouros1, Ioannis Kanaropoulos1, Andreas Kosmas Kakolyris1, and Dimitrios

Soudris1

1 National Technical University of Athens, Greece
2 National and Kapodistrian University of Athens, Greece

{dimdano,glentaris,dsoudris}@microlab.ntua.gr

Abstract. The advent of AI/ML in B5G and Multi-Access Edge Com-
puting will rely on the acceleration of neural networks. The current work
focuses on the acceleration of Long Short-Term Memory (LSTM) kernels
playing a key role in numerous applications. We assume various LSTM
sizes while targeting FPGA and GPU hardware for both embedded and
server MEC purposes. Systematically, we perform a design space explo-
ration to determine the most efficient acceleration approach and most
suitable configuration for each device. We use High-Level-Synthesis to
implement our proposed circuit architectures on Xilinx FPGAs, while we
use high level tools for NVIDIA GPUs such as PyTorch’s JIT compiler
or ONNX runtime. Our exploration shows that the full parallelization of
an LSTM array multiplication quickly overutilizes the FPGA, while on
GPUs LSTM models can be deployed more easily. Instead, the best ap-
proach for FPGAs is to find a balance between parallelizing LSTM gates
and vector multiplications. Our comparative study shows that FPGAs
prevail in light LSTM models, whereas GPUs prevail in larger model
topologies. Moreover, we show that far- and near-edge FPGAs achieve
similar latency, however, near-edge GPUs can achieve one order of mag-
nitude faster execution than far-edge GPUs. The best results range in
0.3-5msec latency per execution with acceleration factors in 12×−174×.

Keywords: 5G · forecasting · anomaly detection · LSTM · FPGA · GPU

1 Introduction

Emerging applications in the edge computing era require efficient AI/ML and
high performance computing systems to process huge amounts of data at remote
locations. Especially in the upcoming B5G/6G networks, AI/ML is expected to
play a key role in the MEC domain, both for user applications and for infrastruc-
ture zero-touch management. Everyday scenarios, such as autonomous vehicles
and smart city/factory operations, will rely on processing & decisions made
closer to the location of data generation due to extremely low-latency require-
ments. Real-time analytics and forecasting will force the adoption of hardware



2 D. Danopoulos et al.

accelerators across the entire edge–cloud computing continuum with small and
large devices, and especially GPUs and FPGAs.

The LSTM type of artificial neural network has achieved state-of-the-art
classification accuracy in multiple useful tasks for MEC applications, such as
the aforementioned forecasting, network intrusion detection, and anomaly de-
tection [6]. Anomaly detection algorithms identify data/observations deviating
from normal behavior in a dataset. Similarly, forecasting algorithms estimate
what will happen in the future by using historical data. The LSTM provide so-
lutions at the cost of increased compute and memory requirements, which makes
their deployment challenging, especially for resource-constrained platforms, such
as embedded FPGAs and GPUs. Furthermore, the internal mechanisms of LSTM
networks make it more challenging to parallelize the computations in an accel-
eration platform as they require state-keeping in between processing steps. This
creates data dependencies and often limits the parallelization degrees.

Recently, the research community has started deploying hardware acceler-
ators of LSTM networks to increase the performance and energy efficiency of
such computationally intensive tasks for data prediction on the aforementioned
scenarios. Also, depending on the scenario, throughput or latency optimized sys-
tems need to be developed. Thus, it is important to embrace the heterogeneity
paradigm in order to provide high performance systems, such as FPGAs and
GPUs, which can cover a plethora of acceleration schemes and offload the gen-
eral purpose CPUs when needed.

To study the computational aspects and the benefits of accelerating LSTMs
in a practical fashion, the current paper presents our exploration of implementing
LSTM kernels on FPGA and GPU devices for both far- and near-edge computing
scenarios. The main contributions are:

1. Examine various LSTM structures from an acceleration point of view, i.e.,
assess parallelization and overhead benefits/costs for certain types of HW.

2. We extend our study for multiple LSTM kernels and devices, i.e., anomaly
detection and timeseries forecasting, on multiple small and large FPGA/G-
PUs of distinct underlying architecture and CPU-to-device interfaces.

3. We perform a design space exploration (DSE) to determine the most efficient
acceleration approach based on certain performance trade-offs and Quality
of Service (QoS) preferences.

