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Abstract 

Predicting transporter-based drug clearance (CL) and tissue concentrations (TC) in humans is important 

to reduce the risk of failure during drug development. In addition, when transporters are present at the 

tissue:blood interface (e.g., in the liver, blood-brain barrier), predicting TC is important to predict the 

drug’s efficacy and safety. With the advent of quantitative targeted proteomics, in vitro to in vivo 

extrapolation (IVIVE) of transporter-based drug CL and TC is now possible using transporter-expressing 

models (cells lines, membrane vesicles) and the in vivo to in vitro relative expression of transporters 

(REF) as a scaling factor. Unlike other approaches based on physiological scaling, the REF approach is 

not dependent on the availability of primary cells. Here, we review the REF approach and compare it with 

other IVIVE approaches such as the relative activity factor approach and physiological scaling. For each 

of these scaling approaches, we review their underlying principles, assumptions, methodology, predictive 

performance, as well as advantages and limitations. Finally, we discuss current gaps in IVIVE of 

transporter-based CL and TC and propose possible reasons for these gaps as well as areas to 

investigate to bridge these gaps. 

Keywords: predicting transporter-based drug clearance, predicting transporter-modulated tissue 

concentrations, in vitro to in vivo extrapolation (IVIVE), relative expression factor (REF), relative activity 

factor (RAF), in vitro models  

Abbreviations: ADME, absorption, distribution, metabolism, excretion; AUC, area under the 

concentration-time profile; BBB, blood-brain barrier; BCRP, breast cancer resistance protein; CL, 

clearance; CLint, intrinsic clearance; CSF, cerebrospinal fluid; DDI, drug-drug interaction; ECM, extended 

clearance model; ER, efflux ratio; ESF, empirical scaling factor; ft, fraction transported; IVIVE, in vitro to in 

vivo extrapolation; ISEF, intersystem extrapolation factor; Jmax, maximal rate of transport; Km, affinity 

constant; Kp,uu, ratio of unbound drug concentration in tissue vs. plasma at steady-state; MATE, multidrug 

and toxin extrusion; MPS, microphysiological system; MRP, multidrug resistance protein; NME, new 

molecular entity; NTCP, sodium-taurocholate co-transporting polypeptide; OAT, organic anion 

transporter; OATP, organic anion transporting polypeptide; OCT, organic cation transporter; P-gp, P-
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glycoprotein; Papp, apparent permeability; PBPK, physiologically-based pharmacokinetics; PD, 

pharmacodynamics; pd, passive diffusion; PET, positron emission tomography; PK, pharmacokinetics; 

PMUE, protein-mediated uptake effect; PSF, physiological scaling factor; PTM, post-translational 

modification; QTP, quantitative targeted proteomics; RAF, relative activity factor; RDS, rate-determining 

step; REF, relative expression factor; SCH, sandwich cultured hepatocytes  



 

4 
 

 

Table of Contents 

 

1. Introduction............................................................................................................................................ 5 

2. In vitro models for IVIVE of PK of transporter substrates ..................................................................... 9 

3. Best practices to generate in vitro data suitable for IVIVE of drug transport PK ................................ 13 

4. In vitro to in vivo scaling approaches .................................................................................................. 22 

5. Predictive performance of IVIVE approaches: a review of existing data ............................................ 29 

6. Prediction of transporter-based DDIs .................................................................................................. 35 

7. Principles and experimental factors to consider to improve accuracy of IVIVE of transporter-based 

drug disposition and tissue concentrations ................................................................................................. 39 

8. Conclusions ......................................................................................................................................... 42 

9. Conflicts of interest .............................................................................................................................. 43 

10. Acknowledgement ............................................................................................................................... 43 

11. List of figures ....................................................................................................................................... 43 

12. List of tables ........................................................................................................................................ 51 

13. References .......................................................................................................................................... 80 

 

  



 

5 
 

1. Introduction  

Drug development is a lengthy and costly process that has a high attrition rate. During the period 1996-

2014, 90% of new molecular entity (NME) in Phase 1 trials failed to reach the market (Smietana et al., 

2016). This failure rate was higher for small molecules (91%) compared with biologicals (82%) (Hay et al., 

2014).  Amongst the small molecules, the failure rate during phase 3 clinical trials was particularly high for 

those targeted to the central nervous system (Kesselheim et al., 2015).  The major reason for this failure 

was lack of efficacy (Hay et al., 2014; Kesselheim et al., 2015). To reduce the failure rate, an integrated 

understanding of the  pharmacokinetics (PK) and pharmacodynamics (PD, including more translatable 

pharmacology models) of the NME is required (Morgan et al., 2012). The PD (efficacy or toxicity) of an 

NME is driven by the PK of the NME, both systemic and at the site of action (e.g., target issue). 

Therefore, predicting the PK of the NME is critical to predicting its PD.  In this review, the term PK will be 

used broadly to imply both systemic and tissue PK and the term drug will be used to imply both a small 

NME and an approved drug.  

During drug development, predicting the systemic PK of the drug is important to estimate the first in 

human dose and the quantitative impact of drug-drug interactions (DDIs), pharmacogenetics (PGx), 

disease, age, and other factors on the PK of the drug. Such information is important to design the drug’s 

Phase 2 & 3 clinical trials where the population enrolled is heterogenous. For many drugs, transporters 

are a significant contributor to not only their absorption and systemic clearance (CL) but also their 

distribution into tissues where their PD effects manifest (e.g. the brain, liver). If the tissue is not a 

significant contributor to the systemic CL of the drug, the presence (or modulation by DDI or PGx) of 

transporters at the tissue:blood barrier (e.g. the blood-brain barrier, BBB) will not affect the systemic CL of 

drug, but will affect their tissue PK, which drives the drug’s efficacy and/or toxicity. Therefore, besides 

determining (or predicting) systemic PK of a drug, it is also important to predict the tissue PK of the drug. 

This includes not only the unbound average steady-state drug tissue concentration, but also the dynamic 

changes in these concentrations. Here, we emphasize the word “predict” as measurement of drug 

concentrations at the site of its effect is rarely possible in humans. 
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Prior to first in human dose, prediction of in vivo systemic CL of a drug is usually done through in vitro to 

in vivo extrapolation (IVIVE). This is because the alternative approach, using animal data and allometry, 

is fraught with interspecies differences in protein abundance, catalytic activity and substrate selectivity of 

the transporters and metabolic enzymes that determine the PK of a drug. However, the success of IVIVE 

of transporter-based drug CL remains elusive (Bowman & Benet, 2016; Soars et al., 2007; Wood et al., 

2017). The reasons for this lack of success are multifactorial. First and foremost, there is a conceptual 

misunderstanding of what determines the systemic and tissue PK of a drug when transporters are present 

(see section 5 below and Patilea-Vrana & Unadkat, 2016). Second, high quality primary cells or in vitro 

cell models that can be used for IVIVE of transporter-based uptake and efflux CLs are not available 

routinely for tissues other than liver. Even where available (e.g., hepatocytes), their ability to replicate the 

activity (and abundance) of transporters found in the corresponding tissue, in vivo, is questionable (V. 

Kumar et al., 2019). Third, until recently, unlike metabolic enzymes (especially cytochrome P450 

enzymes), the abundance of transporters in various human tissues was unknown. With the advent of 

quantitative targeted proteomics (QTP), this challenge has been largely addressed (Prasad et al., 2019).  

Finally, in vitro methods (including scaling factors) to predict transporter-based PK of drugs, have not 

been thoroughly validated. 

Estimating tissue PK of a drug also poses many challenges since unlike systemic CL, tissue PK can 

rarely be measured in humans. Unlike drugs that passively diffuse across the tissue:blood barrier, the 

unbound steady-state tissue drug concentration of transporters substrates cannot be assumed to equal 

that in the plasma when transporters are present at this barrier. Often, the unbound steady-state tissue 

drug concentration (Cu,tissue,ss) is expressed relative to the corresponding unbound steady-state 

concentration in the plasma (Cu,plasma,ss), i.e., Kp,uu (Eq. 1). Kp,uu is determined by all the intrinsic (i.e., 

unbound) entry CLs into the tissue (CLint,in) and unbound exit CLs from the tissue (CLint,out): 

𝐾𝑝,𝑢𝑢 =
𝐶𝑢,𝑡𝑖𝑠𝑠𝑢𝑒,𝑠𝑠

𝐶𝑢,𝑝𝑙𝑎𝑠𝑚𝑎,𝑠𝑠
=

∑ 𝐶𝐿𝑖𝑛𝑡,𝑖𝑛

∑ 𝐶𝐿𝑖𝑛𝑡,𝑜𝑢𝑡
  (Eq. 1) 

In the absence of tissue metabolism (e.g., the brain), for drugs that passively cross the tissue:blood 

barrier, Kp,uu will equal 1 (CLint,in = CLint,out), However, when a drug is transported into or out of the tissue 

Kp,uu will be >1 and <1, respectively. That is, the unbound steady-state tissue concentration can no longer 
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be assumed to be the same as that in the plasma. In addition, a drug’s PD may be determined by its 

stead-state peak and trough tissue drug concentrations. Such prediction can only be made by estimating 

all the entry and exit intrinsic CLs (CLint) of the drug (including passive diffusion CLint) for the tissue of 

interest. In the liver for example, these CLint are the sinusoidal uptake (CLint,s,in) and efflux (CLint,s,ef), 

metabolic (CLint,met) and biliary efflux (CLint,bile). 

As outlined above, although predicting PK of transported drugs is challenging, much progress has been 

made in the last decade to overcome these challenges. These advances have been catalyzed by a better 

understanding of the role of transporters in the PK of drugs through the extended CL model (ECM) 

(Gillette & Pang, 1977; Sirianni & Pang, 1997; Shitara et al., 2006a; Camenisch & Umehara, 2012; M. V. 

Varma et al., 2015; Patilea-Vrana & Unadkat, 2016; Benet et al., 2018), advances in quantification of the 

abundance of transporters in human tissues using QTP (Prasad et al., 2019), commercial availability of 

cells/vesicle expressing human drug transporters, and the use of positron emission tomography (PET) 

imaging data to validate tissue drug PK predictions (including Kp,uu, as well as steady-state peak and 

trough concentrations). In this review, first, we describe in detail current and emerging in vitro models that 

are used for IVIVE of transporter-based and passive diffusion CLint. Second, we propose best 

experimental and data analysis practices to obtain scalable in vitro data. Third, we discuss various IVIVE 

scaling approaches to predict transporter-based CL, DDI and tissue PK of drugs. For each of these 

scaling approaches, we review their underlying principles, assumptions, methodology, predictive 

performance, as well as advantages and limitations. Fourth, we review available studies where predictive 

performance of these approaches has been assessed. Fifth, we describe how some of the above 

approaches can be used to predict transporter-based DDI. Finally, we discuss the current gaps in these 

approaches, and propose possible reasons for these gaps as well as studies that could help fill these 

gaps. 

