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ABSTRACT

Recent methods for inductive reasoning on Knowledge Graphs (KGs) transform the link
prediction problem into a graph classification task. They first extract a subgraph around
each target link based on the k-hop neighborhood of the rarget entities, encode the sub-
graphs using a Graph Neural Network (GNN), then learn a function that maps subgraph
structural patterns to link existence. Although these methods have witnessed great suc-
cesses, increasing k often leads to an exponential expansion of the neighborhood, thereby
degrading the GNN expressivity, due to oversmoothing. In this paper, we formulate the
subgraph extraction as a local clustering procedure that aims at sampling tightly-related
subgraphs around the target links, based on a Personalized PageRank (PPR) approach.
Empirically, on three real-world KGs, we show that reasoning over subgraphs extracted
by PPR-based local clustering can lead to a more accurate link prediction model than re-
lying on neighbors within fixed hop distances. Furthermore, we investigate graph prop-
erties such as average clustering coefficient and node degree, and show that there is a
relation between these and the performance of subgraph-based link prediction.

© 2023 Elsevier Ltd. All rights reserved.

1. Introduction

A Knowledge Graph (KG) is a large directed network of real-
world entities and relationships between them, where facts are
represented as triplets in the form of (head entity, relation, tail
entity). KGs have brought important solutions to many real-
world applications, such as semantic parsing [1, 2], informa-
tion extraction [3, 4], object detection [5], scene graph gen-
eration [6], and question answering [7, 8]. Despite the huge
amounts of relational data, one of the major challenges is that
KGs typically suffer from incompleteness, as links between the
entities are often missing. Therefore, link prediction has be-
come a fundamental task [9], that aims at estimating the likeli-
hood of the existence of relations between KG entities.
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Figure 1: An example of a Knowledge Graph: (France and Person are hub
nodes — connected to many other nodes in the graph). A logical rule that can
be extracted (highlighted with a red triangle): if (X, painted, Y) and (Y, exhib-
ited_at, 7)), then (X, has_works_in, 7).

Numerous embedding-based methods have been developed
for link prediction, by representing entities and relations in a
low-dimensional space [10, 11, 12, 13]. However, those meth-
ods are limited to the transductive setting, where every entity
at inference time must be seen during training. The inductive



link prediction task, which is the focus of this paper, is more
challenging since it aims at predicting missing links between
entities, where entities during training and inference can be dif-
ferent [14, 15, 16]. Inductive entity-agnostic methods predict
missing links by learning logical rules from the KG. For ex-
ample, from the KG shown in Figure 1, a rule that can be in-
duced: If (X, painted, Y) and (Y, exhibited_at, 7), then (X,
has_works_in, 7).

The common strategy of entity-agnostic reasoning is to (i)
extract an enclosing subgraph around each target link, (ii) en-
code the subgraphs using a Graph Neural Network (GNN) [17],
and (iii) learn a function that maps subgraph structural pat-
terns to a link’s presence. Existing methods extract the sub-
graphs by incorporating all nodes indistinguishably at a given
number of hops from the target links. In such methods, sub-
graph node importance is computed by a fixed scheme based
on its distance with the target link, then added as node fea-
ture [15, 14]. SEAL [14] has proved that a relatively small
number of hops, such as 3-hop, is enough for learning high-
order heuristics. However, even 3-hop frequently results in very
large subgraphs, especially if nodes with high degree (hubs) are
included [14, 18].

GNNss have some limitations when integrating node features
and capturing topological patterns in large and complex graphs
due to oversmoothing [19, 20, 21, 22]. Therefore, increasing
the size of the neighborhood around the target entities does not
improve (or may decrease) the GNN predictive performance.
In this paper, we seek to address whether reasoning on locality-
aware subgraphs around the target link can produce higher link
prediction accuracy than reasoning over subgraphs extracted
by a fixed number of hops. Thus, our research questions are:
(RQ1) does the locality of training (and inference) data have an
effect on the accuracy of link prediction and, if so, (RQ2) how
much local data can effectively train a link prediction model?.

