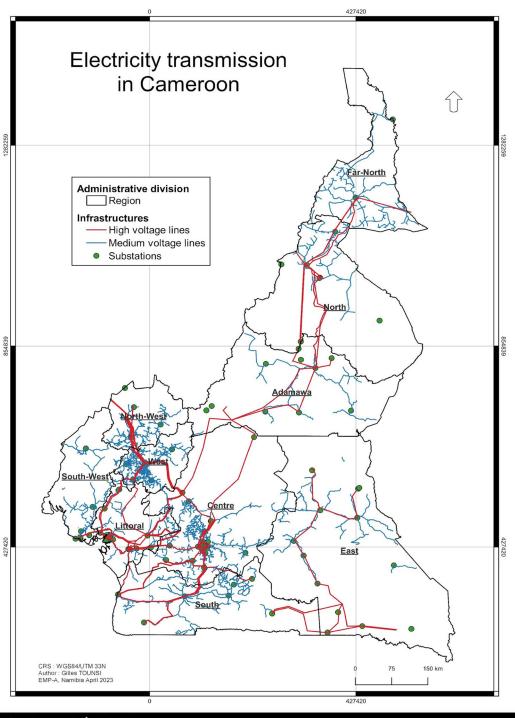


| MB UNIVERSITY OF 電影 CAMBRIDGE

Imperial College

University

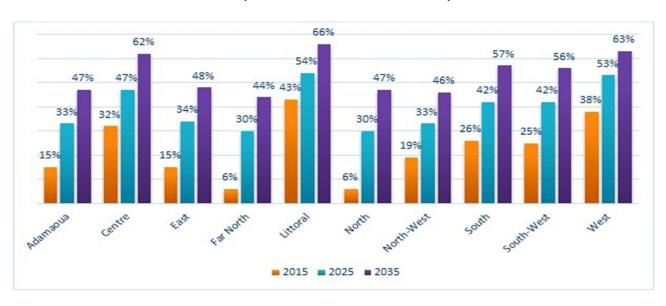
What is the least cost solution for electricity access in Cameroon?



Gilles TOUNSI KAMDEM

ORCID: 0009-0001-1077-4857 Email: gt@limko.cm

Energy Modelling Platform for Africa (EMP-A)


Namibia 2023

ENERGY MODELLING PLATFORM FOR AFRICA (EMP-A) | 2023

Context and Challenge

- National Electrification Rate: National: 63%
 Urban: 93% Rural: 23% (World Bank)
- Electricity generation dominated by hydroelectricity (76%) for 72.2% of the total capacity generation (SeForAll)
- Global Horizontal Irradiation 6 kWh/m2/day in the Far North (GlobalSolarAtlas)

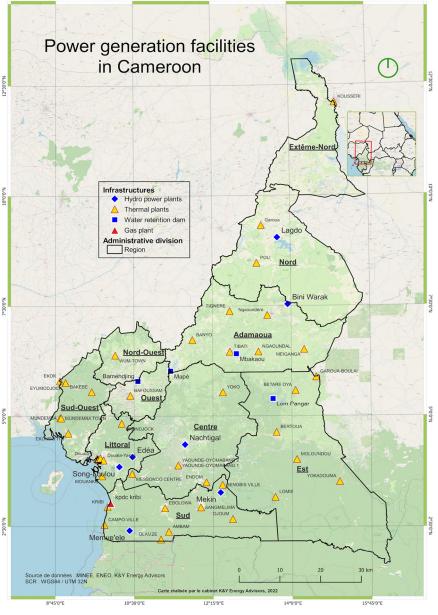
Timeline target for electrification rate in Cameroon per region Source: World Bank

- Access remains the big challenge
- Average electricity consumption per
 - Household: 287 kWh/year
 - Capita: 91 kWh/year (Tier 2) (World Bank)
- Only 20% of the population would actually have continuous access to electricity. (Of 27 millions/2015)
- Overall mismatch between supply and demand
- Irregularity of supplies due to the low water period
- The mix of technologies is an opportunity

Addressing the challenge...

