
HAL Id: hal-04083105
https://hal.science/hal-04083105

Preprint submitted on 26 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution| 4.0 International License

Certifying Complexity Analysis
Clément Aubert, Thomas Rubiano, Neea Rusch, Thomas Seiller

To cite this version:
Clément Aubert, Thomas Rubiano, Neea Rusch, Thomas Seiller. Certifying Complexity Analysis.
2023. �hal-04083105�

https://hal.science/hal-04083105
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Certifying Complexity Analysis

Clément Aubert
Augusta University

Augusta, USA
aubert@math.cnrs.fr

Thomas Rubiano
LIPN—UMR 7030 Université Sorbonne Paris Nord

Paris, France
rubiano.thomas@gmail.com

Neea Rusch
Augusta University

Augusta, USA
nrusch@augusta.edu

Thomas Seiller
LIPN—UMR 7030 Université Sorbonne Paris Nord

CNRS
Paris, France
seiller@lipn.fr

Abstract

This work drafts a strategy that leverages the field of Im-
plicit Computational Complexity to certify resource usage
in imperative programs. This original approach sidesteps
some of the most common–and difficult–obstacles “tradi-
tional” complexity theory face when implemented in Coq.

CCS Concepts: • Theory of computation → Program

verification; Complexity theory and logic.

Keywords: Implicit Computational Complexity, Automatic
Complexity Analysis, Program Verification

1 Motivation

The ability to statically infer resource bounds of programs
offers numerous benefits, e.g., to insure safe memory usage.
Even more preferable if those guarantees are established
with the rigor of formal verification, because that increases
confidence in the obtained analysis result and enables inte-
gration of complexity analyses into larger formal develop-
ments.
Unfortunately, computational complexity is notoriously

difficult to represent formally for several reasons. In general,
deriving a complexity bound for an arbitrary program is an
undecidable problem. In the area of complexity theory, “for-
malisations of even basic complexity-theoretic results are
not available” [11, p. 114], hindering certification attempts.
For practical complexity analyses,many existing techniques

present methodological challenges if they require e.g., pro-
gram termination or inlining functions [6]. Therefore, a re-
alistic pathway toward formal certification of a program’s
resource usage is narrow. A few encouraging early results
exist, and we discuss some of those in Sect. 3. In this pro-
posal we will sketch how a different approach, founded on
Implicit Computational Complexity, could sidestep some of
the usual difficulties in implementing and verifying com-
plexity analyses in Coq.
Thefield of Implicit Computational Complexity (ICC) [10]

drives better understanding of complexity classes, but it also
guides the development of resources-aware languages and

static source code analyzers. The core idea is to bound re-
sources while the program is being written (or type checked)

instead of measuring its resource usage afterwards on an
abstract model of computation. This can be done through
e.g., bounded recursion or using typing mechanisms. The
goal is to find a syntactical restriction or a type system such
that a program can be written or typed only if it belongs
to a particular complexity class. ICC-based systems are of-
ten compositional and they offer more natural tools to write
programs than theoretical models of computation used in
complexity theory. We speculate these combined properties
could make ICC-approaches a conceivable pathway toward
certified complexity and sketch a more detailed plan below.

2 Preliminary Action Plan

We plan to formalize in Coq an ICC-based complexity anal-
ysis technique, the mwp-flow analysis [15]1. We chose this
method because its internal mechanics has been recently
studied [1], and by our assessment, it seems suitable for for-
malization in Coq. As for Coq, it seems like the ideal target
language because of its existing libraries and preliminary
work–some of which are discussed in Sect. 3–, most notably
related to compilers [16].

