
Design Patterns for Multithreaded
Algorithm Design and
Implementation

Will Schroeder / Spiros Tsalikis

1

2

Thank You

⬣ Scientific Computing and Imaging Institute
University of Utah

⬣ National Institute of General Medical Sciences of the
National Institutes of Health: R24 GM136986

2

Reference Code

This presentation is meant to be independent of
implementation details. Refer to these systems for
concrete examples:

⬣ vtkSMPTools - CPU-based
⬣ vtk-m - accelerator / GPU-based

33

Simple Implementation Concepts

1. Parallel for loop - a functor is invoked simultaneously on subsets (subrange)
of the range (0,N): For(0,N, functor)

2. Functor (invoked on each thread)
● Initialize() - initialize thread local storage (optional)
● operator() - operate on subrange
● Reduce() - combine / composite each thread’s output into final result

(optional)

3. Thread local storage - objects / variables local to each thread

4. Atomics - variables free from data races
std::atomic

5. Other common built-in functions: sort, fill, transform

44

Will

Spiros

Explained Through Case Studies

1. Marching Cubes vs Flying Edges

2. Surface Extraction of 3D Unstructured Mesh

55

Will

Spiros

Parallel For (over subranges (begini,endi))

For(0,N, functor)

66

functor(begin0,end0) thread 0

functor(begin1,end1) thread 1

functor(begint,endt) thread t

Common Design Patterns

⬣ Remove data dependencies
● Identify computational primitive(s)

⬣ Multiple passes are typical:
● Determine output shape and size
● Precisely allocate output
● Map input to output
● Execute to produce output

77

Removing Data Dependencies

Trivial Parallelism:

Map n input primitives to m output
primitives. The mapping is obvious, direct,
and often implicitly defined. Typically only
a single parallel pass is required.

E.g., compute vector magnitudes from
vector field.

8

General Parallelism:

Mapping requires identifying data
primitives, building explicit mapping, and
possibly performing reduction /
compositing. Multiple parallel passes are
required.

E.g., isocontouring

Case Study #1: Marching Squares / Cubes
Given a scalar field, produce an (approximation) to the isosurface f(x) = constant (isovalue)

Output typically varies dramatically as the isovalue is varied.

99

Case Table

Pixel square (or in 3D the voxel cube) is the computational primitive.

MC Algorithm

1010

For each voxel cell in a volume:
- access eight voxel values
- compute case
- produce intersection points & triangles
- add points and triangles to output
- (optionally) merge coincident points

MC Parallelization Challenges

⬣ Voxel values are accessed up to eight times
⬣ Edge intersections are performed up to four times
⬣ Dynamic arrays are needed to insert output points and triangles

● Repeated resizing - blocked threads
● Memory allocation is slow

⬣ Point merging is a bottleneck (blocked threads)
● Typically uses spatial or topological hash

1111

Example: Flying Edges

⬣ Four pass algorithm (requires only parallel For() loops)
● Volume edges are the parallel primitive, i.e., edges are

processed independently
⬣ Visits voxel values only once
⬣ Edge intersections performed only once
⬣ Exact, one-time memory allocation
⬣ The point merging bottleneck eliminated

1212

Flying Edges: Definitions

Computational primitive is volume x-edges.
Each voxel x-edge is classified
Four voxel x-edges are combined to produce MC case
MC case gives number of intersection points, triangles produced by each voxel
Auxiliary storage for edge metadata, and voxel value classification, is created and maintained
Trim edges (xL,xR) keep track of data location
Trim edges can be used to skip data (volume edges, volume slices) 1313

Volume-x-Edge metadata
(nXPts, nYPts,nZPts,ntris, xL,xR)

Voxel triad

Voxel x-edge Case 0

Edge Case 1

Edge Case 2

Edge Case 3

Pass 1: Classify Voxel x-Edges

x-voxel edge

y-voxel edge

z-voxel edge

⬣ For each volume x-edge

⬣ Simply classify voxel value above or below isovalue to
determine voxel-x-edge case

