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A B S T R A C T   

Tree ring analysis is essential to reveal the environmental information encoded in the wood structure. It provides 
quantitative data on the anatomical structure which can be used, for example, to measure the impact of the 
fluctuating environment on the tree growth, to support global vegetation models and for the dendrochrono-
logical analysis of archaeological wooden artefacts. Currently, several imaging-based methods for tree-ring 
detection and tree-ring feature estimation exist. However, despite advances in computer vision and edge 
recognition algorithms, detection of tree-rings is mostly limited to two-dimensional (2D) datasets and performed 
manually in some cases. This paper describes a new approach to estimate the three-dimensional (3D) structure of 
tree rings and their width automatically from X-ray computed tomography data. This approach relies on a 
modified Canny edge detection algorithm, which is capable of detecting fully connected tree-ring edges 
throughout the image stack. Our results show that this approach performs well on six tree species having conifer, 
ring-porous and diffuse-porous ring boundary structures. In our study, image denoising proved to be a critical 
step to achieve accurate results. A major advantage of this procedure is that it requires very little to no user 
interaction rendering it a reproducible procedure for tree-ring width measurements. As it also provides 3D 
representations of the ring edges, it also may be used in the future for the inspection of anatomical features.   

1. Introduction 

Tree rings formation is triggered by a succession of favourable and 
unfavourable growing conditions, governed by tree genetics and sea-
sonality in photoperiod, temperature, and precipitation (Schweing-
ruber, 1996; Fritts, 2001; Rathgeber et al., 2016). They are expressed as 
regions of contrasting tissues exhibiting a broad variability of anatom-
ical structures depending on the species type and the environment 
(Schweingruber, 2007; Tarelkin et al., 2016). In temperate regions tree 
rings are generally composed of two anatomically distinguishable re-
gions – the early- and latewood, separated by an abrupt or gradual 
density transition, i.e. the tree-ring boundary, however at lower lati-
tudes the scenario is much more complex. Driven mostly by water 
availability and a weak seasonality in temperature, more than two re-
gions can occur within annual rings of tropical species, which are hardly 
distinguishable in many cases (Silva et al., 2019; Abdul Azimin and 
Okada, 2014). Tree-ring boundaries can be distinct throughout the 

entire stem or part of it, and can be wedging or interrupted or simply 
indistinct, thus making the tree-ring analysis particularly challenging 
(Worbes, 2002; Worbes and Fichtler, 2010; Blagitz et al., 2019). 

Quantitative analysis of tree-rings is crucial in the understanding, 
modelling and assessment of the evolution of the wood sample over 
time. To reveal the environmental information encoded in tree-rings, 
multiple quantitative parameters are generally required (Fonti et al., 
2010; Anchukaitis et al., 2013; Zhang, 2015; García-González et al., 
2016). Among them, tree-ring width (TRW) (i.e. distance between two 
consecutive tree-ring boundaries), for example, is a powerful and reli-
able proxy of environmental variability and in particular, climate fluc-
tuations at various geographical and temporal scales (Dietz and Von Arx, 
2005; Jones et al., 2009; Vannoppen et al., 2018). TRW has been used to 
investigate impacts of rising atmospheric CO2 concentrations (Gedalof 
and Berg, 2010). In dendrochronology, TRW series are also commonly 
used to date the harvesting time of archaeological wooden samples and 
to perform growth release analyses, allowing the detection of historical 
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forest disturbance events (Čufar et al., 2015; Maes et al., 2017). Varia-
tion in TRW are also correlated to the intra-ring wood density profiles, 
which are indicators of wood quality and used to estimate the me-
chanical properties of the wood (Kharrat et al., 2019). 

Tree-rings have been traditionally studied on stem cross sections 
(usually taken at breast height) and measured manually one-by-one by 
experts using appropriated equipment (e.g. with LinTab or Velmex 
systems), which is quite cumbersome and time-consuming (Speer, 
2010). Alternative methods commonly use standard digital images of 
the specimen surface taken by digital cameras or scans, and 
image-processing based algorithms for tree-ring boundaries recognition. 
Conner et al. (1998) proposed a semi-automated tree ring dating system 
where rings are detected by a modified Canny algorithm. Laggoune et al. 
(2005) described a parametric tree-ring detection approach that is able 
to handle noisy edges in optical images, however, its results strongly 
depend on the kind of edge model function assumed. Cerda et al. (2007) 
proposed a tree-ring detection technique, which combines a Canny al-
gorithm with a generalized Hough Transform and was tested in optical 
images of a wooden disk. Entacher et al. (2007) presented an algorithm 
for automated annual ring profile generation from CT-images, which 
applies a Mexican hat operator as approximation of the Laplacian 
operator. Wang et al. (2010) provided a method based on mathematical 
morphology and a Priority First Search algorithm to track tree-ring 
boundaries from micro-images of wood. Sundari and Kumar (2014) 
proposed an image processing approach to quantify the density of tree 
rings based on Sobel filters as edge detector. Fabijańska et al. (2017) 
presented an approach to an automatic tree-ring detection based on 
image gradient computations, which performed almost flawlessly in the 
case of conifer wood. 