2.1 Overview ofmwp-Flow Analysis

The mwp-flow analysis certifies polynomial bounds on the
size of the values manipulated by an imperative program.
While it does not ensure (or require) program termination,
it provides a certificate guaranteeing that the program uses
throughout its execution at most a polynomial amount of
space, and as a consequence that if it terminates, it will do
so in polynomial time in the size of its inputs.
The analysis computes, for each program variable, a vec-

tor tracking how it depends on other variables. The vec-
tor values are determined by applying the nondeterminitic
rules of the soundmwp-calculus to the commands of the pro-
gram. Those vectors are collected in a matrix. A program is
assigned a matrix only if all the values in it are bounded by

1Where mwp stands for maximum, weak polynomial and polynomial, rep-
resenting increasing growth rates of variables values.

2023-04-26 20:37. Page 1 of 1–3.



Clément Aubert, Thomas Rubiano, Neea Rusch, and Thomas Seiller

a polynomial in the inputs sizes. This technique is compo-
sitional, abstracts away e.g., iteration bounds, and operates
on a memory-less imperative language, reminiscent of the
Imp language from Software Foundations [19].

2.2 The Coq Formalization

Our goal is to certify the analysis as presented in the origi-
nal paper [15]. Note that this does not mean that the bound
is certified, but that the mechanism to compute those bounds

is certified. Of course, this implies the correctness of the
bounds as a by-product but constitutes a major difference
w.r.t. the results discussed in Sect. 3. Preliminary explorations
have led us to establish the following milestones.

The mathematical foundations Our first goal is to de-
fine the mathematical structure required to carry out
the rest of the construction. This requires defining
vectors, matrices and their operations, semi-rings, and
honest polynomials2 that are needed to represent the
mwp-bounds. TheMathematical Components library [20]
will lay the foundations for the linear algebra repre-
sentations, but likely requires extensions to accom-
modate our specific analysis.

Implementing the language The analyzed language
is a simple imperative language that manipulates nat-
ural numbers, held in a fixed number of program vari-
ables. Its syntax includes variables, expressions (oper-
ations + and ×), Boolean expressions, and commands
(e.g., assignment, loop and decision statements, com-
mand sequences, and skip), with their usual seman-
tics. We expect implementing it and its small-steps
semantics in Coq to be relatively simple, following
the examples from Software Foundations [18, 19].

Implementing the typing system Even if it can be com-
putationally expensive to run an automatic inference [2],
the typing system in itself is relatively simple. It con-
tains only 10 rules, essentially one for each type of
command, and except for the initial assignment of
vectors to variables, is fully deterministic. We conjec-
ture that standardmethods [7, 8] to implement simple
type systems will be enough, but will require some
care to scale to the matrix-as-type paradigm of this
analysis.

Certifying the analysis Thiswill be themost demand-
ing part of our plan. The original paper contains all
the required handwritten proofs, but the authors cau-
tion that “[t]hese proofs are long, technical and occa-
sionally highly nontrivial” [15, p. 2]. The main result
of the paper is the soundness proof of the analysis [15,
Theorem 5.3], i.e., the proof of the existence of a ma-
trix typing the program implies the existence of an
honest polynomial bounding the variables’ growth

2Which are “polynomial build up from constants in N and variables by
applying the operations + (addition) and × (multiplication).” [15, p. 5]

rates. Themain result follows from 15 pages of proofs
presented in section 7 of the paper. This section re-
volves around proving the soundness properties of
the calculus, and we expect the most substantial ef-
fort to be spent on formalizing these proofs. Some of
them are quite intricate but with a satisfactory level
of detail. The cases concerning soundness of loops are
the most difficult on paper, but their inductive nature
should (we hope!) be processed by Coq rather easily.

We leave for future work the possibility of creating a for-
mally verified, automatic static analyzer founded on the proof
of correctness of this method: aswe discussed in otherworks [1,
2], care is required to implement a typing strategy that does
not rapidly become intractable.

