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Abstract

This work drafts a strategy that leverages the field of Im-
plicit Computational Complexity to certify resource usage
in imperative programs. This original approach sidesteps
some of the most common–and difficult–obstacles “tradi-
tional” complexity theory face when implemented in Coq.

CCS Concepts: • Theory of computation → Program

verification; Complexity theory and logic.

Keywords: Implicit Computational Complexity, Automatic
Complexity Analysis, Program Verification

1 Motivation

The ability to statically infer resource bounds of programs
offers numerous benefits, e.g., to insure safe memory usage.
Even more preferable if those guarantees are established
with the rigor of formal verification, because that increases
confidence in the obtained analysis result and enables inte-
gration of complexity analyses into larger formal develop-
ments.
Unfortunately, computational complexity is notoriously

difficult to represent formally for several reasons. In general,
deriving a complexity bound for an arbitrary program is an
undecidable problem. In the area of complexity theory, “for-
malisations of even basic complexity-theoretic results are
not available” [11, p. 114], hindering certification attempts.
For practical complexity analyses,many existing techniques

present methodological challenges if they require e.g., pro-
gram termination or inlining functions [6]. Therefore, a re-
alistic pathway toward formal certification of a program’s
resource usage is narrow. A few encouraging early results
exist, and we discuss some of those in Sect. 3. In this pro-
posal we will sketch how a different approach, founded on
Implicit Computational Complexity, could sidestep some of
the usual difficulties in implementing and verifying com-
plexity analyses in Coq.
Thefield of Implicit Computational Complexity (ICC) [10]

drives better understanding of complexity classes, but it also
guides the development of resources-aware languages and

static source code analyzers. The core idea is to bound re-
sources while the program is being written (or type checked)

instead of measuring its resource usage afterwards on an
abstract model of computation. This can be done through
e.g., bounded recursion or using typing mechanisms. The
goal is to find a syntactical restriction or a type system such
that a program can be written or typed only if it belongs
to a particular complexity class. ICC-based systems are of-
ten compositional and they offer more natural tools to write
programs than theoretical models of computation used in
complexity theory. We speculate these combined properties
could make ICC-approaches a conceivable pathway toward
certified complexity and sketch a more detailed plan below.

2 Preliminary Action Plan

We plan to formalize in Coq an ICC-based complexity anal-
ysis technique, the mwp-flow analysis [15]1. We chose this
method because its internal mechanics has been recently
studied [1], and by our assessment, it seems suitable for for-
malization in Coq. As for Coq, it seems like the ideal target
language because of its existing libraries and preliminary
work–some of which are discussed in Sect. 3–, most notably
related to compilers [16].

2.1 Overview ofmwp-Flow Analysis

The mwp-flow analysis certifies polynomial bounds on the
size of the values manipulated by an imperative program.
While it does not ensure (or require) program termination,
it provides a certificate guaranteeing that the program uses
throughout its execution at most a polynomial amount of
space, and as a consequence that if it terminates, it will do
so in polynomial time in the size of its inputs.
The analysis computes, for each program variable, a vec-

tor tracking how it depends on other variables. The vec-
tor values are determined by applying the nondeterminitic
rules of the soundmwp-calculus to the commands of the pro-
gram. Those vectors are collected in a matrix. A program is
assigned a matrix only if all the values in it are bounded by

1Where mwp stands for maximum, weak polynomial and polynomial, rep-
resenting increasing growth rates of variables values.
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a polynomial in the inputs sizes. This technique is compo-
sitional, abstracts away e.g., iteration bounds, and operates
on a memory-less imperative language, reminiscent of the
Imp language from Software Foundations [19].

2.2 The Coq Formalization

Our goal is to certify the analysis as presented in the origi-
nal paper [15]. Note that this does not mean that the bound
is certified, but that the mechanism to compute those bounds

is certified. Of course, this implies the correctness of the
bounds as a by-product but constitutes a major difference
w.r.t. the results discussed in Sect. 3. Preliminary explorations
have led us to establish the following milestones.

The mathematical foundations Our first goal is to de-
fine the mathematical structure required to carry out
the rest of the construction. This requires defining
vectors, matrices and their operations, semi-rings, and
honest polynomials2 that are needed to represent the
mwp-bounds. TheMathematical Components library [20]
will lay the foundations for the linear algebra repre-
sentations, but likely requires extensions to accom-
modate our specific analysis.