2 Background and Related Work

2.1 AI@EDGE with acceleration for MEC

The H2020 project AI@EDGE [7] aims to develop a “connect-compute” plat-
form that efficiently creates and manages end-to-end network slices. This decen-
tralized HW & SW platform will be placed inside broader MEC domain(s) to
support a diverse range of AI-enabled applications and provide security/privacy,
flexibility, and acceleration. In particular, AI@EDGE key underlying technolo-
gies include HW virtualization, multi-tier orchestration, serverless computing,



AI@Edge 3

programmable pipelines to create and use trustworthy AI/ML models upon re-
quest, multi-connectivity disaggregated radio access, as well as multiple forms of
programmable HW acceleration. The final AI/ML capabilities of the platform
will serve both the closed-loop automation for the infrastructure/network (e.g.,
monitoring, zero-touch management) and also the applications at user level (e.g.,
download and execute certain AI functions upon user request).

Towards achieving the aforementioned goals, which combine acceleration with
virtualization and easy-to-use (even serverless) computing, the selected approach
was to exploit ubiquitous SW frameworks and diverse HW devices from domi-
nant GPU and FPGA vendors. That is to say, e.g., instead of low-level FPGA
programming with VHDL, we opted for high-level synthesis and TensorFlow-
based end-to-end toolflows. Such an approach facilitates quick development and
flexible function deployment via Docker containers, i.e., makes the platform at-
tractive to users and facilitates the integration of multiple HW accelerators to
an already complex distributed system. Representative devices in the “connect-
compute” platform include Xilinx U280 FPGA [16] and NVIDIA V100 [12] for
near-edge nodes (server-class computing), as well as Xilinx Zynq MPSoC [19]
and NVIDIA Jetson AGX Xavier [10] for far-edge nodes (embedded comput-
ing). Representative toolflows include Xilinx Vitis AI and Vitis HLS for FPGAs
[17, 18], as well as NVIDIA CUDA-X and ONNX for GPUs [11, 1].

2.2 LSTMs for Time Series Prediction

LSTM networks are a type of Recurrent Neural Network (RNN) that uses more
sophisticated units in addition to standard units. The LSTM cell adds long-term
memory with its special gates inside in order to solve problems that require learn-
ing long-term temporal dependencies. More specifically, a number of "gates" is
used to control the information inside the memory, keeping, forgetting or ignoring
it when needed. This very important in order to learn the long-term dependen-
cies in sequences which have a long-term trend. Designing an optimal LSTM
for Time Series Prediction can be challenging and it requires extensive hyperpa-
rameter tuning. For example, the number of LSTM cells used to represent the
sequence can be crucial in achieving high accuracy.

Besides predicting future sequences in time-series, LSTMs can successfully
detect anomalies in data. Constructed as autoencoders [2], the goal is to minimize
reconstruction error based on a loss function, such as the mean squared error.
Autoencoders are self-supervised learning models that can learn a compressed
representation of input data. When coupled with LSTM layers in a Encoder-
Decoder LSTM topology, it allows the model to be used to encode, decode and
recreate the input sequence. LSTM autoencoder networks are widely used in
many applications for real-time anomaly detection such as manufacturing, net-
work intrusion detection systems and others [9] [14].



4 D. Danopoulos et al.

2.3 Related Work

To optimize the performance or power efficiency of LSTM networks, which cover
a wide range of applications, a plethora of hardware accelerators has been pro-
posed from the academia. These applications span from anomaly detection sys-
tems [5] such as network intrusion or timeseries forecasting. The following re-
lated work involves designs for similar accelerator platforms for relatively similar
problems that cover our domain problem.

A plethora of FPGA implementations have been investigated such as [3]
in which the authors accelerated an LSTM model on a Xilinx FPGA achiev-
ing 21× speed-up from the ARM Cortex-A9 CPU of the embedded SoC. Also,
Chang et al. [4] presented three hardware accelerators for RNN on Xilinx’s Zynq
SoC FPGA for character level language model achieving up to 23× better per-
formance per power than a Tegra X1 board. Additionally, in FINN-L [15] the
authors presented a library extension for accelerating Bidirectional Long Short-
Term Memory (BiLSTM) neural networks on FPGA. They performed a thorough
DSE in terms of power, performance and accuracy and showed the throughput
scalability on a Pynq and MPSoC FPGA board, although no latency metrics
were presented. Last, Fowers et al. [8] presented the Brainwave NPU which
achieved more than an order of magnitude improvement in latency and through-
put over state-of-the-art GPUs on large RNNs at a batch size of 1. Concerning
GPU implementations, there is fewer related work as they usually pose a smaller
research problem as FPGA implementations. However, there are quiet a few im-
plementations [20, 21] which focus on LSTM training on GPU platforms in order
to reduce energy footprint and accelerate the training algorithm.