Inspired by previous studies [23, 24, 25, 26], we utilize
the strong localization properties of the personalized PageR-
ank (PPR) [27] to preserve more meaningful neighborhood (i.e.,
context) around a target link in the graph. More precisely, we
use PPR to perform locally-biased random walks around given
seed nodes (the head and tail of a target link), which allows us
to rank the importance of nodes in a graph from a target link.
We then rely on PPR scores to extract local and dense subgraphs
near the target links, for the training and inference phases of a
proposed GNN-based link prediction model.

In brief, the main contributions of this paper are as follows:

e Introducing a novel strategy, named LCILP (Local
Clustering for Inductive Link Prediction), for inductive
link prediction, by reasoning over locally-aware subgraphs
extracted by PPR-based local clustering technique.

e Studying the relation between graph properties and our
proposed approach. We show that that there is a rela-
tion between the average clustering coefficient, the aver-
age node degree of a graph, and the performance of link
prediction.

o Evaluating our approach on three benchmark datasets for
inductive link prediction. Our model demonstrates a sig-
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nificant gain in performance compared to state-of-the-art
models in terms of AUC-PR and Hits@10.

2. Related work

2.1. Embedding-based link prediction

Various methods that represent KG entities and relations
in a low-dimensional space have been proposed, such as
TransE [10], TransH [11], ComplEx [12] and RotatE [13].
Those methods have focused on transductive link prediction;
they rely on the fact that entities at inference time were seen
during training. To cope with this limitation, inductive repre-
sentation learning approaches have been proposed. However,
inductive approaches do not necessarily focus on exploiting lo-
cal structural patterns in KG, which is strictly related to induc-
tive reasoning. For instance, some approaches have leveraged
node features [28, 29], but there are many KGs without node
features. Other works, such as [30], need the unseen nodes to
be surrounded by seen nodes and can not handle entirely new
graphs.

2.2. Rule induction-based link prediction

Several rule learners, including Neural-LP [31], RuleN [32],
and DRUM [33], have been proposed to learn entity-
independent logical rules in KGs for link prediction. How-
ever, such models suffer from the problem of scaling to large
datasets [15]. Therefore, deep learning methods have been
developed. These methods mainly focus on learning heuris-
tics from enclosing subgraphs around the target links using a
GNN [17]. For example, SEAL [14] induces enclosing sub-
graphs based on the union of target nodes’ neighbors up to
k-hop, then encodes the structural patterns of the subgraphs
using a GNN [34]. GralL [15] extends SEAL to support di-
rected multi-relational KGs, by replacing the classical GNN
with multi-relation R-GCN [35]. In GralL, the enclosing sub-
graph is induced by all the nodes that occur on a path between
the two target nodes; it is given by the intersection of the k-
hop neighborhood nodes of those two target nodes. TACT [16]
extends GralL by modeling relation correlation patterns. How-
ever, in TACT, the authors report results of relation classifica-
tion; predicting relation between a given (head, tail), while in
SEAL and GralL, the authors evaluate their models on link pre-
diction by inferring head, given (relation, tail) and vice versa.
Other hybrid approaches that incorporate prior logic rules into
the GNN are proposed [36, 37, 38]. Although these methods
have achieved good performance, they lack effective relation
modeling and cannot be applied to inductive settings.

2.3. Graph sampling for GNNs

There are some works that have focused on sampling sub-
graphs to design more efficient and scalable algorithms for
training deep and large GNNs. For example, GraphSAGE [28]
proposes the idea of neighborhood sampling, by first down-
sampling node neighborhoods randomly to a fixed-size set of
nodes, then aggregating the sampled ones. GraphSAINT [39]
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Figure 2: Our approach computes a local sub-graph selected by PPR around the
target set and applies node labeling as input to a GNN to score the relation.

proposes random walk samplers to construct mini-batches dur-
ing GNN training. Cluster-GCN [40] adopts a global graph par-
titioning algorithm to partition the input graph into subgraphs,
and run a GNN on each subgraph. Alternatively, DropEdge [41]
randomly removes a certain number of edges from the in-
put graph at each training epoch. Recently, PPNP [42] and
PPRGo [24] propose to use PPR for scaling GNN for semi-
supervised node classification. However, those works have fo-
cused on node classification; less attention has been given to
link prediction. In this paper, we aim to enhance the inductive
link prediction, by reasoning over the most relevant parts of the
graph, using a PPR-based approach.