- Based on the GEP-OnSSET model :
 - GIS energy planning can determine the area with high demand target by analyzing GDP and Poverty indices
 - The Far North of the country is the preferred target
 - Higher GHI irradiation is experience in the Far North

What technologies are favorable to access the electricity?


Electricity production is divided into the following technologies

- Hydroelectric Power plants
- Thermal Power Plants
- Solar power plants
- Wind

Solar power Plant Source : World Bank Madagascar Kribi Thermal Power plant Source : Africa Energy Portal

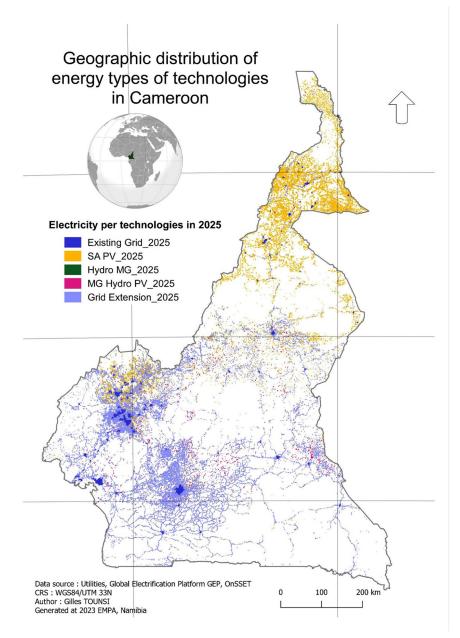
Nachtigal Dam Source : World Bank, Cameroon

Source: K&Y Energy Advisors

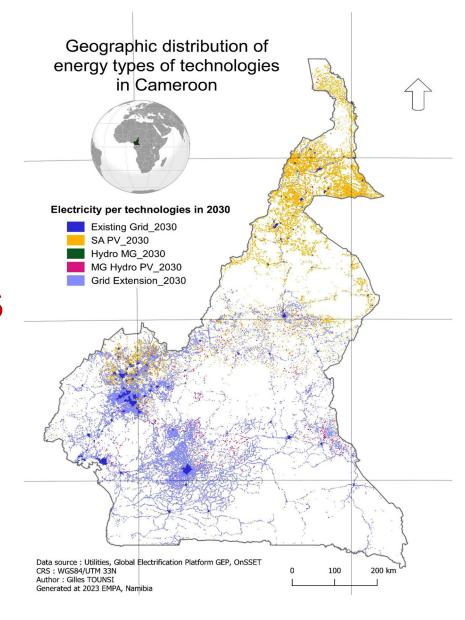
Scenario & Parameters

One Scenario based on the inputs

Baseline inputs



Analysis


- Electricity per technologies
- Technologies per region
- Technologies costs for Off-Grid

- Population (2020): 25.216 million
- Population (2030): 33.766 million
- Bottom-up high demand target by GDP Poverty.
- 2020 Urban Ratio Start Year 57%
- 2030 Urban Ratio End Year 67%
- Residential Demand Targets*

* tier per kwh/household/year

Results maps

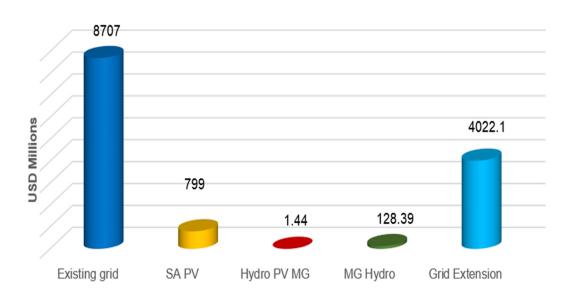
Electricity per technologies in 2025 Source: GEP-ONSSET Output

