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Abstract. Serverless is an emerging paradigm that greatly simplifies the
usage of cloud resources providing unprecedented auto-scaling, simplic-
ity, and cost-efficiency features. Thus, more and more individuals and or-
ganizations adopt it, to increase their productivity and focus exclusively
on the functionality of their application. Additionally, the cloud is ex-
panding towards the deep edge, forming a continuum in which the event-
driven nature of the serverless paradigm seems to make a perfect match.
The extreme heterogeneity introduced, in terms of diverse hardware re-
sources and frameworks available, requires systematic approaches for
evaluating serverless deployments. In this paper, we propose a methodol-
ogy for evaluating serverless frameworks deployed on hybrid edge-cloud
clusters. Our methodology focuses on key performance knobs of the
serverless paradigm and applies a systematic way for evaluating these
aspects in hybrid edge-cloud environments. We apply our methodology
on three open-source serverless frameworks, OpenFaaS, Openwhisk, and
Lean Openwhisk respectively, and we provide key insights regarding their
performance implications over resource-constrained edge devices.
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1 Introduction

Serverless computing represents the next frontier in the evolution of cloud com-
puting being an emerging paradigm that segregates computing infrastructure
from software development and deployment. This results to resource elasticity
and seamless scalability combined with lower operational costs. In serverless,
also known as Function-as-a-Service (Faas), short-lived, stateless, event-driven
functions are usually triggered by various sources. Today several public cloud
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vendors already support serverless, e.g., AWS Lambda (Amazon) [2] and Google
Cloud Functions [3], while the global market size of serverless is projected to
triplicate by the end of 2025 [8].

While originally designed for the cloud, the benefits of serverless architec-
tures have the potential to be employed in edge computing environments, where
computational resources and applications are distributed across the edge-cloud
continuum [16]. In fact, serverless shares many common principles with the
edge computing paradigm, which allows for low-latency response and Quality-of-
Service (QoS) guarantees to event triggers, by collocating computing resources
closer to the source of data. Moreover, the development of lightweight contain-
ers [20], orchestrators [4,26] and serverless frameworks [12] for edge devices also
paves the way towards the consolidation of edge and serverless paradigms.

Nonetheless, the potential benefits of such a combination can be obtained
only if efficiently designed, implemented and deployed. Otherwise, the energy-
and computation-limited nature of edge computing devices can lead to inconsis-
tent and unreliable systems [10]. While previous research works have put effort on
characterizing the performance of serverless infrastructures and identifying po-
tential bottlenecks and limitations, they rely mostly on serverless solutions pro-
vided by public cloud vendors [17,25] or custom deployments on high-end com-
puting resources [18, 24]. However, the extreme heterogeneity both in terms of
hardware resources, as well as serverless solutions available, found in edge/cloud
environments requires systematic methodologies for identifying and evaluating
the implications of such deployments on the performance of the system.

In this paper, we propose a methodical approach for the evaluation of server-
less frameworks on hybrid edge-cloud infrastructures. Our methodology takes
into account key performance knobs of serverless frameworks and exposes their
implications on resource-constrained edge deployments. We apply our method-
ology on three open-source serverless frameworks, i.e., Apache Openwhisk [11],
Lean Openwhisk [12] and OpenFaaS [6] deployed on top of a hybrid cluster,
combining both high-end servers and resource-constrained edge devices.

2 Background & Related Work

Although cloud computing has been significantly improved over the last years,
its full-potential has not been released yet. Cloud users continue to bear a bur-
den from resource provisioning operations and the pay-as-you-go promise has
not yet been fulfilled by the traditional cloud offerings. Serverless computing
aims to overcome these limitations by introducing a new layer of abstraction
to developers, i.e., remove the burden of server management from the end user
(-less), delegating them to the platform.

From the developers’ point of view, responsibilities are limited to the source
code submission in the serverless platform; they are relieved from pre- and post-
development tasks (e.g., infrastructure setup, resource provisioning). In addition,
the key economic incentive for clients stems from the cost savings due to fine-
grained billing (e.g., 1ms billing granularity in AWS Lambda). Scaling down to
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Fig. 1: Proposed methodology for systematic analysis of serverless infrastructures

zero, combined with the demand-driven resource elasticity, precludes clients from
paying for idle resources. Providers, on the other hand, are given the opportunity
to maximize their data-centers’ utilization, by performing fine-grained resource
multiplexing due to the short run time and stateless nature of functions.