3. Approach

To perform inductive link prediction, our model aims to score
the plausibility of a target triplet (u, r;, v), where r; is a target
relation between a head node u and tail node v in a KG. We pro-
pose an approach that consists of four main sequential steps: (1)
extracting a subgraph around u and v using a PPR-based local
clustering technique, (2) labeling the extracted subgraph nodes,
(3) encoding the subgraph using a GNN model, (4) scoring the
subgraph. Figure 2 gives an overview of the approach. We de-
tail each of the four steps in the following subsections.

3.1. Step 1: Subgraph extraction

The subgraph extraction consists of two steps: first, nodes
are scored according to their proximity to a given seed set, rep-
resenting the farget entities. Secondly, nodes are considered in
decreasing order of their score to create nested local clusters,
which can then be evaluated using a goodness metric.

PPR, also known as random-walk-with-restart, is one of
the most common scoring methods that measure node impor-
tance [43, 44, 45]. We use an approximate PPR to overcome
the problem of PPR being computationally expensive [43]. As
shown in Algorithm 1, we rank the vertices of a graph G based
on the seed set Q0 = {u,v}. The approximation parameter €
maintains two vectors: the solution vector p and a residual vec-
tor r, where p vector is the approximation of the PPR vector
and vector r contains the approximation error. The teleporta-
tion probability @ controls the amount of information we are
incorporating from the neighborhood of the seed set. Namely,
when the value of « is close to 1, the random walks teleport to
the seed nodes more often, and we are therefore placing more

Algorithm 1 Approximate PPR-based ranking

Input: Graph G = (V, E) with vertices V and edges E, seed set
Q = {u, v}, teleportation probability o € (0, 1], residual error €.
Output: A sequence of nested sets of vertices ranked by the
approximate PPR.

1: Initialize PageRank vector p(x) =0 VxeV;
1 .

) e 1. _ 3 ifx e Q, .

2: Initialize r(x) = { 0 otherwise. VxeV;

>

r(x)

3: while MAXxeV Foarry

x do

€, where deg(x) is the degree of node

4 F=r;

5: p(x) = p(x) + ar(x);

6: (x)=(1-a)r(x)/2;

7 for each y such that (x,y) € E do

8 () = r(y) + (1 — a)r(x)/(2deg(x));

9: end for

10: r=r;

11: end while

12: Sort vertices in descending order of their score, so that
p(x1) = p(xp) = ... = p(xy), where J is the number of
vertices with non-zero scores;

13: Teturn S = {$§ € S, G, ...
j},and je{l,.., J}

,C S;), where §; = {xli <

importance on the immediate neighborhood of the nodes. As
the value of @ decreases, we instead give more importance to
the extended (multi-hop) neighborhood of the seed nodes.
Algorithm 1 produces a sequence S of nested sets of vertices
representing local clusters, S = {S; C S, C,...,C §;}, ranked by
the PPR. Given a j-th set in S, we measure its quality using the
conductance, which determines how tight-knit a set of vertices
is in a graph [43]. The conductance of S; C V is calculated as:

cut(Sj)
min (VOl(Sj), VOl(gj)) ’

(1)

conductance(S;) =

where cut(S;) is the number of edges with one end point in §;
and the other end point in the complement set S = VS,
and vol(S;) is the number of edge end points in S;. The con-
ductance of a set S;;; can be computed from the conductance
of §;. Among the sets S, we select the set §; with the lowest
conductance since it indicates a good local cluster; cluster ver-
tices are densely connected with the target link, and sparsely
connected with the rest of the graph. We then prune the nodes
that do not occur on a path between u and v. The final out-
come from this process is a subgraph reflecting the local clus-
ter to be used for reasoning, defined as G(u,r;,v). The run-
ning time of calculating the PageRank vector p is O (i), while
the complexity of sorting p and calculating the conductance is
O (ISupp(p)llog(ISupp(p)|) + vol(Supp(p))), where Supp(p) is
the set of non-zero vertices.