Some of the above algorithms have been implemented in R-based 
packages (Hietz, 2011; Lara et al., 2015; Campelo et al., 2019). 
MtreeRing, for example, is a flexible package with graphical interface 
for TRWs measurements (Jingning et al., 2019). ROXAS (written in Vi-
sual Basic 6.0) is an image analysis tool widely used to quantify 
anatomical structures and to calculate TRWs (von Arx and Carrer, 
2014). There also exist commercial softwares enabling TRW measure-
ments (e.g. WinDENDRO™, LignoVision™ and CooRecorder), but they 
are not optimal for all purposes because the accuracy of the results de-
pends on the resolution of the scanned image (Speer, 2010). More 
recently, a deep learning approach, which applies a convolutional 
neural network (CNN) algorithm for a fully automated tree-ring detec-
tion has been proposed (Fabijańska and Danek, 2018). Its capability was 
successfully tested on optical images of three different wood species 
having ring-porous anatomical structure. Such Deep learning ap-
proaches could be promising to effectively detect tree-ring boundaries in 
large datasets, as those generated by X-ray or neutron computed to-
mography techniques. Remarkably, these procedures are rarely applied 
to a complete stack of CT cross-sections to extract the 3D morphology of 
the tree ring edge. 

Several studies, however, have provided evidence for significant 
TRW variability along the axial direction (i.e. along the stem), for 
example, in tropical Loblolly pine (Pinus taeda L.) (Yu et al., 2014; 
Tasissa and Burkhart, 1997), Douglas fir (Pseudotsuga menziesii) (Gartner 
et al., 2002), European beech (Fagus sylvatica L.) (Bouriaud et al., 2005a) 
and Norway spruce (Picea abies (L.) Karst.) (Bouriaud et al., 2005b). In 
the latter, the axial TRW variability has been correlated to a decrease in 
climate sensitivity at higher stem cross-sections (Bouriaud et al., 2015; 
van der Maaten-T and Bouriaud, 2015; Peters et al., 2020). Furthermore, 
the successful application of 2D image-based TRW measurements re-
quires proper treatment of the sample surfaces to remove impurities and 
unevenness, and to increase the contrast between early and late wood, 
which becomes exceedingly difficult to do in case of coated surfaces 
(Sass and Eckstein, 1994). Therefore, robust TRW and potentially other 
anatomical features (Novak et al., 2011; Rigling et al., 2002) measure-
ments should account for both radial and axial variability throughout - 
virtually – the whole 3D sample volume. An assessment of the 3D 

morphology of the tree ring edge helps to supersede these preparatory 
steps as well as to replace correction methods to account for sample 
surfaces that are not orthogonal to tree ring edges. In addition, the 
application of computed tomography enables a non-destructive mea-
surement of the sample which helps to preserve the sample in its original 
state. 

Expanding the tree-ring analysis to 3D imaging data is feasible by 
using X-ray Computed Tomography (XCT). XCT is a powerful and non- 
destructive imaging technique which allows the inspection of the 
entire 3D volume of a sample at different length scales (Carmignato 
et al., 2018). XCT has already been successfully applied in the field of 
dendrochronology (Okochi et al., 2007). Grabner et al. (2009), Bill et al. 
(2012) and Stelzner and Million (2015), for example, have reported on 
the limits of the measurability of year ring widths. 3D tree-ring analysis 
has been performed on tree cores of different species (Van den Bulcke 
et al., 2014; De Mil et al., 2016; Maes et al., 2017; Vannoppen et al., 
2017, 2018), using a method which exploits the 3D nature of the XCT 
imaging data to correct both ring growth and grain angles, overcoming 
several of the shortcomings of classical 2D X-ray densitometry (Van den 
Bulcke et al., 2014). Van den Bulcke et al. (2019) have also recently 
shown how to handle large physical increment core sets by using 
automated multiscale scanning and reconstruction. However, despite 
recent advances in XCT instrumentation and 3D tree-ring analysis, a 
methodology to account for tree-ring profile variability within the whole 
sample volume is still lacking. 