3 Methodology

Our primary purpose is to assess the complexity and efficiency of accelerat-
ing LSTM-based networks on GPU and FPGA devices in the context of a de-
creased/viable time-to-market cost (c.f. sec. 2.1). To this end, we devise an eval-
uation methodology combining a certain degree of optimization and exploration
goals, which we summarize in the following steps:

1. Define a representative set of LSTM-based network structures based on nu-
merous real-world applications and spanning a considerable range of com-
putational demands (e.g., input size, units, layers).

2. Define a representative set of tools and devices, i.e., FPGA, GPU, and CPU,
which provide today indicative acceleration results in major AI applications
and cover a wide range of processing nodes in the edge–cloud continuum.

3. Propose and explore parallelization techniques as well as high level tools for
end-to-end AI model deployment.

4. Prune the search space and implement the proposed designs to derive actual
results regarding execution time, power and accuracy.

5. Compare the results and define the most promising implementation approach
per LSTM and device, as well as assess the overall acceleration potential for
LSTMs in this heterogeneous infrastructure.



AI@Edge 5

Fig. 1. LSTM illustration. Left: LSTM cell, Right: an LSTM topology used in the
experiments

3.1 Representative LSTM networks

As a first step of our methodology, we consider a wide range of LSTM topologies
as part of our DSE analysis. Each LSTM, depending on its parameters can have
different acceleration potential on a particular hardware device. Several of the
models used were built as an encoder-decoder structure targeting network intru-
sion detection systems. The main parameters of the encoder and decoder layers
are the number of units, that can differ between the layers of the same LSTM,
the number of the input and output features, and the number of timesteps, which
is the same for all the layers of a LSTM. Both encoder and decoder layers have
the same core logic usually coupled with a bias vector and an activation func-
tion afterwards. Each layer iterates ×timestep times and cannot be parallelized
due to data dependencies as the results of each time step are used in the next
iteration and are also stored for the next layer. Along with the encoder-decoder
LSTMs we investigated the use of encoder-decoder LSTMs with dense (or fully
connected) layer at the end and also with single-cell LSTM models (targeting
stock or temperature prediction applications). In Figure 1, at the left side we
illustrate the core functions inside a typical LSTM cell. On the right of the fig-
ure, we show the architecture of one of the LSTMs used in the evaluation. Last,
we summarize each LSTM and its characteristics in Table 1. All models were
developed with Tensorflow Deep Learning library.



6 D. Danopoulos et al.

Table 1. LSTM characteristics

LSTM characteristics Model characteristics
Model Layers Timesteps Features Type Params Flops

LSTM-Autoenc-1 4 2 60 Autoencoder 0.07M 0.3M
LSTM-Autoenc-2 4 2 80 Autoencoder 0.1M 0.54M
LSTM-Autoenc-3 4 2 159 Autoencoder 0.5M 2.10M
LSTM-Autoenc-4 4 2 230 Autoencoder 1.1M 4.4M
LSTM-Autoenc-5 2 50 1 Autoencoder 0.2M 20M

LSTM-Dense 2 30 1 LSTM+Dense 0.2M 12.3M
LSTM-cell 2 50 5 LSTM-cell 0.9M 62.7M

3.2 Acceleration Devices and Programming

We leveraged an heterogeneous hardware architecture as the range of applica-
tions especially in the cloud and edge domains is diverse and each device behaves
differently depending on the scenario and application. AI@EDGE will employ a
development model for AI accelerators based on High Level Synthesis for FP-
GAs (using Xilinx Vitis) and CUDA programming model for GPUs. It’s worth
mentioning that the acceleration flow for GPUs was done through ONNX for-
mat for model serialization (wherever supported). A similar tool from Xilinx,
called Vitis AI, was also tested but the support for LSTMs is limited. FPGAs
and GPUs as hardware platforms will be attached directly in servers or shared
over the network in edge workloads. In Table 2 we list several popular devices
from FPGA and GPU domains both for edge (top) and cloud (bottom) domains
but we selected only some representatives from each domain that can cover the
spectrum of deployment scenarios.