⬣ Count number of voxel-x-edge intersections (edge
case==1 || edge case==2)

⬣ Keep track of edge trim (xL, xR)

⬣ Update edge meta data, voxel triad classifications

⬣ Note that volume voxel values are accessed only once

Pass 2: Classify y-z-Edges

1515

⬣ For each volume-x-edge metadata

⬣ Note that edge trim can be used to skip over much of the volume

⬣ Combine four edges forming a voxel cube to determine MC case

⬣ Use modified MC case table to determine number of y, z
intersections, and triangles generated

⬣ Update edge metadata

Pass 3: Compute Output Shape

⬣ Perform prefix sum over all volume-x-edge metadata
● Determines total number of output primitives (points,

triangles)
● Defines numbering for each point and triangle generated
● Prefix sum often faster when performed sequentially

⬣ One time, exact memory allocation can be performed

1616

Pass 4: Generate Output

1717

⬣ For each volume x-edge

⬣ Initialize output iterator with
starting point id, triangle id

⬣ Combine voxel-x-edge-cases to
compute MC case

⬣ Produce output points and
triangles for each voxel triad

⬣ Move to next voxel triad, updating
point and triangle ids

⬣ No point merging is required!!!
Edge intersections computed
only once!!!

Some Results

1818

Sequential
Speed ups

Parallel Speed Ups
(with 36 threads)

Thread Local Storage

⬣ Thread local storage (TLS) is the mechanism by which each thread
in a given multithreaded process allocates storage for thread-local
data. Thread-local data should be accessed only by one thread, to
avoid no data races.

⬣ Thread-local data can used to calculate the thread-local result, e.g.
sum of numbers, which will be used at a reduce step to calculate
the total result.

⬣ Thread-local data along with a reduce step should be considered
first over atomic variables, if possible.

1919

A side note: Output Invariance

⬣ Due to the “random” order in which
threads are executed over subranges,
output may change between runs.

⬣ This can be managed in a number of
ways
● Explicit control of subranges
● Explicit mapping of input -> output

2020

In general, with finite precision arithmetic:

sum(a,b,c) + sum(d,e,f) ≠
sum(a,e,c) + sum(d,b,f)

Atomics

1. Atomics variables are used to ensure that operations like load, store,
compare-and-swap (CAS), add, subtract, will be performed without a
lock (mutex) and no data race will occur.

2. Atomics can also be used to create a spin-lock, i.e. mutex, which can
yield better results if used appropriately, or a optimistic-lock (if
determinism is not critical).

3. Atomics operations will be performed using a memory order:
a. memory_order_relaxed # Only operation’s atomicity is guaranteed, no ordering (e.g. counting)
b. memory_order_acquire & memory_order_release # When you need a spin/optimistic lock
c. memory_order_release & memory_order_consume # When you have a producer and a consumer
d. memory_order_acq_rel # When ordering of operation of 1 atomic variable is required
e. memory_order_seq_cst # When ordering of operations of > 1 atomic variables is required

2121

https://en.cppreference.com/w/cpp/atomic/memory_order

Common built-in parallel functions: Part 1

1. Fill(begin, end, value) helps you fill an array with a specific value.
● This can be useful for initializing, e.g. counting

2. Copy(beginA, endA, beginB) helps you copy values from an array A
to an array B.

3. Transform(beginA, endA, beginB, tranformFunctor) helps you
transform an array A to an Array B (optionally in place).
● This can be useful when you have thread local indices and you want

to convert them to global indices.

2222

Common built-in parallel functions: Part 2

1. Sort(begin, end) helps you sort an array.
● Be aware of O(n(log n)) and stable and un-stable versions.
● For ReductionByKey operations, sorting can be avoided. Instead, you

can build (more memory) a list of lists using counting (only for build),
offsets and a flat list of lists that can be accessed using the offsets.