In this contribution, a novel automated approach to extract the 
whole 3D tree-ring structure and estimate average TRWs from 3D XCT 
data is proposed. The approach uses a modified Canny algorithm as the 
edge detector combined with appropriated filters to recognize tree-ring 
surfaces. The applicability of the approach is illustrated by automati-
cally extracting the tree-ring surfaces from 3D XCT data from six 
different wood species, quantifying their corresponding TRWs and 
comparing the results with those obtained by manual measurements on 
single CT scans images. 

2. Materials and methods 

Commercial samples of six wood species namely, Douglas fir (Pseu-
dotsuga menziesii), Spruce (Picea abies), Larch (Larix decidua), Hemlock 
(Tsuga heterophylla), Cherry tree (Prunus avium) and Ash (Quercus robur) 
from Lignum, Zurich, Switzerland, were used in this work to test the 
performance of the approach (Lignum, 2020). The samples of parallel-
epiped shape with dimensions (3 × 1 ×3) cm3 were cut for each wood 
type. 

The tomographic analysis was performed on the in-house a labora-
tory XCT system (Diondo d2, Germany). The measurements were con-
ducted by setting the X-ray source XWT-225 TCHE+ from X-ray works, 
Garbsen, Germany in high power mode and choosing an operation 
voltage of 80 kV and a filament current of 300 μA. The wood samples 
were stacked on top of each other, mounted in a sample holder and 
placed in the sample chamber. The sample was rotated 360◦ in contin-
uous mode during the acquisition. The radiographical projections were 
recorded with an X-ray detector 4343 DX-I from Varex, Salt Lake City, U. 
S.A., with a pixel size of 139 μm. The distance between the X-ray source 
and the sample and between the X-ray source and the detector was 159 
and 1100 mm respectively, giving a magnification of 6.92 and a nominal 
voxel size of 20 μm. A total of 2400 projections images were acquired 
during the sample rotation of 360◦. The resulting projections were 
converted into a 3D image stack of 2400 × 2400 × 3000 voxels using the 
CERA reconstruction software based on the filtered back projection 
Feldkamp algorithm (Feldkamp et al., 1984) from Siemens. 

Image cross-sections and 3D renderings of the wood were visualized 
in VGStudioMax3.3© and ImageJ-2.0 (Rasband, 1997) software. All 
algorithms used in this contribution were implemented in Python 3.7, 
supported by tools provided by the open-source image processing li-
braries scikit-image and OpenCV in combination with the scientific data 
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visualization cross-platform library Mayavi 4.7.2. 

3. The proposed approach 

In this section, the image processing approach developed to detect 
and quantify TRWs using 3D XCT imaging data is described. The main 
goal of the approach is to accurately calculate 3D tree-ring coordinates 
along the whole ring profile for subsequent TRW computations. A 
pipeline overview of the approach is displayed in Fig. 1 and explained in 
the following sections. To facilitate the reproduction of this paper’s re-
sults for the reader, the source code of the presented algorithms is 
available from the corresponding author upon request. 

3.1. Image denoising 

Noise in CT images may impede the extraction of microstructures 
from the cross-sectional images. This unwanted issue may arise from 
instrumental setups (e.g. scattered radiation), measurement protocols 
(e.g. source filtration, number of projections, detector noise), or 

postprocessing and reconstruction. Since the tree-ring detection mech-
anism is mainly based on gradient computations, the edge detection 
results are very sensitive to image noise. Therefore, image denoising at 
the beginning is a critical pre-processing step to increase the accuracy of 
the edge recognition output. 

Two non-linear smoothing filters which maintain the key tree-rings’ 
features for subsequent edge detection have been applied in this work 
for image noise suppression, namely the non-local means (NL-means) 
and the median filters (Buades et al., 2011; Yang and Huang, 1981). 

In the NL-means algorithm, the output value ℐ i at a given pixel, i, is 
computed as a weighted average of all N gray intensity values Ij in the 
image, 

ℐ i =
∑N

j
wijIj, wij =

e−
||I(𝒱i )− I(𝒱j )||

2
σ

h2

∑
je

−
||I(𝒱i )− I(𝒱j )||

2
σ

h2

, (1)  

where the family of weights wij depends on the similarity between the 
pixels i and j. The larger weight contributions correspond to the pixels 
whose neighbourhoods, 𝒱 j, are the most similar to the neighbourhood of 
the one to be denoised, 𝒱 i. As a result, the NL-means algorithm can 
restore well texture, that would be blurred by other denoising algo-
rithms. In a standard algorithm’s implementations, the user has to set 
two parameters: the smoothing factor, h, which stands for the distance 
between similar neighbourhoods and the standard deviation, σ, which 
account for the image noise. 