Table 2. List of FPGA and GPU devices in edge (top) and cloud (bottom)

Device specifications
Device Type Memory DSP LUT BRAM CUDA cores

MPSOC ZCU102 FPGA 4Gb 2520 600K 32Mb -
MPSOC ZCU104 [ ] FPGA 2Gb 1728 504K 38Mb -

Jetson Nano [ ] GPU 4Gb - - - 128
Jetson Xavier NX [ ] GPU 8Gb - - - 384

Jetson Xavier AGX [ ] GPU 32Gb - - - 512
Alveo U50 FPGA 8Gb 6840 1182K 47Mb -
Alveo U200 FPGA 64Gb 5952 872K 35Mb -

Alveo U280 [ ] FPGA 32Gb+8Gb 9024 1304K 72Mb -
Nvidia P40 [ ] GPU 24Gb - - - 3840
Nvidia A30 [ ] GPU 24Gb - - - 3584
Nvidia V100 [ ] GPU 32Gb - - - 5120



AI@Edge 7

4 Proposed Designs

4.1 FPGA acceleration

Our design space exploration, for accelerating a LSTM using FPGAs, started
with decreasing the latency of the LSTM kernel for a single input execution.
Then, we used multiple kernels to achieve higher throughput. The first deci-
sions during our exploration were based on three characteristics of the LSTM
algorithm. Those characteristics are the recursion and the increased number of
multiply-accumulate operations required inside each layer (lstm cell) and the
way the data are exchanged between the layers of a LSTM. The computation-
ally intensive parts of the LSTM algorithm, in terms of required processing time
and number of operations (determined by the number of units and features of
the lstm cell), are the calculations of the four activation vectors. Parallelization
at those calculations is necessary, especially for a low latency implementation.
Next, we present a summary of the considered acceleration techniques.

1. Parallelization at the layer level, where multiple layers would process data in
parallel. This parallelization technique could achieve a speed up of maximum
the number of layers, but the number of layers of a LSTM is significantly
lower than the number of units/features. Disadvantages in this implementa-
tion include increased resources, underutilized hardware and extra logic for
synchronizing and buffering, thus it was not an ideal choice for acceleration.

2. Parallelization inside each lstm cell at the iteration level, where multiple
time steps, for different input data, could be processed in parallel using a
systolic array architecture. Some of the disadvantages using this technique
were increased resources, less scalable architecture, and an implementation
that does not reduces the latency.

3. Parallelization inside each lstm cell at the calculation of the activation vec-
tors. Considering the resources of the targeted FPGA, the developer can
choose to process in parallel one or more of the activation vectors and also
parallelize each calculation internally.

4. For further decreasing the latency, a fixed-point instead of floating-point
architecture can be used. This change reduces the required resources of the
kernel, reduce latency and memory transfer overhead.

For our basic architecture (Fig.2) we implemented four parallel engines, one
for each activation vector (it, ft,

∼
c t, ot) and inside each of those engines we

parallelized the multiply-accumulate operations for each row of the matrix with
the active vector. To achieve the desirable parallelization the active vector and
the weight matrices were partitioned in their entirety and second dimension,
respectively. The code at Fig.3 presents the high level description for parallelizing
the the multiply-accumulate operations. Each time step is calculated sequentially
inside the lstm cell. To create the required layers of the LSTM system we execute
sequentially the same lstm cell with the necessary changes in the weight and bias
values. Last, the weights and biases are read from the DDR memories at the
beginning of a new layer execution, before the first iteration, using wide memory
interfaces.