Implementing the language The analyzed language
is a simple imperative language that manipulates nat-
ural numbers, held in a fixed number of program vari-
ables. Its syntax includes variables, expressions (oper-
ations + and ×), Boolean expressions, and commands
(e.g., assignment, loop and decision statements, com-
mand sequences, and skip), with their usual seman-
tics. We expect implementing it and its small-steps
semantics in Coq to be relatively simple, following
the examples from Software Foundations [18, 19].

Implementing the typing system Even if it can be com-
putationally expensive to run an automatic inference [2],
the typing system in itself is relatively simple. It con-
tains only 10 rules, essentially one for each type of
command, and except for the initial assignment of
vectors to variables, is fully deterministic. We conjec-
ture that standardmethods [7, 8] to implement simple
type systems will be enough, but will require some
care to scale to the matrix-as-type paradigm of this
analysis.

Certifying the analysis Thiswill be themost demand-
ing part of our plan. The original paper contains all
the required handwritten proofs, but the authors cau-
tion that “[t]hese proofs are long, technical and occa-
sionally highly nontrivial” [15, p. 2]. The main result
of the paper is the soundness proof of the analysis [15,
Theorem 5.3], i.e., the proof of the existence of a ma-
trix typing the program implies the existence of an
honest polynomial bounding the variables’ growth

2Which are “polynomial build up from constants in N and variables by
applying the operations + (addition) and × (multiplication).” [15, p. 5]

rates. Themain result follows from 15 pages of proofs
presented in section 7 of the paper. This section re-
volves around proving the soundness properties of
the calculus, and we expect the most substantial ef-
fort to be spent on formalizing these proofs. Some of
them are quite intricate but with a satisfactory level
of detail. The cases concerning soundness of loops are
the most difficult on paper, but their inductive nature
should (we hope!) be processed by Coq rather easily.

We leave for future work the possibility of creating a for-
mally verified, automatic static analyzer founded on the proof
of correctness of this method: aswe discussed in otherworks [1,
2], care is required to implement a typing strategy that does
not rapidly become intractable.

3 Related Work

A few prior results exist that combine formalization of com-
plexity andCoq. They range frompractical analyses to proofs
in computational complexity theory.
For practical application, Coqhas been used to verify stack

bounds for assembly code [4] and to obtain WCET loop-
bound estimation [3]. Carbonneaux et al. [5] presented an
automatic static analyzer for imperative programs, and al-
though the analyzer itself is not verified, it generates bounds
with machine-checkable certificates, to guarantee that the
computed bound holds. For functional paradigm, McCarthy
et al. [17] developed a Coq library, with a monad that counts
abstract steps, which enabled running time analysis of pro-
grams written using the monad. An ICC-based characteri-
zation was introduced by Férée et al. [12], in the form of a
Coq library, that allows for readily proving that a function
is computable in polynomial time.
Coq has also been used to formalize some of the founda-

tions of modern complexity theory. Ciaffaglione [9] proved
the undecidability of the halting problem. Guéneau et al. [14]
formalize the O notation. Forster et al. [11] implemented a
multi-tape to single-tape compiler, and introduced the first
formalized universal TuringMachine verified w.r.t. time and
space complexity, for anymodel of computation, in any proof
assistant. More recently, Gäher and Kunze formalized the
Cook-Levin theorem in Coq [13]. Despite these advances,
formalization of complexity is in early stages and basic complexity-
theoretic results e.g., time and space hierarchy theorems, re-
main unavailable.
Our proposed project differs from these earlier results pri-

marily in its intent. We plan to formalize the complexity
analysis mechanism itself—not its computed result, as was
done previously. In their work with the Turing Machines,
Forster et al. [11] were explicit in emphasizing the challenge
they experienced in formalizing complexity. We hypothe-
size that our ICC-based approach, with e.g., its built-in ab-
stractions, will help reduce this challenge. It is our hope that
CoqPL will welcome our proposal for a certified complexity
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analysis in Coq, and will be keen on indicating any library,
tool or resource that could help.
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