Of note, in this review we refer to CL and CLint as the product of the surface area of the membrane barrier 

and the respective total and unbound drug permeability through the membrane barrier. These CLs can be 

either uptake or efflux. According to the ECM, the combination of multiple CLint (uptake, efflux and 

metabolic) in an eliminating organ determines the organ CLint (e.g., hepatic or renal) which in turn can be 
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translated into organ CL by taking into account the unbound fraction of the drug in the blood or plasma 

and the organ blood flow. 
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2. In vitro models for IVIVE of PK of transporter substrates  

To predict the quantitative role of drug transporters (and their modulation by endo- and xenobiotics) in the 

PK of a drug in humans, in vitro models are used, from which data on drug transport and passive diffusion 

can be extrapolated to in vivo (IVIVE). These in vitro models can either be primary cells isolated from the 

human organ of interest, transporter-expressing cells or membrane vesicles. In 2013, the International 

Transporter Consortium published a comprehensive review on in vitro methods to study drug transport 

(Brouwer et al., 2013). In this section, we provide an update on the in vitro models available to perform 

IVIVE of drug transport once the transporters involved have been identified. 

2.1.  Primary cells 

Except for human hepatocytes, primary human cells have limited availability. Although cells from 

preclinical species are used to establish in vitro to in vivo correlation in animals (De Bruyn et al., 2018; N. 

Li et al., 2020; Matsunaga et al., 2019; Trapa et al., 2019), extrapolation of these data to humans is 

unlikely to be accurate because of interspecies differences in transporter abundance, localization and 

substrate specificity (Chu et al., 2013; L. Wang et al., 2015). However, human liver chimeric mouse 

models have yielded some promising results (Feng et al., 2021; Sanoh et al., 2020).  

For accurate IVIVE using human primary cells, where a physiological scaling factor (PSF) is usually used 

(see section 4), it is critical that transporters of interest are expressed at similar abundance and have 

similar activity as that in the organ they are isolated from (Table 1). While this is often assumed, 

transporter abundance and activity can differ between primary cells and organ of origin (due to the 

isolation process, cryopreservation and culture time/conditions) and should be assessed (Y.-A. Bi et al., 

2017; Bow et al., 2008; Keemink et al., 2018; Kotani et al., 2011; Ulvestad et al., 2011). As an example, 

total and plasma membrane abundance of biliary efflux transporters are over-expressed in sandwich-

cultured human hepatocytes (SCH) compared to the liver tissue from which the hepatocytes were isolated 

(V. Kumar et al., 2019). Such assessment can be done by quantifying transport of selective probe 

substrates (when available) in absence vs. presence of selective transporter inhibitors (Y.-A. Bi et al., 

2019; De Bruyn et al., 2011; Zhang et al., 2019), quantifying the mRNA expression of the transporter of 

interest, or, preferably, its abundance (V. Kumar et al., 2019; Lundquist et al., 2014). Such research has 
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been done for hepatocytes (see studies referenced above), but limited data exist for proximal tubular cells 

and enterocytes from various regions of the intestine (Brown et al., 2008).  

Currently, human hepatocytes, either freshly isolated or cryopreserved, are the most widely available 

primary cells for ADME (i.e., absorption, distribution, metabolism, excretion) research. Hepatocytes can 

be used either in suspension, plated or in the sandwich configuration. The first two are used to quantify 

uptake transport, while the latter is mainly used to quantify biliary (i.e., canalicular) efflux transport. 

However, as discussed above, overexpression of efflux transporters in SCH could result in overprediction 

of the efflux CLs at the basal and canalicular membranes. Indeed, correcting the over-prediction of biliary 

efflux CL of rosuvastatin by the abundance of the biliary membrane transporters, recapitulates the 

observed in vivo biliary CL of the drug as determined by PET imaging (V. Kumar et al., 2019; Storelli et 

al., 2022a).  

Primary enterocytes and kidney proximal tubular epithelial cells are available commercially. However, 

they are not yet well characterized in terms of the abundance of transporters when cultured vs. that 

present in the corresponding human tissue. Availability of the brain microvascular endothelial cells, that 

constitute the BBB, represent an even greater challenge as they represent only a small fraction (<3%) of 

the brain (Lauwers et al., 2008), resulting in low cell yield per gram of tissue. The availability challenge of 

primary cells is further compounded by the significant interindividual variability in transporter 

abundance/activity, which results in the need to identify cells from donors that can provide a reasonable 

estimate of drug transport in vivo (e.g. not all hepatocytes are “transporter-qualified” or capable of being 

used in the SCH, suspended or plated configuration).  

2.2. Transporter-expressing cell lines and membrane vesicles 

In the absence of transporter-characterized primary cells (e.g. enterocytes or kidney proximal tubular 

epithelial cells), and due to deficiencies of the human hepatocyte models (described above), immortalized 

cells and membrane vesicles are alternative in vitro models for IVIVE of transporter-based drug PK. 

Available cell lines are either immortalized human cell lines (e.g., Caco-2, HepaRG, HepG2, HK-2), or 

human (such as HEK293 cells) or non-human cells (such as CHO, LLC-PK or MDCK cells) expressing a 

single or multiple human transporter(s) of interest. While the former can be used as models to predict 
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drug toxicity (e.g., BSEP-related cholestasis in HepaRG cells (Qiu et al., 2016; Woolbright et al., 2016)), 

they are not suitable for IVIVE due to the fact that not all transporters are expressed, or at abundances 

similar that in the tissue of interest. For example, organic anion transporting polypeptide (OATP)1B1 is 

present at a much lower abundance in HepaRG cells than in primary hepatocytes (Kotani et al., 2012), 

while organic anion transporter (OAT)1 and OAT3 are not at all expressed in HK-2 cells (Jenkinson et al., 

2012). 

Stable or transiently-transfected cell lines expressing a single transporter or membrane vesicles that are 

derived from these cells can allow quantitative prediction of the in vivo contribution of a particular 

transport pathway and the effect of genetic polymorphisms on this contribution (Kameyama et al., 2005) 

without the confounding effect of the presence of other transporters observed in primary cells. Therefore, 

these cells are the preferred in vitro cell models for IVIVE of transporter-based drug CLint using the 

relative expression factor (REF) or the relative activity factor (RAF) approach (see Section 4 for details 

about these two approaches). Transfected cell lines and membrane vesicles are commercially available 

for most clinically relevant drug transporters (uptake and efflux) from different vendors. Cells and vesicles 

that express the highest abundance of the transporter of interest should be preferred due to increased 

sensitivity to determine active transport. Also, they should have any endogenous transporter(s) ablated to 

not confound interpretation of drug transport data (or the endogenous transporter[s] should not contribute 

significantly to the transport of the drug of interest; Table 1). One approach to take endogenous transport 

activity into account is to subtract transport observed in non-transfected cells from that in transfected cells 

(or the corresponding derived membrane vesicles). This assumes that the activity (and expression) of the 

endogenous transporter is identical in the transfected cells vs. non-transfected cells. To avoid making this 

assumption, the endogenous transporter can be knocked out (e.g. canine P-glycoprotein, P-gp, in 

MDCKII cells) before expressing the human transporter (Karlgren et al., 2017; Simoff et al., 2016; Wegler 

et al., 2021). Such cells have successfully been used for IVIVE of distribution of P-gp substrate drugs into 

the human brain and the fetus (Anoshchenko et al., 2021; Storelli, Anoshchenko, et al., 2021). 

2.3. Emerging in vitro models  
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Recently, co-culture hepatocyte models (e.g., HepatoPac®, Hµrel®) have received much attention in 

long-term hepatic metabolism and toxicity studies due to their long-term functional stability (more than 4 

weeks). These models have been  evaluated for their potential application in phase I and phase II drug 

metabolism studies especially for low CL drugs (Ballard et al., 2020; Ramsden et al., 2014). These 

models express and demonstrate activity of major hepatic uptake transporters (Moore et al., 2016; 

Ramsden et al., 2014) and appear to recapitulate in vivo transporter-enzyme interplay in CYP induction. 

Using this model, prediction of in vivo CYP3A induction by rifampicin was better vs. the 2D hepatocyte 

monoculture (Dixit et al., 2016; Moore et al., 2016). Co-cultured models appear to form in vivo-like 

polarized architecture and hold potential in determining biliary excretion of xenobiotics. Biliary excretion of 

taurocholate has been investigated using the HepatoPac model and is comparable to that in SCH (Hafey 

et al., 2020). These models utilize smaller number of hepatocytes per well compared with the 

monoculture model making measuring transporter protein abundance by QTP a significant challenge.  

Also, because hepatocytes are co-cultured with a feeder cell line consisting of mouse fibroblasts, a 

control consisting of feeder cells alone (for activity as well as QTP) must be included in each experiment.  

Also, the accuracy of these models to predict in vivo hepatobiliary CL remains to be tested.  

Progress has been made in the development of microphysiological models (MPS, or organs-on-chip) for 

various organs to determine the drug ADME. MPS models can be described as in vitro models that go 

beyond 2D cultures, incorporate primary or stem cell derived cells, include mechanical factors such as 

flow, and can incorporate components of the immune system (Fowler et al., 2020). The long-term goal in 

the MPS field is to build a multi-organ chip model by linking MPS for various organs together, but this will 

first require establishment and qualification of the individual components. Progress has been made to 

build models for major organs such as the liver (Jang et al., 2019; Sarkar et al., 2017), kidney (W.-Y. 

Chen et al., 2021), and intestine (Markus et al., 2021). Currently, these models are still in the exploratory 

phase. Their ability to accurately predict transporter-based PK of drugs is yet to be explored.  

Due to the limited availability of primary cells to study drug transport at the BBB, human induced 

pluripotent stem cell-derived BBB models have been developed and currently being evaluated in 

predicting the brain penetration of drugs. With rapid progress in differentiation methods, human induced 
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pluripotent stem cell-derived BBB model has been shown to successfully form tight junctions 

(Transepithelial/transendothelial electrical resistance ~ 8000 ohm ×cm2) and express efflux transporters 

such as P-gp and multidrug resistance proteins (MRP) at a functional level (Neal et al., 2019). Further 

systematic evaluation of such models is needed to understand their potential to predict in vivo drug 

transport across the human BBB. Similarly, induced human intestinal organoids and enterocyte-like cells 

can express tight junction proteins and efflux transporters present in the intestinal tract. In addition, P-gp 

activity in this model can be inhibited by verapamil. However, current limitation of such models is the lack 

of segment-specificity, the need  for long time in culture, and also abundance of drug transporters is not 

well characterized (Arian et al., 2022; Onozato et al., 2018; Ozawa et al., 2015). 