8 D. Danopoulos et al.

Fig. 2. Proposed LSTM architecture

dtype row_vector_mul ( const dtype w[MX_COL] , dtype h_x [MX_COL] , dtype b){
dtype2 res , f i r s t , temp ;
LOOP_MATRIX: for ( int j =0; j<MX_COL; j++) {

#pragma HLS LOOP_TRIPCOUNT min=mn_col max=mx_col
#pragma HLS PIPELINE I I = 1
f i r s t = ( j==0) ? ( dtype2 )b : r e s ;
temp = ( dtype2 )w[ j ] ∗ ( dtype2 )h_x [ j ] ;
r e s = f i r s t + temp ;

}
return r e s ;

}
void gate ( dtype W[MX_UNITS] [MX_COL] , dtype b [MX_UNITS] ,

dtype h_x [MX_COL] , dtype out [MX_UNITS] , int type ){
#pragma HLS ARRAY_PARTITION va r i ab l e=W dim=2 complete
#pragma HLS ARRAY_PARTITION va r i ab l e=b complete
#pragma HLS ARRAY_PARTITION va r i ab l e=h_x complete
dtype2 act_fun [MX_UNITS] ;
LOOP_ROW: for ( int i =0; i<MX_UNITS; ++i ) {

#pragma HLS LOOP_TRIPCOUNT min=mn_un max=mx_un
#pragma HLS PIPELINE I I = 1
act_fun [ i ]=row_vector_mul (W[ i ] , h_x , b [ i ] ) ;
i f ( type==0) out [ i ] = sigmoid ( act_fun [ i ] ) ;
else out [ i ] = tanh ( act_fun [ i ] ) ;

}
}

Fig. 3. Parallelization of the activation vector

4.2 GPU acceleration

In the case of GPUs, we follow a more straightforward approach. We employ
the PyTorch [13] open source machine learning framework, as the backbone
for developing our DNN models. To leverage the GPU capabilities, we utilize
PyTorch’s optimized, built-in libraries that allow the effortless execution over
the accelerator. Moreover, we utilize PyTorch’s Just-In-Time (JIT) compiler and
ONNX format for model serialization (wherever possible). With these runtimes
on Nvidia GPUs we ensured a more optimal way to deploy our LSTM models
into the GPU architecture which provided a significant increase in the speed of
the network inference compared with the default Pytorch implementation.



AI@Edge 9

5 Evaluation

5.1 Resources and Accuracy

In general, we focused on resource re-use techniques for the FPGA design where
we could do fine grain optimizations. For example, we are re-using the same
LSTM cell for each subsequent layer of each LSTM model. During the first call
of the kernel all the weights and biases are transmitted to the DDR memories
of the FPGA device and are read from the kernel whenever is necessary.

Table 3 presents the resource utilization percentages and latency considering
implementations on the Alveo U280 device, for the network intrusion detection
system. The floating-point (FP) implementation requires 39.07% of the LUTs,
26.66% of the registers and more than half of the DSP blocks (57.55%) and
can process a single input in 3.38ms. Utilizing the same kernel with a floating-
point interface but moving to an internal 16bit fixed-point arithmetic we can
achieve a reduction of 28% in LUTs, 22% in registers and 45% in DSP blocks and
reduce the execution time to 2.14ms. Simply by changing the interface to fixed-
point we can further reduce the execution time to 1.20ms, with almost the same
resource utilization. Moving to 8, 6, and 4 fractional bits the accuracy drops
to 95.17%, 94.19%, and 86.41% respectively. Thus, 16bit arithmetic provides
a good trade off between accuracy, resources and performance. Also, 512-bit
memory interface was used between kernels and DDR memory, allowing us to
reduce even further the latency of the LSTM kernels. Last, towards our DSE we
utilized multiple engines (row 4) for the LSTM kernel parallelizing further the
process and multiple LSTMs (rows 5-7) for increasing throughput.

Table 3. Resource utilization and latency for LSTM-Autoenc-5 model on U280 FPGA

LUT LUT Mem REG BRAM DSP Time

U280 resources 1304K 590K 2607K 2016 9024
FP 39.07% 25.25% 26.66% 2.26% 57.55% 3.38ms

16bit fixed(float I/O) 10.63% 11.88% 4.36% 1.10% 12.18% 2.14ms
16bit fixed (fixed I/O,

512bit interface) 15.05% 6.38% 6.49% 2.26% 16.44% 0.72ms

16bit fixed (fixed I/O,
512bit interface, x2 engines) 21.47% 6.43% 9.08% 2.43% 28.60% 0.66ms