3.2. Step 2: Node labeling

Afterward, we define an entity-independent embedding for
each entity (node) in the subgraph. Following [15], each node
i in the subgraph around u and v nodes of the target relation is



labeled with the tuple (d(i, u), d(i, v)), where d(i, u) is the short-
est distance between nodes i and u (likewise for d(i,v)). The
two target nodes, u and v, are labeled (0, 1), and (1, 0) to be
identifiable by the model. This scheme captures the position of
each node in the subgraph with respect to the target link. The
node features are defined as [one-hot(d(i, u)) ® one-hot(d(i, v))],
representing the concatenation of the one-hot embedding of the
labels. Therefore, the dimension of node features is bounded
by the maximum number of hops in the extracted subgraphs.

3.3. Step 3: Subgraph embedding

We then use a multi-relational R-GCN [35], but any rela-
tional GNN could be used, to learn the embeddings of the ex-
tracted subgraph G(u, r;,v). R-GCN adopts a general message-
passing scheme [46], where a node representation is iteratively
updated by combining it with the aggregation of its neighbors’
representation.

In the k-th layer of our GNN, af.‘ represents the aggregated
message from the neighbors of node i. The aggregation func-
tion is defined as:

a; = zR: Z a];f(s,i)Wi]’(hls(_]’ 2)
r=1

SEN, (i)

where R is the total number of unique relation types , N,(i) rep-
resents the neighbors of node i under relation r, Wf is the trans-
formation matrix of the k-th layer over relation r, and s, is
the edge attention weight at the k-th layer corresponding to the
edge between nodes s and i via relation r.

The latent representation of node i in the k-th layer is:

B = ReLUWERE! + ab), 3)

where W, is a transformation matrix that aims at retaining the
information of the node itself using a self-loop, and ReL U is an
activation function.

The subgraph representation of G(u,r;,v) is obtained by
average-pooling of all the node representations:

1
ht =— » 4
G(u,ri,v) W% ; i 4

where V denotes the set of vertices in G(u, 7, v), and L repre-
sents the number of layers of message-passing.

3.4. Step 4: Scoring and loss function
For scoring the likelihood of a triplet (u, r;,v), we concate-
nate the subgraph representation hé(u, 1, v), the target nodes’
latent representations (i% and hL), and a learned embedding of
the target relation (e,,), then pass these concatenated represen-
tations through a linear layer:
score(u, ry,v) = [hé(u, rv)®ht @ hf De, W, ®)

u

where & refers to the concatenation operation, and W is a learn-
able weight matrix.

Finally, we train the model to score positive triplets higher
than negative ones. More precisely, for each triplet in the train-
ing KG, we sample a negative triplet by replacing the head
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or tail of the triplet with a uniformly sampled random entity.
We then use the following loss function to train our model via
stochastic gradient descent:

7]
L= Z max (0, score(u;, ry,, v;) — score(ii;, 15, Vi) +7y),  (6)
i=1

where T is the set of triplets in the training graph, (u;, r;,, v;) and
(i, v, v;) are the positive and negative triplets respectively, and
vy is the margin hyperparameter.

4. Experiments

4.1. Datasets

We perform our experiments considering three state-of-the-
art publicly available benchmark datasets for inductive link pre-
diction proposed in GralL [15]: (1) WNI18RR [47]: is de-
rived from WordNet [48], in which entities correspond to word
senses, and relationships define lexical relations between them;
(2) FB15K-237 [49]: is a subset of Freebase [50], a large KG of
general facts, mostly about movies, actors, awards and sports;
(3) NELL-995 [51]: is a KG constructed from high confidence
facts of NELL system [52].