3. Best practices to generate in vitro data suitable for IVIVE of drug transport PK 

To obtain in vitro uptake or efflux data that can be used for IVIVE, we provide below some guidelines 

based on our experience in conducting such studies. An important challenge of IVIVE of transporter-

based CLint that does not arise for metabolism is that drug uptake and efflux, both in vitro and in vivo, is 

the sum of active transport and passive diffusion. For accurate IVIVE of drug transport from cell models, it 

is critical that passive diffusion CLint be accurately quantified (except for the ER-REF and RAFin vivo 

approaches in Sections 4.2.1 and 4.2.2, respectively). This is particularly important where the contribution 

of passive diffusion CLint, both in vitro and in vivo, is a significant percent of the total uptake or efflux CLint 

of the drug. In addition, quantification of passive diffusion vs. active CLint of the drug is important for 

determining the fraction of drug transported (ft; i.e., the contribution of each transporter in the uptake 

and/or efflux of a drug) to predict the influence of DDI and transporter pharmacogenetics on transporter-

based drug PK. Here we review experimental considerations for both uptake and efflux experiments. Of 

note, if plasma proteins are not included in the transport buffer, the uptake or efflux CL measured will be 

the intrinsic CLint. However, when plasma proteins are included (e.g. human serum albumin), the 

measured uptake/efflux CL should be corrected for binding to translate the CL into CLint. 

3.1. Uptake assays 

3.1.1. How should the transporter-based uptake CLint be measured? 
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Two methods can be used to determine transporter-based drug uptake CLint (Fig. 1). For both methods, 

the total drug uptake is measured over a period during which the uptake is linear. It is important to 

estimate the initial drug uptake rate where the back-flux of the drug from the cells (or vesicles) into the 

media is minimized and therefore assumed to be negligible. Only if this assumption is correct can the 

initial uptake rate be translated to uptake CLint. For these reasons, the duration of uptake is short, usually 

seconds (transporter-transfected cells, vesicles) to several minutes (primary cells), depending on drug 

properties and the cell model used. Although not explicitly stated, the following assays (including for 

passive diffusion uptake) also apply to vesicle uptake studies. 

In the first method (time-dependent uptake assay), the initial uptake rate is measured at a drug 

concentration much below its Km (the affinity constant) for the transporter of interest (Fig. 1A). In the 

second method, the uptake of the drug (at a time when the uptake has been shown to be linear) is 

measured at different concentrations to generate a concentration-dependent uptake curve (concentration-

dependent uptake assay). Though such concentration-dependent uptake could occur for a number of 

reasons other than Michaelis-Menten, for simplicity, henceforth we will refer to this assay as the 

Michaelis-Menten assay (Fig. 1B). 

For the commonly used time-dependent uptake assay, the total (active + passive) uptake CLint can be 

determined as the initial (linear) slope of the drug uptake (normalized with the initial concentration of the 

drug in the incubation buffer) vs. time plot. Active uptake CLint is then indirectly calculated by subtracting 

the passive uptake CLint (see below) from the total uptake CLint. We recommend no fewer than three data 

points (preferably conducted in duplicate) to ensure confidence in the estimated slope. Conducting initial 

uptake studies can be a challenge since, for some transporters (such as OATPs), linear drug uptake 

occurs over a short duration such as 5-10 seconds (V. Kumar, Yin, et al., 2020). In this case, data at only 

two time points may be all that can be obtained to estimate uptake CLint. Use of a single time point is not 

recommended as it entails assuming that the nonspecific binding of the drug (i.e. intercept) is negligible. 

Also, such short incubation times can result in increased technical variability due to the time needed to 

process the sample after quenching the uptake. 
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The Michaelis-Menten method (Fig. 1B) is preferred when the unbound concentration of the drug in vivo 

is likely to span the Km of the drug transport (e.g., in the gut). That is, where the in vivo CLint,active changes 

with the unbound drug concentration. However, this approach requires more data points (at least 6 

different concentrations) to determine Km and Jmax (the maximal rate of transport) (see Eq. in Fig. 1B).  

Also, the Michaelis-Menten kinetic parameters cannot be determined for low solubility compounds for 

which transporter-saturating drug concentrations cannot be achieved.  

For both the above assays, it is important to remember that the total uptake is always a combination of 

active and passive uptake. Thus, if the latter is a significant percent of the total uptake, any inaccuracy in 

determining the passive and/or total uptake will result in poor confidence in the estimation of active 

uptake. For this reason, it is important to determine the passive uptake (and total uptake) CLint of the drug 

with high level of accuracy.  

3.1.2. How should passive diffusion CLint be determined? 

When using transporter-transfected cells, one can perform a parallel uptake experiment in mock-

transfected or non-transfected cells. Then, the active uptake CLint can be obtained by subtracting the 

passive CLint (measured in mock cells; Fig. 1Ca) from the total (active + passive) uptake CLint (measured 

in the transfected cells). In this case, we assume that the passive diffusion in mock cells is the same as 

that in the transfected cells. One important consideration is that the measured passive diffusion CLint can 

be different depending on the cell type used (e.g., HEK293, CHO, or MDCK) (Ishida et al., 2018), perhaps 

because of differences in cell membrane composition between human and animal cells (Paleocontact et 

al., 2018; Purushothaman et al., 2016).  In this case, for IVIVE, one can take the average of all measured 

passive diffusion CLint in human cells (V. Kumar, Yin, et al., 2020), although a better practice would be to 

calibrate the passive diffusion measured in cell lines with that measured in primary cells (methods 

described below) (R. Li, Bi, et al., 2014).  

Other methods to measure passive diffusion apply to both transfected and primary cells (Fig. 1Cb-d). 

First, one can use an inhibitor of the transporter of interest, or if using primary cells, a pan-inhibitor or a 

cocktail of inhibitors (Fig. 1Cb). The advantage of this method (vs. using mock cells) is that the passive 

diffusion is determined in cells used to determine the total uptake of the drug. However, one concern is 
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whether the inhibitor(s) can inhibit all the transporters involved in drug uptake into the primary cells (e.g. 

an unidentified transporter may be involved). The second method is to use low temperature (by 

performing uptake assay at 4°C (on ice), which will suppress the active transport activity (Fig. 1Cc). 

However, as partition/distribution coefficients and passive transcellular permeation can be influenced by 

temperature, passive uptake measured at 4°C might not reflect that at 37°C (Chothe et al., 2018; Lei et 

al., 2000). Bi et al. reported, using low canine P-gp expressing MDCK cells, that only about half of a set of 

21 compounds showed considerably lower passive uptake at 4°C vs. 37°C (i.e., < 50%). In the same 

study, the effect of temperature on passive uptake varied significantly between compounds and, for some 

drugs, was as much as 50-fold lower at 4°C vs. 37°C. In addition, the authors reported different effect of 

temperature on passive permeability of drugs between cell types (hepatocytes with rifamycin SV and low-

P-gp expression MDCK cells)  (Y.-A. Bi et al., 2017). A better understanding of the effect of temperature 

on passive uptake of drugs is needed to use this method with confidence.  The third method is self-

inhibition (e.g., by using the labeled drug to perform the uptake experiments, and the unlabeled drug to 

completely inhibit the active uptake) (Fig. 1Cd). This method is advantageous over the use of inhibitors if 

the presence of an unidentified transporter is suspected or an inhibitor of the transporters involved is not 

available. The fourth approach, which is specific to concentration-dependent assays (Fig. 1B), is to 

incorporate a passive diffusion component into the Michaelis-Menten equation to simultaneously 

estimate, via modeling, passive diffusion as well as saturation kinetics parameters, Km and Jmax, for the 

uptake of the drug.  This can be done either by simultaneously measuring the uptake of the drug at all 

concentrations in the absence and presence of complete inhibition of the active uptake or just based on 

uptake data obtained in the absence of the inhibitor (Brouwer et al., 2013). The latter method is less 

preferred as it is prone to error especially for drugs with moderate to high passive vs. active uptake CLint.  

In conducting both active and passive uptake studies, additional experimental conditions should be taken 

into consideration to obtain best estimates of these two uptakes. First, after the uptake experiments is 

complete, the cells are washed with buffer to quench any further uptake and to wash away any 

nonspecific binding of the drug to cell surface. The latter is particularly important for lipophilic drugs as it 

is impossible to differentiate drug taken up into the cells from that which is bound to the cell surface.  

Extensive binding to the cell surface will result in over-estimation of the uptake CLint of the drug. Currently, 
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there is no consensus on the number of washes (but usually 2-3) nor the volume to be used (but usually 

bigger than the incubation volume) (Izumi et al., 2022; Kimoto et al., 2017a; V. Kumar, Li, et al., 2020; V. 

Kumar, Yin, et al., 2020; Miyauchi et al., 2018; Sachar et al., 2020; Watanabe et al., 2011). Both in-house 

(unpublished) and published data suggest that the number of washes can have impact on the estimate of 

drug uptake (Yoshikado et al., 2021). Also, to reduce non-specific binding of the drug, some add bovine 

serum albumin to the washing buffer (Niessen et al., 2009). Of note, uptake into suspended hepatocytes, 

measured using the oil-spin method, does not involve any washing step. Instead, the transport assay is 

terminated by rapidly separating the cells from the incubation medium by passaging them through an oil 

layer. However, this method does not necessarily reduce non-specific binding of highly lipophilic drugs as 

any drug adsorbed to the cell surface could also passage into the oil layer (Yoshikado et al., 2021).  To 

improve solubility of lipophilic drugs in the uptake buffer, organic solvents are often used (e.g., dimethyl 

sulfoxide). However, these solvents can affect membranes drug permeability (Mitchell et al., 2019). 

Therefore, their concentrations should be kept minimal (preferably <1%). In addition, they may 

differentially affect transporters as we have previously shown with drug metabolizing enzymes (Hickman 

et al., 1998).  Thus, studies are needed to quantify the impact of organic solvents on both passive and 

active uptake and efflux (see below) of drugs.  