16bit fixed(fixed I/O,
512bit interface,

32 batch input, 4x LSTMs)
35.49% 24.66% 12.74% 3.58% 52.99% 7.31/32

= 0.23ms

16bit fixed(fixed I/O,
512bit interface,

64 batch input, 4x LSTMs)
35.49% 24.66% 12.74% 3.58% 52.99% 14.04/64

= 0.22ms

16bit fixed(fixed I/O,
512bit interface,

128 batch input, 4x LSTMs)
35.49% 24.66% 12.74% 3.58% 52.99% 27.37/128

= 0.21ms



10 D. Danopoulos et al.

Next, Table 4 presents the resource utilization percentages and the execution
times considering implementations for the embedded ZCU104 FPGA device.
This is a smaller device from the cloud Alveo U280 in terms of resources, hence
the parallelization factor is diminished and the design space is a bit narrower.
Due to the decreased parallelization the floating point kernel required 443.61ms
for processing one input. However, the fixed-point implementations could fit in
the device with the same parallelization we had for the alveo U280 board.

Table 4. Resource utilization and latency for LSTM-Autoenc-5 model on MPSoC
ZCU104 FPGA device

LUT LUT Mem REG BRAM DSP Time

ZCU104 resources 230K 102K 460K 624 1728
FP (parallelization/8) 73.26% 70.49% 35.20% 18.97% 28.47% 443.61ms
16bit fixed (float I/O) 37.50% 36.57% 14.63% 17.67% 63.60% 1.41ms
16bit fixed (fixed I/O) 56.21% 69.03% 22.71% 17.67% 63.60% 1.18ms

Our second case study is a group of LSTMs for anomaly detection target-
ing LSTM-Autoenc-1 through LSTM-Autoenc-4. The LSTMs for the anomaly
detection use a 4-layer model with two encoders and two decoders. All models
require 2 time steps to complete the process as also presented in Table 1. Table 5
presents the resource utilization percentages and the execution times considering
floating-point and fixed-point implementations for the LSTM kernels 1, 2, 3 and
4, targeting the U280 Alveo FPGA device. As expected, the resources and the
achievable execution times are increasing moving from models with lower number
of units and features to model with higher number of units and features. Moving
to a 16bit fixed-point implementation we can see again a significant drop in the
resource requirements across all kernels and in latency.

Table 5. Resource utilization and latency for LSTM autoencoders on U280 device

LUT LUT Mem REG BRAM DSP Time

U280 resources 1304K 590K 2607K 2016 9024
FP LSTM-Autoenc-1 15.20% 4.66% 11.10% 2.09% 24.92% 0.44ms
FP LSTM-Autoenc-2 19.55% 6.16% 14.34% 2.09% 32.90% 0.55ms
FP LSTM-Autoenc-3 40.81% 21.31% 26.03% 0.28% 64.39% 2.31ms
FP LSTM-Autoenc-4* 40.23% 52.21% 9.86% 46.42% 12.47% 4.35ms

16bit fixed LSTM-Autoenc-1 3.89% 2.08% 1.55% 1.10% 5.35% 0.37ms
16bit fixed LSTM-Autoenc-2 5.31% 2.70% 2.21% 2.09% 6.95% 0.51ms
16bit fixed LSTM-Autoenc-3 9.74% 9.68% 1.99% 0.28% 13.12% 1.20ms
16bit fixed LSTM-Autoenc-4 17.69% 18.38% 2.60% 0.28% 18.79% 2.40ms

Table 6 presents the resource utilization percentages and the execution time
considering a floating- and a fixed-point implementation of LSTM-Autoenc-1,
targeting the MPSoC ZCU104 FPGA device. As we can see even in a device



AI@Edge 11

that can be in a far-edge node we can have the same expected execution times
as for those in a near-edge node.

Table 6. Resource utilization and latency for LSTM Autoencoder on ZCU104 FPGA

LUT LUT Mem REG BRAM DSP Time

ZCU104 resources 230K 102K 460K 624 1728
FP LSTM-Autoenc-1 60.28% 24.76% 35.10% 16.38% 68.23% 0.61ms

fixed LSTM-Autoenc-1 20.30% 12.04% 7.41% 7.41% 27.95% 0.44ms

5.2 Inference performance on Edge & Cloud GPUs

We evaluate the inference time of a single-element batch with respect to the
examined LSTM models defined in Table 1 and the various GPU accelerators
considered, as presented in Table 2. Table 7 shows the respective results, which
also reveal three major insights.