Each of the datasets has four versions with different numbers
of relations, number of links, and connectivity properties. Be-
ing an inductive task, the datasets were sampled by ensuring
that train and test sets do not have overlapping entities. In Ta-
ble 1, we summarize the statistics and structural properties of
the datasets. We report the average degree of the nodes since
the Approximate PPR algorithm is highly dependent on node
degrees. Furthermore, we report the average clustering coef-
ficient, which is a measure of the degree to which nodes in a
graph tend to cluster together [53]. The average clustering co-
efficient is computed as follows:

1< .
AvgC = - ; C@), (7

where n is the number of nodes in the graph, and C(i) is the
local clustering coefficient for given node i given by:
a 2T(®)

~ deg(i)(deg() ~ 1)’

where T(7) is the number of triangles through node i, and deg(i)

is the degree of node i. The average clustering coefficient over
both the train and test is computed as follows:

C(i) ®)

AvgC-2 = —L_ (3 CGi) + T, CG)). 9)

Ny i= i=

where n,, and n, is the number of nodes in the training and test-
ing graphs, respectively. Topology-based heuristics often rely
on triangular patterns to extract logical rules [54, 55]. Hence,
we assume that graphs with a high average clustering coeffi-
cient will have a high performance of inductive link prediction,
in comparison to the ones with a low clustering coefficient. It
is worth noting that we do not use the AvgC or AvgC-2 during
training or testing our model, but only to assess the relation-
ship between the performance of our model and the underlying
structure of the KGs.
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Table 1: Statistics of the inductive benchmark datasets: number of unique relations (#Rel), number of nodes (#Node), number of links (#Link), average node degree
(Deg), average clustering coefficient per train/test set (AvgC), and average clustering coeflicient considering the nodes in both train and test sets (AvgC-2).

WNI18RR FB15k-237 NELL-995
#Rel #Node #Link Deg AvgC AvgC-2 | #Rel #Node #Link Deg AvgC AvgC-2 | #Rel #Node #Link Deg AvgC AvgC-2
vl train | 9 2746 6678 243  0.087 0.091 183 2000 5226 2.61 0.115 0.097 14 3103 5540 1.79  0.088 0.083
test | 9 922 1991 2.16 0.104 146 1500 2404 1.60 0.070 14 225 1034  4.60 0.020
w2 train | 10 6954 18968 2.73 0.091 0.088 203 3000 12085 4.03 0.126 0114 88 2564 10109 3.94 0.165 0.147
test 10 2923 4863 1.66 0.079 : 176~ 2000 5092 2.55 0.095 : 79 4937 5521 1.12  0.124 :
3 train | 11 12078 32150 2.66 0.079 0.069 218 4000 22394  5.60 0.129 0112 142 4647 20117 4.33 0.133 0.134
Y2 fest | 11 5084 7470 1.47 0044 187 3000 9137 3.05 0.087 122 4921 9668 196 0.135
va train | 9 3861 9842 255 0.095 0.086 222 5000 33916 6.78 0.148 0.132 77 2092 9289  4.44 0.157 0.117
test | 9 7208 15157 2.10 0.080 204 3500 14554  4.16 0.107 61 3294 8520 2.59 0.087
Table 2: Comparison with the baseline methods (AUC-PR).
WNI18RR FB15k-237 NELL-995
Methods vl v2 v3 v4 vl v2 v3 \Z} vl v2 v3 v4
Neural-LP 86.02 83.78 6290 82.06 | 69.64 76.55 7395 7574 | 64.66 83.61 87.58 85.69
DRUM 86.02 84.05 6320 82.06 | 69.71 7644 74.03 7620 | 59.86 83.99 87.71 8594
RuleN 90.26 89.01 7646 85.75 | 7524 88.70 91.24 91.79 | 8499 8840 87.20 80.52
GralL 9434 94.18 85.80 92.72 | 84.69 90.57 91.68 9446 | 86.05 92.62 93.34 87.50
LCILP (Ours) ‘ 9551 96.86 90.87 94.12 | 85.64 91.15 9293 94.63 ‘ 79.23 9431 94.10 89.92
Table 3: Comparison with the baseline methods (Hits@10).
WNI18RR FB15k-237 NELL-995
Methods vl v2 v3 v4 vl v2 v3 v4 vl v2 v3 v4
Neural-LP 7437 6893 46.18 76.13 | 5292 5894 5290 55.88 | 40.78 78.73 82.71  80.58
DRUM 7437 6893 46.18 76.13 | 5292 58773 5290 55.88 | 19.42 7855 8271  80.58
RuleN 80.85 7823 5339 7159 | 4976 77.82 87.69 8560 | 53.50 81.75 77.26 61.35
GralL 8245 78.68 5843 7341 | 64.15 81.80 82.83 89.28 | 59.50 9325 9141 73.19
LCILP (Ours) ‘ 88.30 84.12 72.68 79.46 ‘ 7097 81.89 84.33 89.84 ‘ 5240 9358 9215 82.90