3.2. Efflux assays 

Determination of drug efflux in vitro, for IVIVE, is done using either living cells (primary cells, e.g., SCH, or 

transfected cells) or membrane vesicles. Determination of drug efflux (as opposed to uptake) using cells 

is complicated by the fact that the drug needs to first permeate into the cells before it can be effluxed.  For 

drugs that are lipophilic, this is not an obstacle. Thus, theoretically, one could determine drug efflux by 

measuring reduced accumulation (accumulation assay) of a drug in primary or transfected cells 

expressing the efflux transporter. In practice, due to high passive diffusion of lipophilic drugs and their 

extensive binding to intracellular proteins and lipids, accumulation assays have low sensitivity to 

accurately determine drug efflux CLint. Thus, this method is rarely used (X. Chen et al., 2021). Instead, to 

overcome the above problems, for lipophilic drugs, the efflux ratio (ER) is determined using the 

Transwell® assay (monolayer of cells grown on a membrane insert). For the less lipophilic drugs, 
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membrane vesicles made from cells expressing the efflux transporter can be used.  These assays are 

detailed below.  

3.2.1. Estimation of efflux CL and efflux ratio (ER) using transfected cell lines 

Bidirectional transport assays (Transwell®) using transfected cells (e.g. P-gp or breast cancer resistance 

protein, BCRP) are widely used to characterize drug ER and efflux CL. In this assay, polarized 

transfected cells are seeded on a membrane insert facing two chambers: an apical (A) chamber and a 

basal (B) chamber. Then, the drug is added to either the A or B chamber (i.e., the donor chamber) and its 

appearance in the receiver chamber is measured over time (Fig. 2A). The ER is defined as the ratio of 

the apparent drug permeability (Papp) from the basal-to-apical (B→A) (Papp(B→A)) and the apical-to-basal 

(A→B) (Papp(A→B)) chamber. Drug ER will be >1 when the drug is effluxed by the efflux transporter 

localized at the apical membrane, and will equal 1 in the absence of such transport, that is when the drug 

passively diffuses through the cells (in mock cells that lack any endogenous transport or when the efflux 

transport is completely inhibited). The Papp value is usually determined as the ratio of the cumulative 

appearance of the drug in the receiver chamber measured at (a) given time point(s) (usually 1-4 hours) 

and the nominal drug concentration in the donor compartment. However, to take into consideration 

depletion of the drug in the donor compartment (due to passage into the receiver compartment as well as 

non-specific binding in the donor compartment), we prefer to determine the ER based on the CLint 

calculated using the cumulative amount of the drug in the receiver chamber and the area under the 

concentration-time curve (AUC) of the drug in the donor compartment: 

𝐸𝑅 =
𝐶𝐿𝑖𝑛𝑡,𝐵→𝐴

𝐶𝐿𝑖𝑛𝑡,𝐴→𝐵
=

𝑐𝐴𝐴,𝑅 × 𝐴𝑈𝐶𝐴,𝐷

𝑐𝐴𝐵,𝑅 × 𝐴𝑈𝐶𝐵,𝐷  
   (Eq. 2) 

where cAA,R and cAB,R are the cumulative amount of the drug appearing in the receiver chamber A or B, 

respectively, and AUCA,D and AUCB,D are the AUC of the drug in the A or B donor chamber, respectively. 

This equation assumes identical surface area in the donor and receiver chamber for drug passage and 

that the Papp is independent of the drug concentration (this must be confirmed in preliminary experiments). 

To determine the ER due to transport alone, the ER is determined in the absence and presence of the 

inhibitor (usually added to both chambers at inhibitor [inh] concentrations that will completely inhibit the 
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transporter). When using this bidirectional assay, the integrity of the tight junctions must be ensured by 

monitoring it using a non-permeability marker (such as lucifer yellow and/or mannitol) and established cut-

off values for the permeability of these markers. Paracellular permeability is compound-dependent, and, 

to our knowledge, there is currently no method available to scale the in vitro paracellular permeability to in 

vivo. 

The bidirectional assay with determination of the ER using Transwell® is particularly useful for the IVIVE 

of interstitial tissue drug concentrations (i.e., Kp,uu) when the unbound steady-state tissue drug 

concentration is modulated by efflux transporters present at the tissue:blood barrier (e.g., P-gp at the BBB 

or the placental:blood barrier). Indeed, the Transwell® assay mimics the BBB and placental barriers in 

vivo (Fig. 2A). As such, Kp,uu can be extrapolated from the ER determined in vitro using the REF (see 

Section 4 for details) without estimating the passive diffusion CLint. Alternatively, the unidirectional CLint 

(active and passive) can be estimated in vitro using the Papp values in presence and absence of the 

transporter inhibitor, or by using mock cells. However, estimation of CLint using Papp(B→A) and Papp(A→B) 

values does not take into account the complexity of the diffusion of the drug through two barriers (apical 

and basal membranes) and can mislead interpretation of kinetic constants Jmax and Km (Tachibana et al., 

2010). Therefore, compartmental modeling of the data with ≥ 3 compartments (incl. a cell compartment) is 

preferred. In this case, simultaneous fitting of the model to the measured drug concentration-time profiles 

in the donor and receiver chambers (in A→B experiments or in both A→B and B→A experiments), as well 

as within the cells, in absence and presence of an inhibitor (or in mock cells), over time can provide 

estimates of the active and passive efflux CLint (Korzekwa et al., 2012; Nagar et al., 2014; Storelli, 

Anoshchenko, et al., 2021; Zamek-Gliszczynski et al., 2013). Of note, estimation of the efflux CLint (i.e., 

out of the cell compartment) requires measurement of the unbound drug fraction in the cell (Mateus et al., 

2013).  

Though the Transwell® assay is suitable for the more lipophilic drugs (for which the use of vesicles is 

limited, see below), highly lipophilic drugs represent a challenge if the drug binds extensively within the 

intracellular compartment. In this case, very little drug will reach the receiver compartment making 

estimation of the ER impossible (X. Chen et al., 2021). In contrast, study of drug efflux of low permeability 
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drug using the Transwell® assay will likely necessitate the use of a double-transfected cells (expressing 

an uptake transporter for the drug in addition to the efflux transporter of interest). 

3.2.2. Estimation of efflux CLint using membrane vesicles 

Membrane vesicles are useful to study efflux transport by the ATP-binding cassette transporters (e.g. P-

gp, BCRP, MRP2/3) because a significant fraction of the membrane vesicles is in the inside-out 

configuration (Fig. 2B), allowing the transporter cofactor (ATP) in the assay buffer to directly interact with 

the cofactor binding site. As a result, data analysis is comparable to that of uptake assays. Active 

transport is determined by subtracting the drug uptake into vesicles in the presence of adenosine 

monophosphate (passive uptake) from drug uptake in the presence of adenosine triphosphate (total 

uptake). Passive drug uptake can also be determined using mock vesicles and adenosine triphosphate. 

To use vesicles for IVIVE of the ER or efflux CLint, the percentage of inside-out vesicles in the vesicles 

must be determined (e.g. by assessing the activity of an ectoenzyme such as 5’-nucleotidase in the 

vesicle mixtures before and after lysis (C. Y. Li et al., 2019)).  

Vesicles are best used for efflux assays when the drug has low passive permeability. They are not 

suitable to study efflux of lipophilic compounds which are likely to have high permeability or high 

nonspecific binding to the filter/vesicles. This is because these phenomena will result in passive uptake 

being a large fraction of the total uptake making it difficult to quantify the active uptake with confidence. 

Also, compounds with significant passive permeability can show significant back-flux of the drugs into the 

incubation medium, therefore requiring very short incubation times (< 30 seconds) to enable 

measurement of the initial uptake rate. Nonspecific binding to the filter/vesicles can be reduced by 

optimizing the number of washes and the volume of washing solution, and by adding albumin in the 

quenching solution.  When determining drug efflux, membrane vesicles have a number of advantages 

over cells (Transwell® assay). First, the use of cells requires more complex compartmental modeling of 

the data (see above). Second, unlike cells, membrane vesicles do not need culturing and can be dosed at 

high drug concentrations which might be toxic to the cells.  

3.2.3. Determination of biliary CL using sandwich-cultured hepatocytes (SCH) 
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SCH are traditionally used to estimate biliary drug efflux CL. To do so, experiments are conducted in the 

absence and presence of calcium (Ca2+)/ magnesium (Mg2+). When Ca2+/ Mg2+ is present in the 

incubation buffer, the amount of drug quantified in the cell lysate represents the amount that accumulates 

in both the SCH and in the bile canaliculi. Exclusion of Ca2+/ Mg2+- from the incubation buffer (over short 

duration) results in disruption of SCH tight junctions and therefore the bile canaliculi. In this case, the 

amount of drug quantified in the cell lysate represents drug accumulated in only the SCH and not in the 

bile canaliculi. Then, a 3-compartment model is usually used to estimate the sinusoidal and biliary efflux 

CLs (Ishida et al., 2018; Jones et al., 2012; V. Kumar, Li, et al., 2020; Pfeifer et al., 2013; Storelli et al., 

2022a; Zamek-Gliszczynski et al., 2013). The compartments are the buffer, cells and the bile canaliculi. 

Note that to obtain intrinsic CLs (i.e., unbound), the fraction unbound of the drug in the cells and in the 

buffer (if containing proteins) must be determined and incorporated in the model. The in vitro biliary efflux 

CLint (Clint,bile) can also be determined by measuring the canalicular accumulation of the drug over a given 

period as well as the unbound drug AUC in the hepatocytes (AUChep.u) during that same time, as follows: 

𝐶𝐿𝑖𝑛𝑡,𝑏𝑖𝑙𝑒 =
𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 (+ 𝐶𝑎2+/𝑀𝑔2+)− 𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 ((−) 𝐶𝑎2+/𝑀𝑔2+) 

 𝐴𝑈𝐶ℎ𝑒𝑝.𝑢
  (Eq. 3) 

In this case, AUChep,u is estimated based on the measured amount of drug in the cell lysates and cell 

volume (usually estimated based on cell number or total protein content). AUChep,u is preferred over Chep,u 

when steady-state conditions are not achieved. Note that biliary CLint,bile should be estimated (Eq. 3) using 

drug concentration in the cells rather than in the buffer, because the former drives biliary efflux and the 

latter may not be representative of the unbound cell drug concentration due to the involvement of active 

transport at the sinusoidal membrane of the SCH (Nakakariya et al., 2012). Also, several challenges, 

discussed by Kumar et al., (V. Kumar, Li, et al., 2020), need to be considered when conducting SCH 

experiments. First, if the incubation in the absence of Ca2+/ Mg2+ is short, the canalicular tight junctions 

may reform and could prevent accurate estimation of biliary CL. However, prolonged incubation in the 

absence of Ca2+/ Mg2+ is not an option as this condition is toxic to the cells (V. Kumar, Li, et al., 2020). 