In contrast to NL-means, the median filter has a local character and 
does not use weights, but returns as an output, the median of the in-
tensity values Ij compressed in a specified kernel neighbourhood 𝒱 i of 
the pixel i (e.g. a disk of radius r): 

ℐ i = median(Ij, j ∈ 𝒱 i). (2) 

The combination of the algorithms implemented in the scikit-image 
Python package of both filters was found to be very effective in 
removing all unwanted image artefacts while maintaining the key fea-
tures of the tree-rings edges. Both 3D and 2D versions of the filters can be 
equally applied at this stage. 

3.2. Tree-ring edge detection 

To calculate the tree-rings coordinates, it is required to firstly extract 
the line edges, which represent the tree-ring boundaries from the 
background. Since the ring boundaries are characterized by a sharp 
transition of intensity from latewood to earlywood, the magnitude of the 
image’s gradient helps to detect it. 

We propose here a modified version of the 2D Canny edge detector 
algorithm (Canny, 1986) which operates slice by slice in the volumetric 
3D imaging data and incorporates some of the ideas discussed by Conner 
et al. (Conner et al., 1998), combined with the Otsu threshold, 
connected-component labeling (CCL) algorithm and the NL-means and 
median filters given in Eqs. (1) and (2). 

3.2.1. Gradient computation 
For each previously denoised XCT slice, ℐ , the horizontal and vertical 

Sobel operators are applied to determine the image gradient, ∇G = [ℐx,

ℐ y], whose magnitude 𝒢 and orientation Θ at each pixel location are 
determined as: 

𝒢 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ℐ 2
x + ℐ 2

y

√

, (3)  

Θ = arctan2(ℐ y, ℐ x), (4)  

where ℐx and ℐ y are the image partial derivatives along the x and y axes. 
The output images 𝒢 and Θ provide a strength edge map and the angles 
of the normal to the edges at each local point, respectively. Sobel filters 
implementations in Open CV and scikit-image Python’s libraries are 

Fig. 1. (a) The pipeline overview of the proposed approach. The measured XCT 
image stack is firstly loaded as input data. Secondly, the 3D imaging data is 
filtered by combining the NL-means and median filters (Section 3.1). Then, the 
tree-ring edge detection algorithm is applied slice-by-slice to generate a new 
binary 3D image stack from which the tree-ring surface coordinates are 
calculated (Section 3.2). Finally, the corresponding TRWs are computed (Sec-
tion 3.3). 
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suitable for this purpose. 

3.2.2. Non-maximum suppression 
To thin out the edges captured in 𝒢, a non-maximum suppression 

algorithm (NMS) is developed, which reduces multiple edge responses 
by searching for local maxima in 𝒢 as the most probable real tree-ring 
edges points. In contrast to the traditional Canny edge-detector, phys-
ical characteristics of tree-rings are here introduced to prevent false 
intra-ring edges detection and to reduce the algorithm’s sensitivity to 
local pixel variations, as proposed in Conner et al. (1998). The algorithm 
is implemented as follows: 

1. Quantifying the gradient’s directions: The continuous gradient di-
rections, Θij, are rounded to the nearest multiple of 45◦ to conform to 
one of 8 discrete directions, Ωn = {n π

4; n = 0,1,2,…,7}, as shown in 
Fig. 2.  

2. Tracking tree-ring orientation: The average gradient magnitude, for 
each of the eight discrete directions, 〈𝒢ij〉n, is computed. The direc-
tion Ωm with the largest gradient average magnitude, corresponds to 
the orientation with the highest probability of being the tree-ring 
orientation in the region of interest: 

Ωm→max
{〈

𝒢ij〉n; m ∈ [n]
}

(5)    

3. Selecting tree-ring edges: The gradient magnitude at each local pixel, 
𝒢ij, is compared with those of their two closest neighbouring pixels 
lying along the average tree-ring orientation, Ωm. If 𝒢ij is greater than 
those of the neighbours of interest and the grey level intensity ℐ of 
the pixel neighbour located at Ωm is greater than that of the neigh-
bour located at Ωm + π, it is considered to be a local maxima and part 
of a true tree-ring edge. Therefore it will be preserved in the output 
image. Otherwise, it would be suppressed. It is here assumed that the 
pith of the wood is along Ωm + π and the bark along Ωm. For example, 
to the top and to the bottom, for horizontal tree-rings with normals 
along Ω0 = 0◦, respectively. 