3 Related Work

A few prior results exist that combine formalization of com-
plexity andCoq. They range frompractical analyses to proofs
in computational complexity theory.
For practical application, Coqhas been used to verify stack

bounds for assembly code [4] and to obtain WCET loop-
bound estimation [3]. Carbonneaux et al. [5] presented an
automatic static analyzer for imperative programs, and al-
though the analyzer itself is not verified, it generates bounds
with machine-checkable certificates, to guarantee that the
computed bound holds. For functional paradigm, McCarthy
et al. [17] developed a Coq library, with a monad that counts
abstract steps, which enabled running time analysis of pro-
grams written using the monad. An ICC-based characteri-
zation was introduced by Férée et al. [12], in the form of a
Coq library, that allows for readily proving that a function
is computable in polynomial time.
Coq has also been used to formalize some of the founda-

tions of modern complexity theory. Ciaffaglione [9] proved
the undecidability of the halting problem. Guéneau et al. [14]
formalize the O notation. Forster et al. [11] implemented a
multi-tape to single-tape compiler, and introduced the first
formalized universal TuringMachine verified w.r.t. time and
space complexity, for anymodel of computation, in any proof
assistant. More recently, Gäher and Kunze formalized the
Cook-Levin theorem in Coq [13]. Despite these advances,
formalization of complexity is in early stages and basic complexity-
theoretic results e.g., time and space hierarchy theorems, re-
main unavailable.
Our proposed project differs from these earlier results pri-

marily in its intent. We plan to formalize the complexity
analysis mechanism itself—not its computed result, as was
done previously. In their work with the Turing Machines,
Forster et al. [11] were explicit in emphasizing the challenge
they experienced in formalizing complexity. We hypothe-
size that our ICC-based approach, with e.g., its built-in ab-
stractions, will help reduce this challenge. It is our hope that
CoqPL will welcome our proposal for a certified complexity

2023-04-26 20:37. Page 2 of 1–3.



Certifying Complexity Analysis

analysis in Coq, and will be keen on indicating any library,
tool or resource that could help.

Acknowledgments

The authors wish to thank Delphine Demange for the inter-
esting discussion she had with Neea, and the reviewers for
their careful reading and many interesting comments. This
research is supported by the Th. Jefferson Fund of the Em-
bassy of France in theUnited States and the FACE Foundation,
and has benefited from the researchmeeting 21453 “Static Analyses of Program Flows: Types and Certificate for Complexity”
in Schloss Dagstuhl. Th. Rubiano and Th. Seiller are sup-
ported by the Île-de-France region through the DIM RFSI
project “CoHOp”. N. Rusch is supported in part by the Au-
gusta University Provost’s office, and the Translational Research Program
of the Department of Medicine, Medical College of Georgia
at Augusta University.

References
[1] Clément Aubert, Thomas Rubiano, Neea Rusch, and Thomas Seiller.

2022. mwp-Analysis Improvement and Implementation: Realizing Im-
plicit Computational Complexity. In 7th International Conference on

Formal Structures for Computation and Deduction (FSCD 2022) (Leib-

niz International Proceedings in Informatics, Vol. 228), Amy P. Felty
(Ed.). Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 26:1–26:23.
h�ps://doi.org/10.4230/LIPIcs.FSCD.2022.26

[2] Clément Aubert, Thomas Rubiano, Neea Rusch, and Thomas Seiller.
2022. pymwp: A Tool for Guaranteeing Complexity Bounds for C
Programs. (Oct. 2022). In preparation.