Table 7. Inference time for various LSTM models in each GPU device

GPU Devices
Model Nano NX AGX V100 P40 A30

LSTM-Autoenc-1 1.16ms 0.74ms 0.80ms 0.22ms 0.48ms 0.25ms
LSTM-Autoenc-2 1.18ms 0.69ms 0.80ms 0.23ms 0.49ms 0.26ms
LSTM-Autoenc-3 1.20ms 0.72ms 0.92ms 0.27ms 0.49ms 0.29ms
LSTM-Autoenc-4 1.21ms 0.75ms 0.93ms 0.31ms 0.49ms 0.33ms
LSTM-Autoenc-5 8.30ms 2.61ms 3.16ms 0.84ms 1.59ms 1.04ms

LSTM-Dense 5.42ms 1.69ms 1.89ms 0.57ms 1.05ms 0.64ms
LSTM-Cell 8.37ms 2.42ms 2.41ms 0.88ms 1.62ms 0.98ms

First, we observe that scaling the number of input features has minimal im-
pact on performance. Indeed, in the case of the first four (LSTM-Autoenc-1 -
LSTM-Autoenc-4) examined models, where the number of features scale from 60
up to 230, we notice a negligible degradation in performance, both for Edge and
Cloud devices. Second, we see that the number of timesteps is the major perfor-
mance bottleneck of LSTM-based models. This observation was expected, since
as shown in Table 1, models with higher amount of timesteps also reveal a total
higher number of FLOPs. However, the imposed performance degradation is not
proportional over all the devices. We observe that for less powerful devices, i.e.,
Jetson Nano and Xavier NX the overhead of adding more timesteps is greater,
reaching up to 8× and 4× slower execution respecitvely (LSTM-Autoenc-5 vs
LSTM-Autoenc-4). On the other hand, AGX and Cloud devices are less affected,
with an average slowdown of 3×. Last, as expected, there is a significant perfor-
mance boost between edge and cloud devices, with up to 10× speed-up in certain
cases (LSTM-Autoenc-5). This showcases the potential of model offloading from
the edge to the cloud for faster execution.



12 D. Danopoulos et al.

5.3 Acceleration performance

Towards evaluating the aforementioned LSTM models across several FPGA and
GPU devices we summarize the potential of each device in this paragraph.
Depending on the scenario of the application and the LSTM model topology
the most efficient accelerated kernels will be placed inside broader MEC do-
main(s) of the "connect-compute" platform of AI@EDGE. For example, for the
LSTM-Autoencoder-5 the latency on the cloud V100 GPU (0.84ms) is close to
the cloud U280 FPGA (0.66ms without batch). The latency in a typical server
CPU, specifically Intel Silver 4210, it is 18.8ms thus the achievable acceleration
is 22.4×−28.5×. For a larger model (LSTM-Autoencoder-4) the typical latency
in this server CPU is 54ms thus the acceleration becomes 12.4×−174× with the
upper value coming from the V100 device. In the same scenarios but for the edge
domain, we have the NX GPU and ZCU104 FPGA compared with a typical em-
bedded CPU such as the ARM Cortex-A53. The first aforementioned model has
a latency of 30ms while the second larger model has a latency of 100ms in ARM
A53. The acceleration from the edge hardware platforms becomes 11.5×−25.4×
for the first model, with the upper limit achieved from the ZCU104 FPGA, while
in the second model we achieved a speed-up 15×−133×. Overall, in small model
architectures the FPGA implementation seems more promising while, usually in
larger models, GPUs become more efficient.

6 Conclusion

In this work we investigated the acceleration of various LSTM models on multi-
ple hardware platforms. The LSTM models represented real world applications
such as network intrusion detection, anomaly detection, stock prediction or tem-
perature forecasting. We covered a wide range of devices spanning from the edge
to cloud assuming a flexible deployment method that will become part of the
"connect-compute" platform of AI@EDGE. Through diverse experimentation
and tuning of possible design space tradeoffs we showed that mid- to large-size
LSTMs can benefit greately from HW acceleration, especially at the far-edge de-
ployment (embedded devices). The best results range in 0.3-5msec latency per
execution with acceleration factors in 12×−174×.

Acknowledgements Work partially supported by H2020 project “AI@EDGE”
(g.a. 101015922). The authors would like to thank Stefano Secci et al., from
CNAM Paris, for providing LSTM example kernels for anomaly detection apps.