Electricity per technologies in 2030 Source: GEP ONSSET output

Results graphs

Total investments in 2030

13.659 Millions USD


Existing grid: USD 8707.9

SA PV: USD 799 M

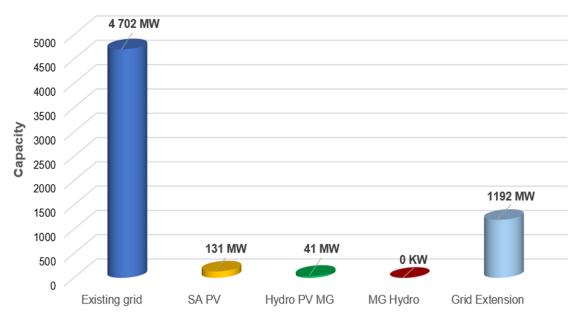
Hydro PV MG: USD 1.44 M

MG Hydro: USD 128.39 M

Grid Extension: USD 4022.11 M

Existing grid: 4702 MW

Grid Extension : 1192 MW


SA PV: 131 MW

Hydro PV MG: 41 MW

MG Hvdro: 0 MW

Total Capacity in 2030

6.066 MW

Technologies Investments cost in 2030

Source : GEP-ONSSET Output

Capacity generated in 2030

Source : GEP-ONSSET output

Results Table (1000s of people)

Region	Grid densification	Solar-home systems	Mini-grids	Grid extension
Adamaoua	306.0	31.0	NaN	307.0
Centre	2884.0	39.0	NaN	465.0
Est	204.0	20.0	0.0	246.0
Extrême - Nord	798.0	164.0	8.0	574.0
Littoral	2688.0	10.0	1.0	203.0
Nord	689.0	81.0	0.0	385.0
Nord - Ouest	678.0	49.0	0.0	428.0
Ouest	812.0	31.0	NaN	420.0
Sud	169.0	13.0	1.0	160.0
Sud - Ouest	634.0	19.0	5.0	292.0

Table: Technologies per region Source: Python GEP-ONSSET Generator

Conclusions and Policy Insights

- Least costs technologies depend to the environment.
- Cameroon Far North region has a potential for GHI irradiation.
- Investments cost are planned with off-grid Solar Stand Alone Systems.

Note: Cameroon does not recognize the off-grid technologies such as Solar Home System and Mini Grid PV as a lever of electrification rate

- Customs duties exemptions & VAT exemptions.
- Advocacy with NREA (including the financial support UE/WB....)
- Off-grid technologies represent an opportunity to increase the national rate with the inclusion NGO's, Minigrid & off-grid developers, civil society....
- Credit loans should be available for SME's involving in the field of energy, particularly renewable energy.

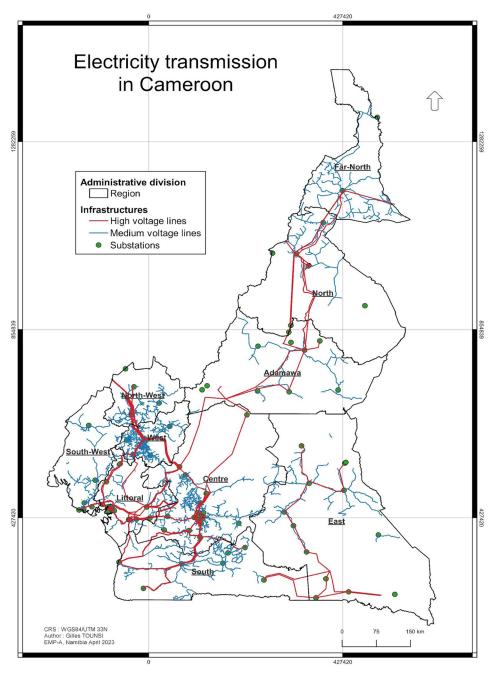
Future Work

- Start the capacity building of Global Electrification Platform (Comoros)
- My Goal: continue to share the practice of the tool with Gov., Decision makers and the private sector

MM UNIVERSITY OF CAMBRIDGE

Imperial College

What is the least cost solution for electricity access in Cameroon?


THANK YOU!

Gilles TOUNSI KAMDEM

ORCID: 0009-0001-1077-4857 Email: gt@limko.cm

Energy Modelling Platform for Africa (EMP-A)

Namibia 2023

Source: K&Y Energy Advisors