3.2.3. Final edge tracking 
The output edge map from the NMS algorithm contains 1 pixel-wide 

edge structures of variable intensities, corresponding to true tree-ring 
edges but also possibly to extraneous noise features (e.g. knots, resin 
ducts, etc.). To achieve an accurate result, the latter spurious responses 
are removed as follows:  

1. Double thresholding: Two thresholds values, ts and ti(ts > ti), are 
computed to classify all pixels in 𝒢 into three different classes: Strong 
(𝒢 ≥ ts), weak (ti ≤ 𝒢 < ts) and non-relevant (𝒢 < ti). Non-relevant 
pixels are set to zero (background) and the strong pixels are set to 
white (foreground) in the output image. Weak pixels are considered 
candidates for foreground or background, depending on their con-
nectivity. The high threshold ts is determined by using the Otsu’s 
method (Otsu, 1979) as implemented in the scikit-image Python li-
brary, whereas the lower threshold is set to 0.5ts, for each 
cross-sectional image.  

2. Connected component analysis: To finalize the edge detection, a kind 
of CCL algorithm (Wu et al., 2005) is developed to classify weak 
pixels into foreground or background. For each weak pixel candi-
date, its 8-connected neighbouring pixels are analysed. If at least one 
of the neighbours is strong, it becomes strong too and the current 
label is assigned to it. Otherwise it is classified as background. In the 
end, a binary output image with fully connected and uniquely 
labelled edges is obtained as foreground. 

3.3. 3D tree-ring width calculations 

Tree-ring widths are here calculated as the average distance between 
two consecutive tree-ring surfaces, which are determined from the 3D 
image data as follows.  

1. Determining tree-ring surfaces: Given a 3D image stack, a Cartesian 
coordinate system is chosen such that the z-axis is parallel to the 
stacking direction and the mutually perpendicular x and y axes lie on 
the image plane, as shown in Fig. (3). The edge-detector algorithm 
proposed in Section (3.2) is then applied on each 2D CT slice, to 
generate a new binary 3D image stack having tree-ring surfaces in 
the foreground as output.  

2. 3D tree-ring coordinates: Running over all slices in the binary stack, 
the 3D tree-ring coordinates are calculated from the foreground and 
labelled as, Rj,i,w = (xj, yj, zw)i, where Rj,i,w stands for the position 
vector of the jth point lying on the ith tree-ring at the slice w (see 
Fig. 3).  

3. Tree-ring width: Starting with a pair of consecutive rings in the wth 
slice, the orientation θ of the vector pointing from the first point R0,i,w 

in the ith ring to the current j-ending point in the subsequent (i + 1) 
ring, Rj,i+1,w, is calculated for all j. When the angle matches the 
orientation of the normal vector to the ith ring in a tolerance zone of 

Fig. 2. Schematic overview of the elements in the NMS algorithm. The eight 

discrete directions, Ωn =
{

n π
4; n = 0, 1, 2, …, 7

}
, are represented with black 

arrows in a neighbourhood of the current pixel (i, j). The overall tree-ring 
orientation (i.e. angle of the normal to edge, n, with respect to the x-axis) co-
incides with Ω1 = π/4. The two neighbouring pixels relevant to (i,j) in the al-
gorithm are represented in red. 

Fig. 3. A measured XCT image stack of Ash wood and its associate Cartesian 
coordinate system, C{x, y, z}. Two points, j and j′, at two consecutive rings, i 
and i + 1, on the XCT slice, z = 0, are represented by their corresponding po-
sitional vectors, Rj,i,0 and Rj′ ,i+1,0. The magnitude of the difference vector ΔRi, 

i+1,0 with orientation θ, and parallel to the structure direction n, is taken as the 
ring-width between the two points. 
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five degrees, the two points are used to evaluate the width as the 
Euclidean distance. By looping over all j-points in the ith ring, for all 
slices w, a set of pairwise distances are generated, whose average 
value, d(i,i+1)  = 〈dij,(i+1)j 〉j is taken as a representative measure of the 
corresponding tree-ring width. The angle of the normal vector n to 
the current ring is here approximated by the overall tree ring 
orientation, Ωm given in Eq. (5). The direction of n is assumed here to 
be defined in the XCT slices (see Fig. 3), a condition that is fulfilled in 
all the examples considered in this work. If the latter does not apply, 
the corresponding structure direction g should be determined first as 
proposed in Van den Bulcke et al. (2014). Then, the previously 
calculated d(i,i+1) metrics should be multiplied by the factor of cos 
(ψ) = n ⋅ g, where ψ is the angle between n and g. 

4. Results and discussion 

The proposed approach described above, was applied to detect tree- 
rings and quantify TRWs in six samples of modern wood species with 
different anatomical structures, namely: ash, cherry, larch, hemlock, 
spruce and Douglas fir. The selection of the wood species is justified 
hereafter. 