While previous research efforts have examined the performance implications
of serverless frameworks [13, 17, 24, 25, 27], these works mainly focus on server-
less deployments on the cloud, thus, neglecting the potentials of serverless de-
ployment on the edge. Compared to conventional cloud serverless deployments,
serverless on the edge reveals new challenges that need to be undertaken [10].
Several research works have designed custom, lightweight frameworks, desig-
nated for the edge, by either utilizing WebAssembly [14,15] or application level
isolation through multi-threading [21]. Authors in [23] optimize existing open-
source frameworks and furtherly encourage [22] the serverless on edge paradigm
adoption. However, these approaches either refer to single-node deployments or
neglect the heterogeneity found in hybrid edge-cloud infrastructures.

3 Systematic analysis of serverless infrastructures

In this section, we describe our proposed methodology for systematically evaluat-
ing serveless infrastructures over hybrid edge-cloud deployments. This method-
ology, illustrated in Fig. 1, includes the evaluation of key features for serverless
platforms at the edge.

3.1 Proposed Methodology

Our systematic way of evaluating serverless frameworks relies on key enablers
and open challenges that characterize such infrastructures. More specifically, our
methodology consists of 5 evaluation steps (Fig. 1), which are described below:

1. Idle state profiling: Due to the inefficient and insufficient resources found at
the edge, idle-state resource utilization is a key factor for a platform’s evaluation.
As a first step of our approach, we examine the additional overhead introduced
by the target platform when deployed on the underlying infrastructure.

2. Cold-start Analysis: In existing serverless platforms, delays incurred during
function instantiation can lead to significant execution time overheads, compared
to native execution. From the platform’s point of view, this additional latency
includes a) the time required to start the sandbox and b) the time required for
runtime initialization. While there have been different sandboxes proposed in



academia [19] and industry [9] for lightweight virtualization, in this study, we
focus on performance characteristics of Docker containers, which currently form
the most typical way of deploying applications to the cloud. From application’s
perspective, this latency delay occurs due to the different runtimes of modern
programming languages, e.g., Node.js, Python, Go, each of which induces dif-
ferent performance overheads. This variability may get even worse when those
functions are deployed on heterogeneous edge devices.

3. Concurrent invocation analysis: Serverless functions hosted on edge de-
vices may be invoked concurrently by multiple clients or triggers. Therefore,
bottlenecks on different components of a serverless platform may incur latency
on invocations’ end to end execution time. Thus, this step evaluates the latency
distribution on different levels of invocation concurrency.

4. Auto-scaling analysis: In order to minimize costs, (e.g., energy, billing)
serverless platforms need to provide elastic scalability. At the same time they
need to address bursts on invocation frequency efficiently. We evaluate the re-
sponsiveness of serverless platforms on different invocation per second intensities.

5. Payload analysis: In serverless computing, storage and computation are
decoupled. Thus, fine-grained state sharing between application becomes diffi-
cult. Most platforms utilize external object storage services, like AWS S3, which
induce additional costs and latency overhead on data sharing, especially on edge
environments with limited network bandwidth. As a next step of our method-
ology, we measure the delays provoked by payload transfer between functions
through the framework gateway.

3.2 Target serverless frameworks

Our methodology can be applied for evaluating open-source serverless frame-
works that support deployment over container orchestration frameworks (e.g.,
Kubernetes) that manage resource-constrained edge devices, as well as conven-
tional x86 machines. For the purposes of this work, we focus on three open-
source serverless frameworks, i.e., Apache Openwhisk [11] and OpenFaaS [6], as
well as a lightweight version of Openwhisk (Lean Openwhisk [12]) specifically
designed for edge computing environments. Since Openwhisk currently supports
only x86 machines, we modified and recompiled the necessary components and
runtimes to address deployments on aarch64 architectures. Below, we provide
an overview of the operation mechanisms for each one of the aforementioned
serverless frameworks.

Openwhisk architecture overview: Apache Openwhisk is an open-source, dis-
tributed serverless platform, initially developed by IBM. In Openwhisk, develop-
ers register their functions, also referred to as Actions, which can be triggered
either from associated events, external sources, or HTTP requests. Moreover,
Triggers provide endpoints that can be triggered by event sources, such as
databases, stream processing engines and others. Finally, through Rules, devel-
opers create loosely coupled associations between them.

From an architectural point of view, Openwhisk relies on four main com-
ponents for handling and executing function codes (Fig. 2a). First, Openwhisk
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Fig. 2: Architecture overview

exposes a public RESTful API which can be reached by developers to regis-
ter their Actions, Triggers and Rules. After a request passes through the API,
it triggers the controller component, which acts as the governor of the sys-
tem. The controller communicates with a database instance (couchDB), which
maintains and manages the state of the overall system and keeps information re-
garding credentials, metadata, namespaces as well as the definitions of Actions,
Triggers and Rules registered by developers. Once an event triggers a new in-
vocation, the controller after authenticating the invocation request, retrieves
the function code, and selects the most appropriate node (Invoker) to han-
dle the request. Afterwards, it publishes a message containing the code along
with invocation-related meta-data, (e.g., resource allocation, input arguments)
to Apache Kafka [1]. Finally, the Invoker builds the function code, encapsulates
it in a predefined runtime container, initializes and executes it.