4.2. Baselines and implementation details

We evaluate our model against the following baselines and
state-of-the-art competitors: Neural-LP [31], DRUM [33],
RuleN [32], and GralL [15]. We implement our model on
PyTorch [56]. In order to extract the local subgraphs, we set
the teleportation probability to a commonly used value of @ =
0.15 [25, 26] for all the datasets, and the approximation param-
eter € to le-3 for WN18RR, NELL-995 and v1 of FB15k-237,
while we set it to le-4 for the remaining partitions of FB15k-
237 (v2, v3, and v4). The local subgraphs extracted by our
model reach 3-hop for FB15k-237 and NELL-995, and 4-hop
for WN18RR. However, in order to maintain a fair compari-
son with GralL [15], we limit the subgraphs to 3-hop around
the target link, and we employ a 3-layer GNN. To train our
model, we use Adam optimizer [57] with a learning rate of
0.01, and v is set to 10. The number of training epochs is
set to 50. Finally, we run our experiments on a machine with
two Intel Xeon Gold 6230 CPUs running at 2.10 GHz with
128 GB of memory, powered by Nvidia Quadro RTX 5000
GPU with 16 GB of memory. Our code is made available at:
https://github.com/hebatef/LCILP.

4.3. Evaluation protocol

We evaluate our model following the same protocol used
in GralL [15]. More specifically, we use the area under the
precision-recall curve (AUC-PR) and Hits@10, classification

and ranking metrics, respectively. To compute AUC-PR, we
sample one negative triplet for each test triplet and evaluate
which triplet has the larger score. For Hits@ 10, we rank each
test triplet among 50 randomly sampled negative triplets in
terms of the scores, to see whether the true triplet can rank in
the top 10. The negative triplets are obtained by replacing the
head or the tail of the test triplets with other entities.

4.4. Results and discussion

In Table 2 and Table 3, we report the mean AUC-PR and
Hits@10 averaged over five runs, respectively. Our model
outperforms the strongest baseline (GralL), on almost all the
datasets; 11 out of 12 datasets. In terms of AUC-PR, the perfor-
mance gain is significant, with an improvement of up to 5.07%.
In terms of Hits@ 10 evaluation metric, again, the improvement
is consistent across the datasets with a maximum of 14.25%
absolute increase. To answer RQ1, in section 4.4.1, we ana-
lyze the performance of our model against GralL, which reason
over subgraphs extracted by a fixed number of hops. Moreover,
in section 4.4.2, we explore the relationship between the aver-
age clustering coefficient of a graph and the performance of our
local clustering-based model. In order to answer RQ2, we an-
alyze the performance of our model on different k-hop settings
in section 4.4.3.



Table 4: The maximum number of subgraph nodes under different subgraph
extraction strategies (we highlight the percentage decrease).