References

1. Bai, J., Lu, F., Zhang, K., et al.: Onnx: Open neural network exchange.
https://github.com/onnx/onnx (2019)

2. Bank, D., Koenigstein, N., Giryes, R.: Autoencoders. CoRR abs/2003.05991
(2020), https://arxiv.org/abs/2003.05991

3. Chang, A., Martini, B., Culurciello, E.: Recurrent neural networks hardware im-
plementation on fpga (11 2015)



AI@Edge 13

4. Chang, A.X.M., Culurciello, E.: Hardware accelerators for recurrent neural net-
works on fpga. In: 2017 IEEE International Symposium on Circuits and Systems
(ISCAS). pp. 1–4 (2017). https://doi.org/10.1109/ISCAS.2017.8050816

5. Diamanti, A., Vilchez, J.M.S., Secci, S.: Lstm-based radiogra-
phy for anomaly detection in softwarized infrastructures. In: 2020
32nd International Teletraffic Congress (ITC 32). pp. 28–36 (2020).
https://doi.org/10.1109/ITC3249928.2020.00012

6. Ergen, T., Kozat, S.S.: Unsupervised anomaly detection with lstm neural networks.
IEEE Transactions on Neural Networks and Learning Systems 31(8), 3127–3141
(2020). https://doi.org/10.1109/TNNLS.2019.2935975

7. EU: H2020 project AI@EDGE, https://aiatedge.eu/ (2022)
8. Fowers, J., Ovtcharov, K., Papamichael, M., Massengill, T., Liu, M., Lo, D., Alka-

lay, S., Haselman, M., Adams, L., Ghandi, M., Heil, S., Patel, P., Sapek, A., Weisz,
G., Woods, L., Lanka, S., Reinhardt, S.K., Caulfield, A.M., Chung, E.S., Burger,
D.: A configurable cloud-scale dnn processor for real-time ai. In: 2018 ACM/IEEE
45th Annual International Symposium on Computer Architecture (ISCA). pp. 1–14
(2018). https://doi.org/10.1109/ISCA.2018.00012

9. Homayouni, H., Ghosh, S., Ray, I., Gondalia, S., Duggan, J., Kahn, M.: An
autocorrelation-based lstm-autoencoder for anomaly detection on time-series data.
pp. 5068–5077 (12 2020). https://doi.org/10.1109/BigData50022.2020.9378192

10. Nvidia: Jetson AGX Xavier Developer Kit (2022),
https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit

11. Nvidia: NVIDIA CUDA-X (2022)
12. Nvidia: NVIDIA V100 TENSOR CORE GPU (2022), https://www.nvidia.com/en-

us/data-center/v100/
13. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,

T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing sys-
tems 32 (2019)

14. Provotar, A., Linder, Y., Veres, M.: Unsupervised anomaly detection
in time series using lstm-based autoencoders. pp. 513–517 (12 2019).
https://doi.org/10.1109/ATIT49449.2019.9030505

15. Rybalkin, V., Pappalardo, A., Ghaffar, M., Gambardella, G., Wehn, N., Blott, M.:
Finn-l: Library extensions and design trade-off analysis for variable precision lstm
networks on fpgas. pp. 89–897 (08 2018). https://doi.org/10.1109/FPL.2018.00024

16. Xilinx: Alveo U280 Data Center Accelerator Card (2022),
https://www.xilinx.com/products/boards-and-kits/alveo/u280.html

17. Xilinx: Vitis (2022), https://www.xilinx.com/products/design-tools/vitis/vitis-
platform.html

18. Xilinx: Vitis AI (2022), https://www.xilinx.com/developer/products/vitis-ai.html
19. Xilinx: Zynq UltraScale+ MPSoC ZCU104 Evaluation Kit (2022),

https://www.xilinx.com/products/boards-and-kits/zcu104.html
20. Zhang, X., Xia, H., Zhuang, D., Sun, H., Fu, X., Taylor, M.B., Leon Song, S.:

h-lstm: Co-designing highly-efficient large lstm training via exploiting memory-
saving and architectural design opportunities. In: 2021 ACM/IEEE 48th Annual
International Symposium on Computer Architecture (ISCA). pp. 567–580 (2021)

21. Zheng, B., Vijaykumar, N., Pekhimenko, G.: Echo: Compiler-based gpu memory
footprint reduction for lstm rnn training. In: 2020 ACM/IEEE 47th Annual Inter-
national Symposium on Computer Architecture (ISCA). pp. 1089–1102 (2020)