The obtained results are summarized in Fig. (4). In the left column, X- 
ray CT cross-sectional images of the six samples are shown, representing 
ring-porous wood (Fig. 4a), diffuse-porous wood (Fig. 4b) and conifer 
wood (Fig. 4c–f). As it can also be seen from Fig. (3), the ring-porous 
structure of ash mainly differ from the rest by the presence of large 
pores (i.e. vessels) in the earlywood, forming the rings. In contrast to the 
ash, the diffuse-porous structure of cherry (Fig. 4b), is characterized by 

pores of relatively small sizes distributed fairly evenly throughout the 
wood. All softwood samples (Fig. 4c-f), on the other hand, present a non- 
porous conifer like anatomical structure, consisting mainly of tracheid 
cells forming pairs of light and dark bands. All the XCT images were 
acquired with a spatial resolution of 20 μm, which was good enough to 
properly resolve the tree-rings boundaries of all wood species. The 
detected 2D tree-ring boundaries are marked in red. 

The results of applying the numerical approach to each sample, are 
presented in the middle and right columns of Fig. (4). In the middle 
column, 3D plots of the extracted tree-ring positions for all XCT slices in 
the corresponding stack, i.e. the tree-ring surfaces, are displayed. As it 
can be seen from the plots, the tree-ring detection approach performs 
very well for all wood samples considered in this study. A putative 
reason for this excellent recognition is that for almost all cases, the tree- 
ring edges are well defined and fully connected. The key issue to achieve 
such highly accurate results, relies on providing properly denoised and 
edge enhanced input images to the edge detection algorithm. In order to 
accomplish this, the two nonlinear filters described in Section (3.1) were 
applied sequentially. 

Table 1, reports the optimal combination of the filters’ parameters 
used in this work for each wood sample species considered. As it can be 
seen, application of the NL-means filter with a standard deviation 
σ = 15–35 and smoothing factor, h = 1.0, followed by a median filter 
with a disk radius of, r = 5–11 pixels, were enough to provide accurate 
results for the examined samples. The optimal choice of the parameters, 
however, will depend on the complexity of the wood species, which in 
turn will determine the spatial resolution to be used in the XCT mea-
surements. In general, the spatial resolution should be chosen high 

Fig. 4. Visualisation and analysis of tree ring properties. (left column) X-ray CT cross-sections of the 6 modern wood samples: (a) ash, (b) cherry tree, (c) larch, (d) 
hemlock, (e) spruce and (f) Douglas fir. (middle column) Visualisation of the extracted tree-ring positions. (right column) Average width of the tree rings calculated as 
average over the pairwise distances between two points of two consecutive tree rings. The length of the bars around the points corresponds to the magnitude of the 
standard deviation. 
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enough to fully resolve the tree-ring boundaries and at the same time, 
low enough to omit the presence of prominent anatomical features (e.g. 
wood-rays, pores, cells, etc.), which could act as noise and therefore 
complicate the subsequent denoising and tree-ring detection image- 
based procedures. 

It should be stressed that repeated combinations of both filters, might 
lead to excessive enhancements of false tree-ring (i.e. intra ring 
earlywood-latewood boundaries) and other high contrast structures, 
which could complicate the subsequent true-edge recognition step. 
When such undesired high contrast features are orthogonally oriented to 
the ring edges, for example rays or inter-ring connections found in the 
spruce sample (Fig. 4e), the NMS algorithm (Section 3.2.2) is robust 
enough to remove them. Other edge-preserving filters (e.g. bilateral and 
anisotropic diffusion) could also be applied for this kind of work. 
However, we recommend their use as a substitute of the median filter 
and in combination with the NL-means filter for optimum results. In 
addition, filtering was the most time-consuming part of the procedure, 
taking around 15-30 min on a standard laptop computer (16 GB RAM, 
IntelCore i9 2.4 GHz CPU), depending on the parameter setting. 
Nevertheless, the filtration has to be performed only once. Afterwards, 
edge recognition and tree-ring width computations takes on average 
only a few minutes. 

Another important factor which improved the precision and accu-
racy of the edge detection, was a self-adaptive selection of the two 
threshold values. By using the Otsu method, both high and low thresh-
olds are automatically selected based on the specific images’ properties 
(i.e. minimizing the overall maximum in the between-class variances). 
This improvement also enables the automatic application of the edge 
detection algorithm on a 3D image stack, where self-determined optimal 
threshold values are applied to each cross-sectional image. This is a 
substantial extension of the traditional Canny algorithm, where a simple 
Gaussian filter is adopted and both thresholds are defined empirically, 
which may cause excessive smoothing of the image, resulting in edges 
which are either fragmented or lost. 