Second, depletion of Ca2+/ Mg2+ downregulates the sodium-taurocholate co-transporting polypeptide 

(NTCP) transporter, a confounding factor when interpreting hepatic uptake CL of drugs mediated (at least 

in part) by this transporter. 
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4. In vitro to in vivo scaling approaches 

Scaling factors for IVIVE of transporter-based drug uptake or efflux CLint will depend on the in vitro model 

used (Fig. 3).  

4.1. Scaling factors when using primary cells  

Physiological scaling 

Most commonly, the in vivo uptake or efflux CLint (CLint, in vivo) is obtained by scaling the CLint determined in 

vitro (CLint, in vitro) in primary cells using a physiological scaling factor (PSF) (Fig.3, left panel): 

𝐶𝐿𝑖𝑛𝑡,𝑖𝑛 𝑣𝑖𝑣𝑜 =  𝐶𝐿𝑖𝑛𝑡,𝑖𝑛 𝑣𝑖𝑡𝑟𝑜 × 𝑃𝑆𝐹   (Eq. 4) 

When transport is measured using the Michaelis-Menten approach (see Section 3 above), CLint, in vitro 

(Jmax/Km when drug concentration << Km) can be scaled as in Equation 4.  If the unbound drug 

concentration in vivo is likely to approach or exceed the unbound in vivo Km, the concentration-dependent 

CLint, in vivo can be computed by scaling Jmax assuming that unbound Km is identical in vitro and in vivo. In 

this event, CLint, in vivo can be computed for every in vivo unbound drug concentration (Cu), e.g. in 

physiologically-based PK (PBPK) modeling and simulation, as: 

𝐶𝐿𝑖𝑛𝑡,𝑖𝑛 𝑣𝑖𝑣𝑜 =
𝐽𝑚𝑎𝑥

𝐾𝑚+𝐶𝑢
× 𝑃𝑆𝐹  (Eq. 5) 

where PSF includes the number of cells in the tissue of interest or the membrane/total protein content 

(i.e., mg membrane/total protein or million cells per gram of tissue and tissue weight); Cu is the unbound 

drug concentration in vivo. PSF is considered by many as the preferred approach for IVIVE for 

compounds in discovery due to its ease of implementation. This PSF approach assumes that the 

transporter activity in vitro in the primary cells is the same as that in vivo. With this approach, the identity 

of the transporter(s) does not need to be known. The PSF approach is limited by the availability of 

primary cells, as well as significant interindividual variability (as discussed in Section 2). Moreover, this 

approach seems to underpredict transporter-based hepatic uptake in vivo (Jones et al., 2012; R. Li, 

Barton, et al., 2014; Sachar et al., 2020; Storelli et al., 2022a). 
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Empirical Scaling  

To address the issue of underprediction of transporter-based CLint by primary cells, the use of empirical 

scaling factors (ESF) has been proposed, where: 

𝐶𝐿𝑖𝑛𝑡,𝑖𝑛 𝑣𝑖𝑣𝑜 =  𝐶𝐿𝑖𝑛𝑡,𝑖𝑛 𝑣𝑖𝑡𝑟𝑜 × 𝑃𝑆𝐹 × 𝐸𝑆𝐹  (Eq. 6) 

These ESF can be obtained either from studies in animals or in humans. In the first case, the ESF 

approach utilizes preclinical animal data to inform IVIVE for humans (De Bruyn et al., 2018; Matsunaga et 

al., 2019). This approach assumes that the magnitude of misprediction of transporter-based CLint in 

humans is the same as that in the preclinical species. A significant disadvantage of the approach is the 

need to conduct both in vitro animal cell-based and in vivo animal experiments in conjunction with in vitro 

studies with human primary cells or transporter-transfected cells. In the second case, the best possible 

ESF is determined from both in vitro (e.g. hepatocytes) and in vivo (e.g. hepatic CL) transport studies of 

multiple drugs substrates for a given transporter or class of transporters (e.g., OATPs) (Jones et al., 2012; 

R. Li, Barton, et al., 2014). However, these ESFs are often drug-dependent and cannot be generalized to 

other drugs. Therefore, more mechanistic scaling approaches are needed, such as RAF or REF 

described below. 

4.2. Scaling factors when using transfected cells or vesicles  

RAF or REF can be used as scalars for IVIVE of transporter-based CLint when using transporter-

expressing cells and/or membrane vesicles provided the transporters involved are known. RAF and REF 

respectively account for the difference in intrinsic transporter activity and expression between in vitro 

models and human tissue. In addition, passive diffusion of drugs needs to be scaled from in vitro to in 

vivo. An exception is when using RAF for drugs transported predominately by a single transporter. In this 

case, both the in vitro active and passive diffusion CLint can be simultaneously scaled to in vivo without 

using a PSF (as detailed below in Section 4.2.2). However, with both approaches, when multiple 

transporters are involved, active and passive CLint are separately scaled (see Section 4.2.2), and the in 

vitro passive diffusion CL (CLint,pd, in vitro) is scaled to that in vivo (CLint,pd, in vivo) using PSF, as follows: 

𝐶𝐿𝑖𝑛𝑡,𝑝𝑑,𝑖𝑛 𝑣𝑖𝑣𝑜 =  𝐶𝐿𝑖𝑛𝑡,𝑝𝑑,𝑖𝑛 𝑣𝑖𝑡𝑟𝑜 × 𝑃𝑆𝐹  (Eq. 7) 
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4.2.1. Relative expression factor (REF) 

With the advent of QTP and availability of transporter abundance data (Prasad et al., 2019), the REF 

approach has recently gained a lot of attention (Anoshchenko et al., 2021; Deng et al., 2021; A. R. Kumar 

et al., 2021; V. Kumar et al., 2018, 2018; Nozaki & Izumi, 2020; Sachar et al., 2020; Sato et al., 2021a; 

Storelli, Anoshchenko, et al., 2021; Storelli et al., 2022a; Trapa et al., 2019; Vildhede et al., 2016). CLint 

via a transporter is defined as the ratio of Jmax over Km (when the drug concentration is < Km). Jmax is the 

product of its turnover rate (kcat; rate at which substrates are actively translocated across the cell 

membrane) and its abundance (concentration). The REF approach assumes that the difference in 

transporter activity in vitro vs. in vivo is due to the difference in transporter abundance, and that Km and 

kcat are identical in vitro and in vivo. This assumption is supported by data showing that OATP1B1 and 

BCRP transporter activity correlates well with their abundance (or expression) in cell lines (V. Kumar et 

al., 2015). Therefore, transporter-based CLint and (and Kp,uu) can be scaled from in vitro to in vivo by using 

the REF (unitless) (Figure 3, middle panel), as described below: 

𝐶𝐿𝑖𝑛𝑡,𝑖𝑛 𝑣𝑖𝑣𝑜,𝑎𝑐𝑡𝑖𝑣𝑒 = [∑ 𝐶𝐿𝑖𝑛𝑡,𝑖𝑛 𝑣𝑖𝑡𝑟𝑜,𝑖 × 𝑅𝐸𝐹𝑖]
𝑛
𝑖=1  × 𝑃𝑆𝐹   (Eq. 8) 

𝑅𝐸𝐹𝑖 =
𝑇𝐴𝑡𝑖𝑠𝑠𝑢𝑒,𝑖

𝑇𝐴𝑖𝑛 𝑣𝑖𝑡𝑟𝑜,𝑖
  (Eq. 9) 

where TAtissue,i and TAin vitro,i are the abundance of the ith transporter in human tissue and the in vitro 

model, respectively. Therefore, REF requires measurement of transporter abundance for each drug 

transporter protein of interest, in both in vitro models and ex vivo tissue.  

The REF approach has also been used to extrapolate the tissue:plasma unbound drug concentration 

ratio, Kp,uu, from the ER determined in the presence and absence of inhibitors (inh), as follows (see also 

Fig. 2A) : 

𝐾𝑝,𝑢𝑢 =
1

[∑ (𝐸𝑅(−)𝑖𝑛ℎ𝑖
−𝐸𝑅(+)𝑖𝑛ℎ𝑖

)∙𝑅𝐸𝐹𝑖]𝑛
𝑖=1 +1

 (Eq. 10) 

When multiple transporters are involved, the ER and REF are estimated using cell lines, each expressing 

a single transporter (e.g. P-gp and BCRP-transfected cells), in absence and presence of complete 

inhibition of the respective transporter. This approach is named the ER-REF approach and can be used 

to determine the steady-state parameter Kp,uu, either after multiple (to steady-state) or single dose 
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administration provided the drug concentration is << Km of the transporter. Although this approach is 

applied when efflux transport is expected to affect drug concentrations in the tissue it could easily be 

modified when active uptake into the tissues is involved. The ER-REF approach has the major advantage 

of not requiring extrapolation of passive diffusion, as only the active component of the ER (characterized 

by the difference in the ER in the absence and in presence of the transporter inhibitor) is extrapolated to 

in vivo.  

 

To predict the dynamic (rather than static) changes in tissue drug concentrations, the sum of input and 

exit drug CLint is required (Eq. 1). In that event, the in vivo passive diffusion CLint can be estimated using a 

passive diffusion marker as a calibrator, for which in vitro and in vivo CLint data are available (e.g., 

midazolam). Then, the active CLint of the drug can be estimated from passive diffusion CLint and Kp,uu 

based on the following equations: 

𝐶𝐿𝑖𝑛𝑡,𝑝𝑎𝑠𝑠𝑖𝑣𝑒,𝑖𝑛 𝑣𝑖𝑣𝑜,𝑑𝑟𝑢𝑔 𝑋 = 𝑃𝑎𝑝𝑝,𝑑𝑟𝑢𝑔 𝑋  ∙
𝐶𝐿𝑖𝑛𝑡,𝑖𝑛 𝑣𝑖𝑣𝑜,𝑚𝑎𝑟𝑘𝑒𝑟

𝑃𝑎𝑝𝑝,𝑚𝑎𝑟𝑘𝑒𝑟
  (Eq. 11) 

𝐾𝑝,𝑢𝑢 = 1 − 𝑓𝑡 =
𝐶𝐿𝑖𝑛𝑡,𝑝𝑎𝑠𝑠𝑖𝑣𝑒

𝐶𝐿𝑖𝑛𝑡,𝑝𝑎𝑠𝑠𝑖𝑣𝑒  + 𝐶𝐿𝑖𝑛𝑡,𝑎𝑐𝑡𝑖𝑣𝑒

  (Eq. 12) 

So far, the ER-REF approach has been validated in humans to successfully predict the cerebral and fetal 

systemic concentrations of drugs modulated by P-gp efflux at the BBB and the placental:blood barrier 

respectively (Anoshchenko et al., 2021; Storelli, Anoshchenko, et al., 2021). Validation is needed for 

situations where other transporters (e.g. BCRP) are involved in modulating tissue drug concentrations.  