Lean Openwhisk architecture overview: Lean Openwhisk [12] is a customized,
downsized distribution of Openwhisk which, however, shares the same design
principles. By replacing Kafka with an in-memory queue, and compiling jointly
some other parts, Lean Openwhisk is designed to enable the serverless paradigm
within resource-constrained edge devices. Yet, to the best of our knowledge Lean
Openwhisk only supports single-node setups.

OpenFaaS architecture overview: OpenFaaS (Fig. 2b), unlike Openwhisk, uti-
lizes a container orchestrator, e.g., Kubernetes, to manage the lifecycle of the
containers through a custom controller. An end-to-end workflow starts with a
call to the OpenFaaS API which interacts with Kubernetes objects (Pod, Deploy-
ment, Service) leveraging the OpenFaaS controller (faas-netes). According to
the default settings, functions auto-scale up or down depending on the requests
per second, by utilizing Prometheus [7] alert manager and monitoring. In ad-
dition, OpenFaaS utilizes a message bus for asynchronous function invocation.
Compared to Openwhisk, OpenFaaS does not dynamically pack and execute
code at runtime. Instead, developers have to pre-define containers containing
their function code and are always up and running on the cluster by default.



Table 1: VMs and edge nodes specifications

Server Agent 1 Agent 2 Rasp. Pi 3b+ Rasp. Pi 4b

Processor
Model

Intel®Xeon®

E5-2658A v3
Intel®Xeon®

E5-2658A v3
Intel®Xeon®

Silver 4210
Cortex-A53
(ARMv8)

Cortex-A72
(ARMv8)

Cores 4(vCPUs) 4(vCPUs) 8(vCPUs) 4 4
RAM(GB)8 4 8 1 4

These containers are augmented by OpenFaaS with an additional process, called
watchdog. The watchdog is responsible for processing incoming event triggers
and also for initializing and monitoring the functional logic of the container.

3.3 Target cluster infrastructure

Our experiments have been performed on a distributed cluster, that consists of
VMs deployed on top of high-end servers as well as typical, resource-constrained
edge devices, the specifications of which are outlined in Table 1. Moreover, we
utilize K3s as our container orchestrator, which is a lightweight distribution of
conventional Kubernetes, built for IoT and edge computing devices.

4 Evaluation

In this section we apply the profiling and analysis steps of our proposed method-
ology to assess and evaluate our target serverless frameworks (sec. 3.2) over our
cluster infrastructure (sec. 3.3). For the purposes of our experiments, we in-
tentionally place all the required components for the frameworks’ functionality,
(e.g., Apache Kafka, CouchDB, Prometheus), on the Server node, which is ded-
icated to orchestration rather than workload execution. Therefore, resources of
VM agents and edge devices (Raspberry Pis) are exclusively exploited by the
scheduled applications. Additionaly, in order to evaluate the performance of
Openwhisk on edge devices, we place the Invoker component either externally
(Agents) or internally (RPi4), utilizing the Kubernetes container factory, which
allows the placement of Openwhisk to be managed solely by Kubernetes.

Idle-state profiling: Regarding the resource consumption of our container
orchestrator, K3s introduces neglectable utilization. Its resource utilization sums
up to 10 millicpu and 200MB of RAM on average. Openwhisk, due to its com-
plicated components, has considerable resource needs. While the agents need
600 millicpu and 161MB of RAM when hosting the Invoker, its main compo-
nents deployed on the Server node contribute 1800 millicpu and 2.4GB of RAM
jointly. The Lean, single-node version of Openwhisk uses 5 millicpu and 218.93
MB of RAM on Rpi4. OpenFaaS, on the other side, being closely integrated
with Kubernetes, contributes a modest footprint on the Server node that sums
up to 66 millicpu and 83MB of RAM on the Server node. Agent and edge nodes
experience negligible overhead.

Cold-start Latency analysis: The resource-constrained edge devices in-
crease the latency of container fetching, creation and initialization.
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Fig. 3: Per platform Cold and Warm start latency breakdown

Platform dependence: Fig. 3 illustrates the cold/warm initialization and exe-
cution time of a simple Node.js function on Rpi4 and on Agent1. As initialization
latency, we define the time elapsed between function invocation and the runtime
execution. In every platform, while we observe higher latency on the edge node,
the impact of function initialization remains tremendous. As mentioned before
(Fig. 2a), since Openwhisk alleviates more tasks (e.g., source code injection), ad-
ditional post-invocation overhead is added. However, when the Invoker is hosted
externally, Openwhisk post-invocation procedure is accelerated and results in
decreased instantiation and execution time. Lean Openwhisk supporting only
Node.js-6 runtime presents the less overhead on coldstart function instantiation.
Yet, since the operational logic of the framework is embedded to a single edge
node, the warm times are increased. On the contrary, on warm invocations,
we observe decreased latency on OpenFaaS, which requires more pre-invocation
tasks, e.g., function container deployment, (Fig. 2b) from the user.