The computed averaged TRWs as a function of the number of 
consecutive ring pairs (i.e. average TRW profiles), are shown in the right 
column of Fig. 4. The total number of tree-rings observed in the cross- 
sectional XCT images of the wood samples vary from 10, present in 
Douglas fir and cherry, to 16 observed in Larch. TRW profiles were 
found to be different for different wood species, being the case of 
Douglas fir where the highest TRW variation among the rings, 
ΔTRW = 2.7 mm, was observed. 

As it can be seen from the computed tree-ring surfaces, all tree-rings 
displayed a rather uniform shape along the z-direction, hence the TRW 
profiles at different height levels (i.e. z-values), were generally very 
close to those averages reported in the figure. This is confirmed by the 
small standard deviation values, σTRW, obtained for each measurement 
(see error bars in Fig. 4). 

To assess the variability of the computed TRW profiles, the mean 
absolute percentage error metric (MAPE) was calculated for each wood 
samples as follows, 

MAPE =
100

n

∑n

i

σTRWi

〈TRW〉i
, (6)  

where n is the total number of consecutive ring pairs (i.e. sample size) 
and σTRWi is the standard deviation associated to average TRW of the ith 
rings pair, 〈TRW〉i. 

The computed MAPE values for all wood samples were found to be 
less than 10%, where hemlock and Douglas fir had the highest values. 
The low MAPE values indicate a low tree-ring shape variability for all 
samples examined, which is an expected result as all detected tree-ring 
boundaries are fairly flat surfaces. A comparison with manual mea-
surements is displayed in Table 2, which also reports the main output 
values from the automated approach. Manual TRW measurements were 
conducted for each wood species by measuring the distance between 
two points at adjacent rings along the ring growth direction using the 
ImageJ software as shown in Fig. (5)a. Fig. (5)b displays the automati-
cally determined TRW value: for each calculated tree-ring coordinate, 
the pairwise distance to the neighbouring tree-ring edge is calculated 
along the normal vector to the tree-ring [see Fig. (3)]. The reported TRW 
is obtained by averaging over all pairwise distances computed along the 
whole profile of two consecutive rings throughout the 3D image stack. 

The results indicate that manual and automatic TRW values match 
very well. The deviations are between − 0.16 and 0.28 mm corre-
sponding to a maximum deviation of 14 voxels. The highest accuracy 
was obtained for cherry, which had the lowest values for the RMSE, ME 
and VAR metrics. However, slight differences occur in some particular 
rings (e.g. TRW No. 4 in Spruce), which might have an impact on the 
attribution of the dating period. It is important to note that this differ-
ence also could be routed in the procedure of manual TRWs measure-
ment as the results strongly depend on which two points are selected. An 
advantage of the proposed automated method is that it is not dependent 
on the user’s experience and therefore it enables a reproducible dating 
process. 

For samples exhibiting tree-rings with more complex structures and 
significant curvature, higher MAPE values and consequently, higher 
deviation from manually TRWs estimation should be expected. This 
point will be addressed in future research. 

5. Conclusions 

A new image processing approach was developed to extract 3D tree- 
rings and calculate tree-ring widths automatically from X-ray computed 
tomography data. A key advantage of this algorithm is that it can extract 
the tree ring edges automatically with little to no user interaction. 
Therefore, it is optimally suited to analyse many samples as well as 
analyse XCT image stacks. The approach is based on an improved Canny 
edge detection algorithm which incorporates the NL-means and median 
smoothing filters to suppress image noise and a self-adaptive determi-
nation of the two threshold values. 

The approach was tested using 3D XCT tomography imaging data 
obtained from six modern wood samples having different anatomical 
structure. From the data, well defined 3D tree-ring surfaces and their 
corresponding Cartesian coordinates were extracted with the voxel grid 
precision. TRWs were computed using a new algorithm that calculates 
the TRWs, from averaged pairwise distances between two consecutive 
tree-rings. TRWs obtained from the automated method were found to 
agree perfectly well with TRW values measured manually for all samples 
examined. This significant agreement demonstrates the applicability of 
this approach. In addition, the procedures also automatically analyse the 
full 3D morphology of the ring edge. Therefore, cumbersome sample 
preparation (e.g. ensuring that the tree-ring edges are perpendicular to 
the cutting surface) or numerical correction procedures for non- 
perpendicularly cut samples are not required. These two advantages 
help to reduce sources of uncertainty and support less-experienced users 
in correct measurements of the TRWs. Furthermore, the possibility to 
automatically determine the 3D morphology of tree-ring edges may 
allow researchers to better understand the impact of anatomical features 
on tree-ring edges. 