[3] Sandrine Blazy, André Maroneze, and David Pichardie. 2013. For-
mal Verification of Loop Bound Estimation for WCET Analysis. In
Verified Software: Theories, Tools, Experiments - 5th International Con-

ference, VSTTE 2013, Menlo Park, CA, USA, May 17-19, 2013, Re-

vised Selected Papers (Lecture Notes in Computer Science, Vol. 8164),
Ernie Cohen and Andrey Rybalchenko (Eds.). Springer, 281–303.
h�ps://doi.org/10.1007/978-3-642-54108-7_15

[4] Quentin Carbonneaux, Jan Hoffmann, Tahina Ramananandro, and
Zhong Shao. 2014. End-to-end verification of stack-space bounds for
C programs. In ACM SIGPLAN Conference on Programming Language

Design and Implementation, PLDI ’14, Edinburgh, United Kingdom -

June 09 - 11, 2014, Michael F. P. O’Boyle and Keshav Pingali (Eds.).
ACM, 270–281. h�ps://doi.org/10.1145/2594291.2594301

[5] Quentin Carbonneaux, Jan Hoffmann, Thomas W. Reps, and Zhong
Shao. 2017. Automated Resource Analysis with Coq Proof Ob-
jects. In Computer Aided Verification - 29th International Con-

ference, CAV 2017, Heidelberg, Germany, July 24-28, 2017, Pro-

ceedings, Part II (Lecture Notes in Computer Science, Vol. 10427),
Rupak Majumdar and Viktor Kuncak (Eds.). Springer, 64–85.
h�ps://doi.org/10.1007/978-3-319-63390-9_4

[6] Quentin Carbonneaux, Jan Hoffmann, and Zhong Shao. 2015. Compo-
sitional certified resource bounds. In Proceedings of the 36th ACM SIG-

PLAN Conference on Programming Language Design and Implementa-

tion, Portland, OR, USA, June 15-17, 2015, David Grove and StephenM.
Blackburn (Eds.). Association for Computing Machinery, 467–478.
h�ps://doi.org/10.1145/2737924.2737955

[7] Adam Chlipala. 2010. An Introduction to Programming and Proving
with Dependent Types in Coq. Journal of Formalized Reasoning 3, 2
(2010), 1–93. h�ps://doi.org/10.6092/issn.1972-5787/1978

[8] Adam Chlipala. 2022. Formal Reasoning About Programs. The MIT
Press. h�p://adam.chlipala.net/frap/

[9] Alberto Ciaffaglione. 2016. Towards Turing computability via
coinduction. Science of Computer Programming 126 (2016), 31–51.
h�ps://doi.org/10.1016/j.scico.2016.02.004

[10] Ugo Dal Lago. 2011. A Short Introduction to Implicit Computational
Complexity. In ESSLLI (Lecture Notes in Computer Science, Vol. 7388),
Nick Bezhanishvili and Valentin Goranko (Eds.). Springer, 89–109.
h�ps://doi.org/10.1007/978-3-642-31485-8_3

[11] Yannick Forster, Fabian Kunze, and Maximilian Wuttke. 2020. Ver-
ified programming of Turing machines in Coq. In Proceedings of

the 9th ACM SIGPLAN International Conference on Certified Pro-

grams and Proofs, CPP 2020, New Orleans, LA, USA, January 20-21,

2020, Jasmin Blanchette and Catalin Hritcu (Eds.). ACM, 114–128.
h�ps://doi.org/10.1145/3372885.3373816

[12] Hugo Férée, Samuel Hym, Micaela Mayero, Jean-Yves Moyen, and
David Nowak. 2018. Formal proof of polynomial-time complex-
ity with quasi-interpretations. In SIGPLAN, June Andronick and
Amy P. Felty (Eds.). Association for Computing Machinery, 146–157.
h�ps://doi.org/10.1145/3167097

[13] Lennard Gäher and Fabian Kunze. 2021. Mechanising Complex-
ity Theory: The Cook-Levin Theorem in Coq. In 12th International

Conference on Interactive Theorem Proving, ITP 2021, June 29 to July

1, 2021, Rome, Italy (Virtual Conference) (Leibniz International Pro-

ceedings in Informatics, Vol. 193), Liron Cohen and Cezary Kaliszyk
(Eds.). Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 20:1–20:18.
h�ps://doi.org/10.4230/LIPIcs.ITP.2021.20