 

An elegant advantage of the REF approach is that it is capable of handling multiple drug transporters (if 

transfected cells are available and the transporters of interest can be quantified in the human tissue of 

interest). This versatility, in contrast to the RAF approach, results in additional advantage. It does not 

need to assume that uptake is the rate-determining step (RDS) for the CL of the drug via the organ of 

interest. Also, it is not limited by the availability of primary cells (not available for the kidney, intestine or 

the BBB) or by availability of selective probe substrates (used by the RAF approach). Additionally, the 

IVIVE of the CLint of the drug by a given transporter is not limited to a single organ when transporter 

abundance is available for different organs. This approach, however, has limitations. , When multiple 
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transporters are involved, the uptake by these transporters, individually expressed in transporter-

expressing cells, need to be measured to arrive at a REF for each. This is because there is large inter-

laboratory variability in the reported drug transporter abundance values likely due to the use of different 

QTP methodologies (Badée et al., 2015; Harwood et al., 2016; Prasad et al., 2019). Therefore, we 

recommend measuring transporter abundance in the tissue of interest in the same laboratory as where 

the in vitro CLint is measured. 

 

To obtain reliable REF value using QTP, we recommend several best practices.  First, whenever 

sensitivity of the LC-MS/MS assay allows, the relative abundance of the transporters in cell or tissue 

lysate (vs. crude membrane preparation) should be measured to avoid the need to correct for loss of 

membrane during the membrane preparation which can introduce error (V. Kumar et al., 2019). Second, if 

lack of sensitivity of the assay requires membrane preparation to enrich the transporter concentration, we 

recommend the use of a membrane marker, such as Na+-K+-ATPase, to correct for membrane loss during 

the membrane preparation (Storelli, Billington, et al., 2021).  Third, all peptide standards (labeled and 

unlabeled) and reagents must be of the highest purity available. Fourth, maximal digestion of the protein 

to liberate the peptide of interest using an enzyme, such as trypsin, must be optimized. Fifth, we 

recommend including a biological control, such as albumin, to confirm consistent and reproducible 

digestion of proteins. Sixth, we recommend including another biological control, such as a pooled 

membrane preparation isolated from multiple organs (e.g. livers), which also goes through the digestion 

process at the same time as the membrane of interest.  Quantification of transporters in this biological 

control membrane preparation (e.g. OATPs) should be consistent and reproducible for every assay.  

Finally, when using the above approaches to quantify the abundance of transporters, all the transporters 

quantified are assumed to be expressed in the plasma membrane and functional.  But, as pointed out in 

Section 7.3 this may not be the case.  Therefore, confirming this assumption, using a method such as 

biotinylation, is important (V. Kumar et al., 2017).   

 

 

4.2.2. Relative activity factor (RAF)  
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The RAF approach relies on the availability of data on selective probe drug transport CLint, both in vitro (in 

primary cells or in transporter-transfected cells) and in vivo (e.g. Mathialagan et al., 2017) (Figure 3, right 

panel). Selectivity means that the probe drug must be predominantly transported in vivo and in vitro by a 

single transporter (rarely the case). If it is, the difference in transporter activity/expression and passive 

diffusion CLint in primary or transfected cells and in vivo, yields the value of the scaling factor, RAFin vivo: 

𝑅𝐴𝐹𝑖𝑛 𝑣𝑖𝑣𝑜 =
𝐶𝐿𝑖𝑛𝑡,𝑖𝑛 𝑣𝑖𝑣𝑜,𝑝𝑟𝑜𝑏𝑒 𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒

𝐶𝐿𝑖𝑛𝑡,𝑖𝑛 𝑣𝑖𝑡𝑟𝑜,𝑝𝑟𝑜𝑏𝑒 𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒
 (Eq. 13) 

Then, the in vitro CLint of another drug (e.g., drug X), in the same cells as that used to measure the in vitro 

CLint of the probe drug, and transported by the same transporter as the probe drug, is scaled to in vivo as 

follows: 

𝐶𝐿𝑖𝑛𝑡,𝑖𝑛 𝑣𝑖𝑣𝑜 =  𝐶𝐿𝑖𝑛𝑡,𝑖𝑛 𝑣𝑖𝑡𝑟𝑜 × 𝑅𝐴𝐹𝑖𝑛 𝑣𝑖𝑣𝑜 (Eq. 14) 

RAFin vivo assumes either that the passive diffusion clearance of the drug is negligible or that the ratio of 

the in vitro passive and active CLint of drug X is identical to that of the probe drug. Consequently, this 

scalar does not need a PSF as this is implicitly included in Eq. 13 and 14. Therefore, it is less prone to 

any errors in PSF which can have significant inter-laboratory variability (Barter et al., 2007). However, if 

the in vitro passive diffusion CLint of drug X is a significant fraction of its total in vitro CLint,  and this fraction 

differs from that of the probe drug then the RAFin vivo scalar will be incorrect. Also, the use of RAFin vivo is 

more complicated when multiple transporters are involved. In this event, in vivo data on probe drugs 

selectively transported by each transporter involved must be available (rarely the case). And, if the in vitro 

and in vivo passive diffusion CLint of the probe drug and drug X can be assumed to be negligible, then the 

RAFin vivo for each selective probe drug can be determined and used to predict the in vivo CLint of a drug 

as:  

𝐶𝐿𝑖𝑛𝑡,𝑖𝑛 𝑣𝑖𝑣𝑜 = [∑ 𝐶𝐿𝑖𝑛𝑡,𝑖𝑛 𝑣𝑖𝑡𝑟𝑜,𝑖 × 𝑅𝐴𝐹 𝑖𝑛 𝑣𝑖𝑣𝑜,𝑖]  𝑛
𝑖=1  (Eq. 15) 

where I represents the ith transporter. 

Since the in vivo CLint data for a selective transporter probe(s) are rarely available, or if the passive 

diffusion CL of drug X is significant, an alternative scalar, RAFin vitro, can be used:   
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𝑅𝐴𝐹𝑖𝑛 𝑣𝑖𝑡𝑟𝑜,𝑖 =
𝐶𝑙𝑖𝑛𝑡,𝑖𝑛 𝑣𝑖𝑡𝑟𝑜,𝑝𝑟𝑜𝑏𝑒 𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒,𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑐𝑒𝑙𝑙𝑠,𝑖

𝐶𝑙𝑖𝑛𝑡,𝑖𝑛 𝑣𝑖𝑡𝑟𝑜,𝑝𝑟𝑜𝑏𝑒 𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒,𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑐𝑡𝑒𝑑 𝑐𝑒𝑙𝑙𝑠,𝑖
  (Eq. 16) 

𝐶𝐿𝑖𝑛𝑡,𝑖𝑛 𝑣𝑖𝑣𝑜 = ([∑ 𝐶𝐿𝑖𝑛𝑡,𝑖𝑛 𝑣𝑖𝑡𝑟𝑜,𝑖 × 𝑅𝐴𝐹 𝑖𝑛 𝑣𝑖𝑡𝑟𝑜,𝑖]+ 𝐶𝐿𝑖𝑛𝑡,𝑝𝑑,𝑖𝑛 𝑣𝑖𝑡𝑟𝑜) × 𝑃𝑆𝐹𝑛
𝑖=1   (Eq. 17) 

The RAFin vitro,i scalar (which scales only the active transport CL of the drug via the ith transporter) requires 

the availability of primary cells and therefore can be used to estimate only in vivo hepatic transporter-

based CLint (Izumi et al., 2018; Mitra et al., 2018). Briefly, the active CLint,in vitro of the probe drug via each 

transporter can be determined in the single-transporter transfected cells as well as hepatocytes to arrive 

at the RAFin vitro for each transporter (Eq. 16). Then, the active CLint,in,vitro of drug X in transfected cell line, 

via each transporter, can be individually scaled using the respective RAF value and summed (Eq 17). 

This summed CLint,in vivtro plus the CLint,pd, in vitro of drug X can then be scaled to obtain CLint,in vivo using a 

PSF (Eq. 17). Similar to the PSF approach, the use of RAFin vitro assumes that the transport activity in vitro 

in the hepatocytes is identical to that in vivo.   

When using either of the above RAF scalars, the assumption made is that the estimated in vivo CLint is 

the rate-determining step (RDS) for the CL of that drug via the organ of interest (e.g. renal secretory CL). 

For example, in Mathialagan et al. (2017), where RAFin vivo scalars were applied to predict the renal 

secretory CL of OAT substrates, the authors assumed that there was no significant passive CLint of the 

probe drugs used (tenofovir for OAT1, acyclovir and ganciclovir for OAT2, and benzylpenicillin and 

oseltamivir acid for OAT3) and that basal uptake of these drugs (mediated by the respective OATs) was 

the RDS in their renal secretory CL. This assumption and the challenges of validating it are further 

discussed in Section 5.  

 

4.2.3. Inter-system extrapolation factor (ISEF) 

As an alternative, the use of the ISEF has been proposed (Burt, Riedmaier, et al., 2016; Harwood et al., 

2013). The ISEF is a hybrid between the RAF and REF approaches, and as such require both transporter 

abundance data and probe substrates’ activity data, which limits its use for transporters because of the 

paucity of transporter specific substrates (as described for the RAF approach). 
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5. Predictive performance of IVIVE approaches: a review of existing data 

To use IVIVE approaches with confidence when predicting transporter-based CL and TC, they must first 

be validated. This can be done using probe substrates of selected transporters. Once validated, the 

approaches can be applied with confidence to the prediction of transporter-based CLint and tissue 

concentrations of other drugs transported by the transporters for which the validation was performed. In 

this section, we review important principles to consider when validating IVIVE transporter-based drug 

CLint and TC.  Then, we review studies that have conducted such validation and whether they have 

adhered to these important principles.  