WNI8RR FB15k-237 NELL-995
GralL Ours ‘ GralL Ours ‘ GralL Ours
vl | 172 102 (-40.7%) | 1191 116 (-90.3%) | 890 218 (-75.5%)
v2 | 202 109 (-46.0%) | 1989 743 (-62.6%) | 1813 245 (-86.5%)
v3 | 514 126 (-75.5%) | 3032 622 (-79.5%) | 3680 293 (-92.0%)
v4 | 121 103 (-14.9%) | 3951 538 (-86.4%) | 2060 135 (-93.4%)

4.4.1. Analysis on different subgraph extraction strategies

On WNI18RR datasets, we obtain the highest gain in the per-
formance in comparison to FB15k-237 and NELL-995; the in-
crease in the performance of WN18RR v3 reaches +5.07% and
+14.25% in AUC-PR and Hits@10, respectively. WNI18RR
v3 has the largest reduction in the number of nodes among
WNI18RR datasets when using our model, as shown in Table 4.
This supports the intuition that limiting the subgraphs to a local
cluster can bring a high gain in the performance. When tak-
ing into consideration FB15k-237, the maximum increases are
+1.25% and +6.82% in AUC-PR and Hits@ 10, respectively.
This shows that our proposed model is competitive also when
dealing with more challenging datasets that have a high number
of unique relation types. Similar to WN18RR v3, FB15k-237
vl has the largest reduction in the number of nodes and the
largest increase in the performance. Finally, in NELL-995, the
improvement reaches a maximum of +1.69% and +9.71% in
AUC-PR and Hits @ 10, respectively. Consistent with WN18RR
and FB15k-237, NELL-995 v4 has the largest subgraph reduc-
tion and the largest increase in performance among NELL-995
datasets.

From these results, we can confirm that sampling fewer but
more relevant nodes enhance the performance of link predic-
tion and that relying on local and dense subgraphs brings better
performance due to the fact that topology-based heuristics often
rely on triangular patterns to extract logical rules [54, 55]. Tri-
angles tend to exist between the target relation and the relations
of the surrounding dense subgraph. Moreover, links are more
likely to be established between nodes in a tightly connected
cluster than randomly. On the other hand, subgraphs induced
based on a fixed number of hops often contain noisy relations
that degrade the link prediction performance.

007 008 009 01 01 012 013 014 0I5 007 008 005 01 01 012 013 014 015
AvgC-2 AvgC-2

Figure 3: AvgC-2 versus ICILP performance (AUC-PR and Hits@ 10). Consid-
ering each dataset separately, the higher the AvgC-2 the better the performance.

4.4.2. Average clustering coefficient and performance

The clustering coefficient is an indicator of the degree of
tightness between nodes [58]. Thus, a high average cluster-
ing coefficient indicates that there is a high tendency to find
local clusters around the target link. To explore the relationship
between the average clustering coefficient of a graph and the
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performance of inductive link prediction, we plot in Figure 3
the clustering coefficient, calculated over the train and test sets
(AvgC-2 in Table 1), and the performance of our model (AUC-
PR and Hits@10). In general, as the clustering coefficient in-
creases, there is an improvement in the performance. In graphs
with low average clustering coefficient, such as WN18RR v3,
FB15k-237 v1, and NELL-995 vl, link prediction performs
poorly. This highlights the importance of focusing on lo-
cal clusters around the target links, and those topology-based
heuristics rely on triangles to extract logical rules.

WN18RR v1

WN18RR v2

WN18RR v3 WN18RR v4

-

FB15k-237 v3

NELL-995 v1 NELL-995 v3

Figure 4: Performance of LCILP (Ours) and GralL on k-hop.