Table 1 
Filter parameters values used in this work.  

Wood species NL-means filter Median filter  

σ h r [pix] 

Ash 30 1.0 11 
Cherry tree 35 1.0 10 
Larch 25 1.0 10 
Hemlock 30 1.0 5 
Spruce 15 1.0 9 
Douglas fir 15 1.0 9  
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Table 2 
Comparison of manual and automatic TRW measurements for each wood species. The degree of agreement is measured with the mean error (ME), the root mean square 
error (RMSE) and the variance, VAR = RMSE2 

− ME2, metrics.  

Wood species TRW no. TRW [mm] Wood species TRW no. TRW [mm]   
Manual Automatic   Manual Automatic    

Avg. Min. Max.    Avg. Min. Max. 

Ash 1 2.29 2.34 2.19 2.43 Hemlock 1 2.50 2.44 2.40 2.49  
2 2.20 2.32 2.20 2.47  2 2.34 2.24 2.13 2.35  
3 2.46 2.66 2.50 2.89  3 1.53 1.54 1.38 1.74 

ME = 0.099 4 2.33 2.49 2.31 2.72 ME = − 0.054 4 1.48 1.43 1.31 1.53 
RMSE = 0.113 5 2.42 2.55 2.40 2.77 RMSE = 0.106 5 2.03 1.94 1.83 2.04 
VAR = 0.003 6 2.58 2.66 2.54 2.79 VAR = 0.008 6 2.25 2.20 2.06 2.40  

7 1.95 2.04 1.92 2.16  7 2.49 2.35 2.14 2.57  
8 1.84 1.96 1.86 2.10  8 1.89 1.75 1.54 1.95  
9 1.71 1.73 1.59 1.85  9 2.01 1.83 1.57 2.11  
10 1.18 1.21 1.10 1.33  10 2.04 2.18 1.86 2.42  
11 1.39 1.44 1.35 1.57  11 1.51 1.58 1.55 1.63  
.. ..  ..   .. ..  ..  

Cherry tree 1 2.56 2.56 2.48 2.69 Spruce 1 1.90 1.87 1.75 2.00  
2 2.38 2.41 2.34 2.52  2 2.08 2.12 1.98 2.27  
3 2.23 2.25 2.12 2.42  3 2.34 2.40 2.29 2.55 

ME = 0.014 4 3.24 3.29 3.19 3.39 ME = 0.047 4 2.35 2.59 2.31 2.76 
RMSE = 0.031 5 3.20 3.22 3.05 3.42 RMSE = 0.106 5 2.50 2.34 2.12 2.59 
VAR = 0.001 6 2.00 1.95 1.83 2.09 VAR = 0.009 6 2.18 2.25 2.11 2.41  

7 1.85 1.85 1.72 2.04  7 2.55 2.63 2.41 2.83  
8 2.48 2.51 2.43 2.63  8 1.63 1.64 1.53 1.75  
9 1.68 1.72 1.64 1.84  9 2.40 2.47 2.35 2.56  
.. ..  ..   10 2.33 2.41 2.32 2.49 

Larch 1 1.98 2.01 1.94 2.14  .. ..  ..   
2 1.66 1.66 1.56 1.76 Douglas fir 1 4.43 4.36 4.12 4.61  
3 1.80 1.75 1.66 1.84  2 3.70 3.54 3.30 3.96 

ME = 0.028 4 1.94 1.91 1.76 2.02  3 2.78 2.91 2.68 3.14 
RMSE = 0.10 5 2.08 2.11 1.96 2.22 ME = − 0.014 4 2.64 2.59 2.43 2.77 
VAR = 0.009 6 2.32 2.25 2.06 2.46 RMSE = 0.088 5 2.82 2.74 2.43 2.89  

7 2.17 2.27 2.12 2.44 VAR = 0.008 6 2.34 2.29 2.03 2.46  
8 2.19 2.38 2.06 2.54  7 2.77 2.77 2.65 2.91  
9 1.67 1.97 1.48 2.12  8 1.80 1.86 1.72 1.98  
10 1.99 2.02 1.78 2.24  9 1.58 1.66 1.55 1.78  
11 2.56 2.54 2.30 3.04        
12 1.84 1.79 1.68 2.12        
13 1.24 1.27 1.18 1.36        
14 1.40 1.35 1.28 1.48        
15 1.86 1.83 1.74 1.94        

Fig. 5. TRW measurements in the spruce sample. (a) Manual measurement of all TRWs from a single CT slice. (b) Automatic measurement of the seventh TRW using 
the presented approach (Section 3.3). 
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