Runtime dependence: In the OpenFaaS platform, which offers greater flexi-
bility on multi-arch runtimes, we deploy a helloworld function on different lan-
guage runtimes to Rpi3 and Rpi4 to examine the invocation latency breakdown.
We execute each experiment 5 times for consistency, and the average latency
is illustrated in Fig. 4. Cold start latency is high for every language runtime.
The difference for function initialization between the warm and cold start is 8
seconds for the Rpi3 and 5 seconds for the Rpi4, respectively. Therefore, the inef-
ficient and heterogeneous resources at the edge may vary in the latency incurred
during container fetching, creation and initialization. In the warm start cases,
latency is decreased up to 4.3x in Rpi4. Comparing the alternative programming
languages, Python and Ruby runtimes provoke the greatest latency even in the
warm start cases (Fig. 4c, 4d), while Golang seems to offer the modest latency
footprint among them. Finally, except for the performance variability in func-
tion instantiation between cold/warm start and edge device, similar results are
observed in function execution time. Post-initialization (exec.) latency is smaller
after a warm compared with a cold start. Possible reasons for this phenomenon
may be trained branch predictors, or cache locality.

Concurrent Invocation Analysis: Fig. 5 depicts the distribution of 120
warm invocations of an Optical Character Recognition (OCR) (164KB png
image) function in Node.js on Rpi4, when invoked concurrently by multiple
sources. Invocations were generated using the loadtest [5] tool on the Server. In
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Fig. 5: Applications relative performance in different workload density.

both platforms, latency increases drastically when 4 or more invocations occur
concurrently. The high standard deviation of Openwhisk workload distribution
depicts the accumulated congestion occurring in its complicated pipeline after
the function invocation. Thus, there is a great performance improvement when
the Invoker is offloaded externally (Agent2). While OpenFaaS provides a more
robust distribution for higher numbers of concurrent requests (32% lower 90th
percentile latency for 10 requests), it is outperformed by Openwhisk for lower
numbers of concurrent requests which delivers lower median end-to-end latency.

Auto-Scaling: In order to evaluate the auto-scaling, we invoke the OCR
application with 1,2 and 3 invocations per second (ips). This time, instead of the
default OpenFaaS auto-scaler which utilizes Prometheus monitoring, we employ
the Horizontal Kubernetes Auto-scaler. We assign 500 millicpus per function and
define 75% as the limit that must be exceeded before scaling up. In Fig. 6 is illus-
trated the latency of Openwhisk (external Invoker) and OpenFaaS overtime on
a Rpi4 for different densities. While Openwhisk provides gradual, finer-grained
scalability, additional latency is built-up overtime due to its complex compo-
nents. Moreover, another inefficiency observed is that invocation requests are
assigned to function replicas before they are instantiated. OpenFaaS scales the
function much less aggressively, but it applies more efficient load balancing.

Payload Transfer: Fig. 7 illustrates the payload transfer latency distribu-
tion of 10 experiment repetitions for data sizes 1-80KB on Rpi4. Again, Open-
whisk requires increased latency on routing and passing the request to the mes-
sage queue. However, OpenFaaS and Lean Openwhisk incur modest latency on



0

5

10

15

20

25

La
te

n
cy

 (
se

c)

Time (sec)
0

2

4

6

8

10

12

La
te

n
cy

 (
se

c)

Time (sec)

OpenFaaS

Openwhisk

0

1

2

3

4

5

6

La
te

n
cy

 (
se

c)

Time (sec)

Fig. 6: Auto-Scaling: 1, 2 and 3 ips

Openwhisk OpenFaaS Lean Openwhisk
20

40

80

160

320

La
te

nc
y(

m
s)

Payload size (KB)
1
10
20
40
80

Fig. 7: Payload Transfer

data transfer; therefore local state passing to avoid data transfers from the server-
less edge environments to the Cloud, forms a promising field for further study.

5 Conclusion and Future Work

This paper proposes a systematic methodology for evaluating serverless plat-
forms at hybrid edge-cloud infrastructures. We apply our methodology by de-
ploying a Kubernetes cluster on top of an heterogeneous pool of devices and
evaluate three of the most widely used open-source serverless platforms, i.e.,
OpenFaaS, Openwhisk and Lean Openwhisk. As future steps, we aim to extend
our methodology for applying to real-world serverless applications and exam-
ine the performance implications of serverless frameworks on function chains
and workflows, as well as to investigate function orchestration schemes in the
edge/cloud computing continuum.
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