5.1. Principles to consider when validating IVIVE approaches for transporter-based CL and 

tissue drug concentrations 

5.1.1. IVIVE of transporter-based CLint 

When conducting IVIVE of transporter-based CLint it is critical to consider the RDS in the systemic CL of 

the drug. First, it is important to note that the systemic CL of a drug is summation of both the hepatic and 

extrahepatic (e.g. renal) CL of the drug.  Therefore, systemic CL can be equated to hepatic CL only if the 

extrahepatic CL of the drug is negligible. For the purposes of this section, we will assume that this is the 

case; however, the principles enunciated here can also be applied to renal CL. Therefore, according to 

the ECM (Eq. 18-20), hepatic drug CL is determined by all individual CLint pathways (Patilea-Vrana & 

Unadkat, 2016; Shitara et al., 2006b; Sirianni & Pang, 1997): 

𝐶𝐿ℎ,𝑏 =
𝑄ℎ∙𝑓𝑢,𝑏∙𝐶𝐿𝑖𝑛𝑡,ℎ

𝑄ℎ+ 𝑓𝑢,𝑏∙𝐶𝐿𝑖𝑛𝑡,ℎ
 (Eq. 18) 

where 

𝐶𝐿𝑖𝑛𝑡,ℎ =
𝐶𝐿𝑖𝑛𝑡,𝑠,𝑖𝑛∙(𝐶𝐿𝑖𝑛𝑡,𝑚𝑒𝑡+ 𝐶𝐿𝑖𝑛𝑡,𝑏𝑖𝑙𝑒)

𝐶𝐿𝑖𝑛𝑡,𝑠,𝑒𝑓+ 𝐶𝐿𝑖𝑛𝑡,𝑚𝑒𝑡+ 𝐶𝐿𝑖𝑛𝑡,𝑏𝑖𝑙𝑒
 (Eq. 19) 

consequently: 

𝐶𝐿ℎ,𝑏 =
𝑄ℎ∙𝑓𝑢,𝑏∙𝐶𝐿𝑖𝑛𝑡,𝑠,𝑖𝑛∙(𝐶𝐿𝑖𝑛𝑡,𝑚𝑒𝑡+𝐶𝐿𝑖𝑛𝑡,𝑏𝑖𝑙𝑒)

𝑄ℎ∙(𝐶𝐿𝑖𝑛𝑡,𝑠,𝑒𝑓+ 𝐶𝐿𝑖𝑛𝑡,𝑚𝑒𝑡+𝐶𝐿𝑖𝑛𝑡,𝑏𝑖𝑙𝑒)+ 𝑓𝑢,𝑏∙𝐶𝐿𝑖𝑛𝑡,𝑠,𝑖𝑛∙(𝐶𝐿𝑖𝑛𝑡,𝑚𝑒𝑡+𝐶𝐿𝑖𝑛𝑡,𝑏𝑖𝑙𝑒)
  (Eq. 20) 
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where CLh,b is the hepatic CL from blood, Qh is the hepatic blood flow, fu,b is the fraction unbound of the 

drug in the blood, CLint,h is the intrinsic hepatic CL, CLint,s,in is the sinusoidal influx clearance, CLint,s,ef is the 

sinusoidal efflux clearance, CLint,bile biliary (canalicular efflux) clearance, CLint,met is the metabolic 

clearance. 

Of note, each of these CLint are the summation of both active and passive CLint of the drug. To predict the 

whole organ drug CL, all these CLint need to be extrapolated to in vivo from in vitro data. However, many 

studies that have conducted IVIVE of hepatic CL of OATP-transported drugs erroneously assume that the 

sinusoidal uptake is the RDS of the hepatic CL (i.e. CLint,s,ef  is << CLint,met+CLint,bile and therefore 

CLint,s,in=CLint,h). Consequently, they equate the hepatic CL of the drug to its uptake CL (CLs,in), as follows: 

𝐶𝐿ℎ,𝑏 = 𝐶𝐿𝑠,𝑖𝑛 =
𝑄ℎ∙𝑓𝑢,𝑏∙𝐶𝐿𝑖𝑛𝑡,𝑠,𝑖𝑛

𝑄ℎ+ 𝑓𝑢,𝑏∙𝐶𝐿𝑖𝑛𝑡,𝑠,𝑖𝑛
 (Eq. 21) 

As Patilea-Vrana and Unadkat have demonstrated, OATP-mediated transport alone (even when co-

administration of rifampicin results in a large DDI with the drug) is not in itself sufficient to assume that the 

uptake is the RDS in its hepatic CL (Patilea-Vrana & Unadkat, 2016). It will be the RDS only if CLint,s,ef << 

CLint,met+CLint,bile and only under this scenario is the whole organ CL equal to CLs,in.  Determining CLint,s,ef 

<< CLint,met+CLint,bile is possible in vitro through SCH studies, by using transfected cells and REF or in vivo 

by imaging studies. Unfortunately, determination of various CLs by SCH has limitations that have been 

described in Sections 2 and 3.  

Elucidating the correct RDS is very important to correctly interpret the accuracy of IVIVE of hepatic drug 

CL. Consider the situation where all hepatobiliary CLs (i.e., uptake, efflux and metabolic) are RDS. In this 

case, hepatic CL predicted by IVIVE assuming uptake is the RDS will be overpredicted (see Eq. 20 & 21).  

However, as has been repeatedly shown, if IVIVE underpredicts CLs,in, then the hepatic CL will be 

erroneously assumed to be well-predicted when that is far from the truth.  This is an excellent example of 

comparing “apples” with “apples” and not with “oranges”. That is, the IVIVE of CLs,in should be compared 

with in vivo CLs,in (obtained by imaging) rather than hepatic CL (V. Kumar, Yin, et al., 2020).  Assuming 

uptake is the RDS and CLh=CLs,in without evidence to support this assumption is an important limitation of 

IVIVE of hepatic CL of drugs based solely on in vitro determination of CLint,s,in (which is often the case, 
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see Tables 2 and 3). The only solution to this dilemma is to estimate all the hepatobiliary CLs by PET 

imaging (Billington et al., 2019; Hernández Lozano & Langer, 2020) (Fig. 4A). Therefore, when such data 

are available, they should be used over hepatic CL data to validate prediction of transporter-based drug 

disposition. In addition, tissue drug concentrations can be validated ONLY by obtaining these 

concentrations using imaging.   

5.1.2. What endpoints should IVIVE of transporter-based CL use for validation?  

Two different endpoints have been used to validate in vivo drug CL predictions from in vitro studies (Fig. 

4B). The first endpoint (endpoint 1) is where the observed in vivo organ CL is compared with that 

predicted from in vitro studies (Fig. 4Ba). The second endpoint (endpoint 2) is where the in vivo CLint, 

deconvoluted from the observed in vivo organ CL, is compared with that predicted from in vitro studies 

(Fig. 4Bb). Specifically, for endpoint 1, the in vitro CLint of a compound is first determined in primary or 

transporter-expressing cells or vesicles. Then, the CLint is scaled to in vivo using PSF/RAF/REF (as 

described in Section 4), and the organ CL is estimated based on extrapolated CLint and a model of drug 

CL (e.g. parallel tube model; Pang et al., 2019) such as organ blood flood, blood to plasma concentration 

ratio and unbound fraction in plasma or blood. The predicted organ CL (endpoint 1) is subsequently 

directly compared with that observed in vivo. This is the most frequently used (but not preferred; see 

below) approach to validate predictions of organ CL from in vitro data (Fig. 4Ba). In contrast, for endpoint 

2, the CLint estimated from the in vitro studies is directly compared to the CLint deconvoluted (by 

retrograde calculations) from the observed organ CL (Fig. 4Bb). We prefer this approach as it correctly 

compares “apples” with “apples” especially for intermediate to high extraction ratio compounds (A. R. 

Kumar et al., 2021; V. Kumar, Yin, et al., 2020; Peng et al., 2021). For such drugs, mis-prediction of 

transporter-based in vivo organ CL (endpoint 1) from in vitro CLint  will be dampened by blood flow, which 

can be a significant determinant of organ CL for such drugs (Billington et al., 2019). Consequently, such 

mis-predictions may erroneously look accurate when in fact they are not.   

5.1.3. How should predictions of tissue concentrations be validated?  

Prediction of Kp,uu as well as the dynamic changes in the unbound tissue concentrations is important to 

inform drug safety and toxicity. For a drug that is transported (influxed or effluxed) across the tissue:blood 
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barrier (e.g. BBB, placental:blood barrier) and/or metabolized in the tissue (e.g. liver), Kp,uu can be 

significantly less than 1 (see Eq. 1). For such a drug, irrespective of how much systemic PK information of 

the drug is available, its unbound tissue concentrations cannot be predicted (or validated) based solely on 

its systemic PK data (L. Wang et al., 2021). Instead, such predictions can be validated using imaging, 

usually PET imaging (Fig. 4A). Imaging studies should be used for validation only after considering the 

following potential confounders and limitations. They cannot be employed routinely as they are cost 

prohibitive, and not all drugs can be radiolabeled for PET imaging; only a limited number of PET imaging 

studies are available in humans to validate predictions (Billington et al., 2019; Eyal et al., 2010; Kaneko et 

al., 2018; Kreisl et al., 2010; Maeda et al., 2019; Nakaoka et al., 2022; Takashima et al., 2011, 2012; 

Tournier et al., 2019). PET imaging studies cannot distinguish between the parent drug and the labeled 

metabolite or the total and the unbound drug tissue concentrations. Therefore, for validation, PET imaging 

studies are conducted with drugs that are not extensively metabolized (Billington et al., 2019), or if 

metabolized, data over a duration where such metabolism is minor are used (Eyal et al., 2010; Sasongko 

et al., 2005). In addition, the total tissue drug concentration measured by imaging needs to be corrected 

for the fraction bound in the tissue homogenate or in the in vitro cell lysate (assuming that this reflects 

drug binding in the tissue in vivo) (Storelli, Anoshchenko, et al., 2021). Imaging data should also be 

corrected for the amount of drug present in the blood within the tissue (Hernández Lozano & Langer, 

2020; Sachar et al., 2020). For example, 30% of liver volume is blood (Hwang et al., 2002), which can 

significantly affect estimation of tissue concentrations (and for that matter, estimation of hepatobiliary 

CLs).  PET imaging of hepatic drug concentrations cannot differentiate between drug in hepatic tissues 

from that in the bile ducts. In this case, modeling of data, including distinct hepatocytes and intrahepatic 

bile duct compartments, can be useful (Hernández Lozano et al., 2019; L. Wang et al., 2021). Besides 

imaging, another approach that has been described to predict tissue drug concentrations  is PK/PD 

modeling (K. Riccardi et al., 2017). In this approach, the unbound tissue drug concentration at the site of 

effect is estimated from the observed PD data.  

5.2. Predictive performance of IVIVE approaches for transporter-based CL and tissue dug 

concentrations 



 

33 
 

Here, we summarize the performances of the different scaling approaches described in Section 4 to 

predict tissue distribution and hepatic/renal CL of transported drugs. Because there are limited data on 

the validation of IVIVE of drug absorption mediated by transporters, this aspect is not discussed here.   