● If the #keys < #uniqueKeys, a deque can later be used to keep track of
the #uniqueKeys. Deque is preferred,
because you can connect the
thread-local deques in O(1).

2323

Case Study #2: Surface Extraction of 3D Unstructured Mesh

2424

1. Preserve external faces (used only once) and remove internal faces
(used more than once)

2. Useful for:
a. Rendering a 3D Unstructured Mesh without volume rendering
b. Debugging Mesh Generation algorithms

SE Algorithm

1. For each cell in an unstructured mesh
a. For each face in cell

i. Extract the ids of the face
ii. Rotate the ids so that the smallest id (p0) is first
iii. Try to insert the face and compare with existing faces in

FaceHashMap[p0] list (p0, is the key of the hash map)
1. Remove an existing same or mirror face if one exists
2. Else, insert it to the list by allocating space using a memory pool

2. For each faceList in FaceHashMap
a. For each face in faceList

i. Uniquely insert the points of the face and get their output point ids
ii. Insert the face to the output cell array using the output point ids 2525

SE Parallelization Challenges

⬣ Modifying FaceHashMap[p0] is not thread-safe
⬣ Allocating memory using a MemoryPool is not thread-safe
⬣ Dynamic arrays are needed to insert output points and faces

● Repeated resizing is not thread-safe
● Memory-allocation is slow

⬣ Point merging is not thread-safe
● Typically uses spatial or topological hash

2626

Multithreaded SE: Pass 1) Identify External Faces

⬣ How to fix the unsafe modification of FaceHashMap and
MemoryPool allocation? We have the following options:
a. Spin-lock to Modify FaceHashMap[p0] and Spin-lock to allocate in MemoryPool.
b. Spin-lock to Modify FaceHashMap[p0] and allocate using a thread-local

MemoryPool.
c. Modify thread-local FaceHashMap[p0] and allocate using a thread-local

MemoryPool. Requires reduction to merge thread-local FaceHashMaps.
d. Requires reduction of all faces by their key (hash value) to create a list faces

(cellId, faceId) for each hash value. Iterate over the faces in each hash value,
modify FaceHashMap[p0], and allocate using a thread-local MemoryPool.

2727

Multithreaded SE: Pass 2) Compute Output Shape

1. Parse FaceHashMap sequentially and create a vector of faces.
2. Distribute the vector of faces to each thread, mark in a PointMap if

an original point is used or not, and count the size of each thread’s
total faces, to know where to write in the output cell array.

3. Allocate output cell array
4. Parse the PointMap sequentially and assign output point ids to

used original points and calculate the total number of output
points

5. Allocate output points array

2828

Multithreaded SE: Pass 3) Generate Output

1. Generate the output points arrays using the PointMap
a. (Optional) Generate the output data related to points

2. Generate the output cell arrays using the PointMap and the
distributed faces across each thread
a. (Optional) Generate the output data related to cells

2929

Parallel Efficiency & Speed-up

⬣ Speedup = Tsequential/Tparallel
⬣ Parallel Efficiency = Speedup/Nthreads
⬣ Acceptable Parallel Efficiency >=%70
⬣ If the Parallel efficiency is not good enough:

a. Threads don’t have the similar or enough amount of work (grain)
i. Ensure that there is no empty work, over-decompose and distribute

work, use a dynamic scheduler (load balancer)
b. Memory reads/writes is more expensive than computation

i. Try to access the memory in a cache-friendly/continuous way
c. Synchronization, such as mutex, atomics (if used) is a bottleneck

i. Minimize its usage or Remove completely if possible or worth it 3030

Notes

⬣ Parallel is not always faster, especially when the amount of work is
small

⬣ After designing a thread-safe parallel algorithm, you should
analyze the performance using many and 1 thread(s).
● Intel’s Vtune can be used to analyze performance.

⬣ Debugging
● Ensure memory access is thread-safe
● Ensure system functions are thread-safe
● Friend analysis tools (e.g., ThreadSanitizer and others)

3131