[14] Armaël Guéneau, Arthur Charguéraud, and François Pottier. 2018.
A Fistful of Dollars: Formalizing Asymptotic Complexity Claims via
Deductive Program Verification. In Programming Languages and Sys-

tems - 27th European Symposium on Programming, ESOP 2018, Held

as Part of the European Joint Conferences on Theory and Practice of

Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceed-

ings (Lecture Notes in Computer Science, Vol. 10801), Amal Ahmed (Ed.).
Springer, 533–560. h�ps://doi.org/10.1007/978-3-319-89884-1_19

[15] Neil D. Jones and Lars Kristiansen. 2009. A flow calcu-
lus of mwp-bounds for complexity analysis. ACM Trans-

actions on Computational Logic 10, 4 (2009), 28:1–28:41.
h�ps://doi.org/10.1145/1555746.1555752

[16] Xavier Leroy. 2009. Formal verification of a realis-
tic compiler. Commun. ACM 52, 7 (2009), 107–115.
h�ps://doi.org/10.1145/1538788.1538814

[17] Jay A. McCarthy, Burke Fetscher, Max S. New, Daniel Feltey, and
Robert Bruce Findler. 2018. A Coq library for internal verification of
running-times. Science of Computer Programming 164 (2018), 49–65.
h�ps://doi.org/10.1016/j.scico.2017.05.001

[18] Benjamin C. Pierce, Arthur Azevedo de Amorim, Chris Casinghino,
Marco Gaboardi, Michael Greenberg, Cătălin Hriţcu, Vilhelm Sjöberg,
Andrew Tolmach, and Brent Yorgey. 2022. Programming Language
Foundations. In Software Foundations (version 6.2 ed.), Benjamin C.
Pierce (Ed.). Vol. 2. h�p://so�warefoundations.cis.upenn.edu

[19] Benjamin C. Pierce, Arthur Azevedo de Amorim, Chris Casingh-
ino, Marco Gaboardi, Michael Greenberg, Cătălin Hriţcu, Vilhelm
Sjöberg, and Brent Yorgey. 2022. Logical Foundations. In Soft-

ware Foundations (version 6.2 ed.), Benjamin C. Pierce (Ed.). Vol. 1.
h�p://so�warefoundations.cis.upenn.edu

[20] Mathematical Components team. 2022. Mathematical Components.
h�ps://math-comp.github.io

2023-04-26 20:37. Page 3 of 1–3.

http://people.rennes.inria.fr/Delphine.Demange/
https://face-foundation.org/transatlantic-study-research/transatlantic-research-partnership/
https://face-foundation.org/
https://www.dagstuhl.de/de/programm/kalender/evhp/?semnr=21453
https://www.augusta.edu/mcg/medicine/research/trp/about-srp.php
https://doi.org/10.4230/LIPIcs.FSCD.2022.26
https://doi.org/10.1007/978-3-642-54108-7_15
https://doi.org/10.1145/2594291.2594301
https://doi.org/10.1007/978-3-319-63390-9_4
https://doi.org/10.1145/2737924.2737955
https://doi.org/10.6092/issn.1972-5787/1978
http://adam.chlipala.net/frap/
https://doi.org/10.1016/j.scico.2016.02.004
https://doi.org/10.1007/978-3-642-31485-8_3
https://doi.org/10.1145/3372885.3373816
https://doi.org/10.1145/3167097
https://doi.org/10.4230/LIPIcs.ITP.2021.20
https://doi.org/10.1007/978-3-319-89884-1_19
https://doi.org/10.1145/1555746.1555752
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1016/j.scico.2017.05.001
http://softwarefoundations.cis.upenn.edu
http://softwarefoundations.cis.upenn.edu
https://math-comp.github.io

	Abstract
	1 Motivation
	2 Preliminary Action Plan
	2.1 Overview of mwp-Flow Analysis
	2.2 The Coq Formalization

	3 Related Work
	Acknowledgments
	References