4.4.3. Performance on k-hop

We conduct additional experiments to analyze the perfor-
mance of link prediction when using 2-hop and 4-hop sub-
graphs. More precisely, we use PPR for ranking nodes around
a target link, but we do not utilize the conductance to extract a
local cluster and to specify the maximum number of hops. We
instead fix k, and extract the subgraph by inducing nodes with
the highest PPR scores up to k-hop. We employ 2-layer and 4-
layer R-GCNss, respectively, for the different k-hop settings. As
shown in Figure 4, we observe that 4-hop frequently degrade
the performance of link prediction for the graphs with high av-
erage node degree, such as FB15k-237 and NELL-995. These
graphs tend to have large subgraphs around the target relation.
This confirms that larger subgraphs can be noisy to predict a
link and that focusing on the local cluster enhances the link
prediction performance. Finally, from the reported results, we
conclude that our proposed model still outperforms GralLL on
most of the datasets over the different k-hop settings.

4.5. Parameter sensitivity

To analyze the effect of € hyperparameter on the perfor-
mance of our model, we experiment with different values of
€ =[le—2,1e —3,1e — 4,1e — 5]. The results show a trade-
off between performance and computational time; AUC-PR in-
creases for a more accurate approximation of the PPR vectors
(smaller €), which in turn corresponds to higher computational
time. For example, in Figure 5a, WN18RR v3 model with
€ = le — 2 has an overall (training + testing) runtime of 46
minutes and AUC-PR = 85.32, while a model with € = 1le — 3
has an overall runtime of 91 minutes and AUC-PR = 90.87. In
Figure 5b, FB15k-237 v3 model with € = le-2, has an overall
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Figure 5: € versus AUC-PR and computational time of LCILP on different datasets.

runtime of 66 minutes and AUC-PR = 82.48, while a model
with € = le — 4 has an overall runtime of 182 minutes and
AUC-PR = 92.93. We observe the same behavior in NELL-995
v3; for € = le — 2, the computational time is 35 minutes with
a performance of AUC-PR = 88.87, while for € = le — 3, the
runtime reaches to 148 minutes for AUC-PR = 94.10, as shown
in Figure 5c. However, for NELL-995 v1 dataset, we observe
that the algorithm converges at le — 3, and that lower values
of €, such as le — 5, do not result in an increase in the per-
formance. We consider this trade-off to select different values
for € for the different datasets as specified in the implementa-
tion details. Although our method consumes additional time for
extracting PPR-based local subgraphs, the time complexity of
GNN decreases, since the extracted local subgraphs are smaller
than the ones from GralL.

4.6. Case study on hub nodes

We perform additional analysis to understand if the local sub-
graphs extracted by our model contain contextual and relevant
information. In particular, we validate if our proposed subgraph
extraction method can exclude hub nodes (and irrelevant nodes
connected to them). Hub nodes are nodes with a very high node
degree. They are usually connected to most of the nodes in the
graph. Since hub nodes connect different clusters of the graph,
they usually have low clustering coefficient [18]. For instance,
in the train set of FB15k-237 v1, there is a hub node reflecting
Freebase entity /m/02h40lc’, which represents ‘English’ (the
language used by almost all the movies in the dataset). This en-
tity has in-degree = 265 and clustering coeflicient = 9.96e — 4.
To ensure that such a node does not exist in the subgraphs ex-
tracted by our model, we calculate the maximum node degree
in the subgraphs extracted using our proposed method versus
the ones extracted with GralL. We find that the maximum node
degree with GralL is = 265, while it is = 15 using our approach.
This shows that our subgraph extraction method is able to filter
out hub nodes and the other irrelevant nodes connected to them.

5. Conclusions and future work

We have proposed a novel strategy for inductive link predic-
tion in Knowledge Graphs. Unlike reasoning over subgraphs
extracted by a fixed number of hops, we sampled tightly-related
subgraphs around the target links using a PPR-based local clus-
tering method, and then applied a GNN for reasoning over the
extracted subgraphs . Experimental results demonstrated the
effectiveness of our proposed approach. Moreover, we showed
that the performance of link prediction tends to increase with
the increase of the average clustering coefficient of the graph

and that graphs with high average node-degree require a small
number of hops for effective performance on the link prediction
task. In the future, we can combine any state-of-the-art predic-
tion method with our scheme. Additionally, our model can be
extended with learnable weights that control the amount of in-
formation from neighbors based on the topological properties
of the graph.
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