It is noteworthy to mention that success of IVIVE approaches can vary between different studies, based 

on three aspects: (i) the available validation dataset (e.g., systemic PK data, PET imaging, PK/PD 

modeling); (ii) the parameter used for validation (e.g., systemic or tissue concentration-time profiles, 

whole organ CL, uptake/efflux CLint, and Kp,uu); and (iii) the acceptance criteria used (predicted parameter 

falling within boundaries that range from 1.25-to-5-fold of the observed value or falling within 90% or 95% 

confidence interval of observed data) (Tables 2-4). In this regard, the authors’ view is that acceptance 

criteria should be preset, clearly stated and be dependent on the primary purpose for IVIVE (i.e., whether 

it is to screen candidates with desirable PK profiles, predict first-in-human dose or to predict TC for 

optimizing drug dosing regimen). The anticipated therapeutic index should also be considered. For 

example, if the approach is to be used to predict drug dosing regimens without additional PK studies in 

the population of interest, then the validation of the approach must be more stringent. Likewise for 

prediction of TC of the drug of interest, as these usually cannot be routinely measured (see below). 

Regarding IVIVE of hepatic CL or hepatic uptake CL (Table 2), most have studied OATPs or dual 

OATPs/NTCP substrates with one exception, an organic cation transporter (OCT)1 substrate, metformin. 

While OCT1-mediated uptake of metformin is well predicted with the REF approach (using plasma 

membrane OCT1 abundance), plated hepatocytes underpredict this CL pathway. For OATP substrates, 

despite heterogeneity in assessing success, most studies underpredict hepatic uptake CL. This 

underprediction is observed both with hepatocytes (suspended, plated and sandwich-cultured) using PSF 

and transporter-expressing cells using REF or RAF. These data suggest that an endogenous factor 

present in vivo and absent in in vitro studies might enhance the in vivo activity of OATPs. This is 

discussed in more detail in Section 7.  

There are different ways to estimate biliary efflux CLint: (i) by using the concentration of the drug in blood 

or plasma (in vivo) or in the incubation buffer (in vitro); or (ii) by using intracellular unbound hepatocyte 

concentrations.  The use of the latter is pharmacokinetically correct as it is the driving force and not 
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confounded by disequilibrium between unbound blood/incubation buffer and tissue/intracellular 

concentrations due to active uptake or sinusoidal efflux transporters. Using the latter, both Jones et al., 

2012 and Storelli et al., 2022 found overprediction of biliary efflux using SCH, likely due to the 

overexpression of efflux transporters in SCH reported by Kumar et al., 2019. In contrast, the application of 

the REF approach and measuring transport in vesicle containing the relevant transporters resulted in 

excellent prediction of CLbile (Storelli et al., 2022a).  

For renal CL, available studies evaluated OAT transporters as well as OCT2 (Table 3). Transfected cells 

were used for all studies and the REF or RAF scalar or both was used. While the overall predictions were 

good for OAT and OCT2 substrates, all studies assumed that the basal uptake was the RDS of the renal 

secretory CL, and that tubular reabsorption was negligible. More studies are needed to validate the 

predictions of each individual renal secretory CL transporter pathway of drugs, as well as that of drug 

concentrations in the proximal tubular cells. Here, the 5-8 mm discrimination capacity of PET imaging 

(Tournier et al., 2018) will preclude measurement of drug concentrations in these cells.  

Finally, regarding drug distribution modulated by transporters, the collected studies include prediction of 

drug partitioning into the brain or the liver. Due to limited availability of imaging data, only a few studies 

have validated their brain Kp,uu predictions (Table 4). Most studies have used P-gp or BCRP expressing 

cells (LLC-PK1 or MDCK) and in vitro efflux ratio using the REF to extrapolate either the absolute active 

efflux CLint (J. Li et al., 2017; Verscheijden et al., 2021) or the static brain Kp,uu  (Nicolaï et al., 2020; Sato 

et al., 2021a; Storelli, Anoshchenko, et al., 2021). Overall, brain Kp,uu predictions have been good to 

excellent for selective P-gp and dual P-gp/BCRP substrates demonstrating the validity of these 

approaches. While PET imaging or measurement of the brain interstitial fluid concentration by 

microdialysis are ideal approaches to validate brain Kp,uu predictions, such studies are not routinely 

possible. Therefore, cerebrospinal fluid (CSF) drug concentrations are often used to validate brain drug 

concentration predictions. However, brain interstitial fluid and CSF drug concentrations can differ for 

many reasons (e.g. cerebral metabolism or CSF bulk flow), including when drugs are substrates of efflux 

transporters expressed at the apical membrane of the choroid plexus (Kodaira et al., 2011; Nagaya et al., 

2020; Shen et al., 2004). Therefore, caution should be used when using this approach (Loryan et al., 
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2020).  For example, in a macaque study, the P-gp inhibitor zosuquidar increased brain nelfinavir (a P-gp 

substrate) concentration by >100-fold without affecting its CSF concentration obtained by lumbar 

puncture (Kaddoumi et al., 2007).  

For predicting liver partitioning, two approaches have been used (Table 4). In the first, hepatic Kp,uu is 

estimated by measuring steady-state total and unbound drug concentrations in hepatocytes (K. Riccardi 

et al., 2017). In the second, hepatic concentrations were predicted using estimates of all hepatobiliary 

CLs obtained from either hepatocytes or transporter-expressing cells and vesicles (C. Y. Li et al., 2019; 

Storelli et al., 2022a). The first approach, the use of hepatocytes, is straightforward, but can only provide 

an estimate of Kp,uu but not the dynamic changes in hepatic concentrations such as peak (Cmax) and 

trough (Cmin) concentrations.  These peak and trough concentrations could be important determinants of 

drug safety and efficacy. Also, this approach can be used only when primary cells are available (mostly 

for the liver). The second approach overcomes these challenges because it does not require primary cells 

and it can predict both Kp,uu and the dynamic changes in tissue concentrations. However, it is more time-

consuming and challenging to implement because all hepatobiliary CLs must be determined.   

In another approach, using PK/PD and hepatocyte data to validate predictions, Riccardi et al. showed that 

hepatic Kp,uu was underpredicted for pravastatin and overpredicted for rosuvastatin (K. Riccardi et al., 

2017); this could be due to incorrect estimation of unbound drug concentration in the hepatocytes or 

incorrect estimation of the in vivo IC50 against HMG-CoA reductase that was used for validation. Using 

hepatic rosuvastatin concentrations measured in humans by PET imaging, we found that the REF 

approach (using transporter-expressing cells and vesicles) just barely underpredicted rosuvastatin 

hepatic uptake CL and concentrations while the SCH (using the PSF) underpredicted them to a much 

greater extent because SCH overestimated both the rosuvastatin sinusoidal and biliary efflux CLs (Storelli 

et al., 2022a). 

6. Prediction of transporter-based DDIs  

To predict drug-drug interactions (DDIs) related to transporter-based drug disposition, an important 

parameter to predict/estimate is ft. This parameter informs the sensitivity of a drug to alterations in 

transporter activity/abundance due to the effect of a  co-administered drug (inhibition/induction) or genetic 
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polymorphism (Prasad & Unadkat, 2015; Zamek-Gliszczynski et al., 2009). When using primary cells, the 

contribution of each transporter can be estimated in vitro using selective inhibitors of transporters (Y. Bi et 

al., 2013; Y.-A. Bi et al., 2019). Provided the abundance of the transporter in the primary cells is equal to 

that in the tissue, one can assume that the in vitro ft will be the same as that in vivo.  In this case, no 

scaling of transporter activity/abundance is required. However, the lack of selectivity of transporter 

inhibitors can preclude determination of ft via a specific transporter.  At first sight, the significant inter-lot 

variability in ft when using primary cells could be interpreted as a limitation; it is not.  Such variability 

provides vital information on possible inter-individual variability in transporter activity in vivo.  

In contrast, when using transfected cells or membrane vesicles, scaling of all extrapolated intrinsic CLs of 

transporters involved using REF or RAF, as well as passive diffusion, is required, prior to estimating ft: 

𝑓𝑡,𝑖 =
𝐶𝐿𝑖𝑛𝑡,𝑎𝑐𝑡𝑖𝑣𝑒,𝑖

∑ 𝐶𝐿𝑖𝑛𝑡,𝑎𝑐𝑡𝑖𝑣𝑒,𝑖
𝑛
𝑖=1  + 𝐶𝐿𝑖𝑛𝑡,𝑝𝑑

 (Eq. 22) 

where ft,i is the fraction transported by the ith transporter.  

The ft via a given transporter provides a number (akin to fraction metabolized) that can readily be used to 

determine the likely magnitude of the change in transporter-based CLint of a drug (due to inhibition or 

induction).  For example, if the ft of a drug via the hepatic OATP transporters is 0.9, then complete 

inhibition of these transporters will result in 10-fold increase in the plasma AUC of the drug, provided the 

OATPs are the RDS in the hepatic CL of the drug and non-hepatic CL is negligible. 

To predict inhibitory DDIs in vivo, ft is used in conjunction with inhibition potency (unbound IC50 or Ki), as 

described for competitive inhibition in Eq. 23 below. These parameters are preferably based on measured 

(uptake assays or membrane vesicles assay) or estimated (cell efflux assays) concentrations rather than 

nominal concentrations. 

𝐶𝐿𝑖𝑛𝑡,(+)𝑖𝑛ℎ = 𝐶𝐿𝑖𝑛𝑡,(−)𝑖𝑛ℎ ∙  [∑
𝑓𝑡,𝑖

1+
[𝐼]

𝐾𝑖,𝑖
⁄

+ 𝑓𝑝𝑑
𝑛
𝑖=1 ]  (Eq. 23) 

Where CLint,(-)inh and CLint,(+)inh are the CLint (sum of all active and passive CLint) in absence and in 

presence of an inhibitor, respectively, [I] is the unbound concentration of the inhibitor at the transporter 
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binding site, and Ki,i is the unbound inhibition constant of the inhibitor for the ith transporter, and fpd is the 

fraction of CLint,(-)inh mediated by passive diffusion. 

To predict DDI based on induction of transporters (e.g. intestinal P-gp by rifampin), information on the 

relationship between the magnitude and time course of increase in tissue transporter abundance (e.g. by 

QTP) and the concentration of the inducing drug is needed. Such data can be obtained from biopsies 

obtained after initiating administration of the inducing drug (Greiner et al., 1999).  If multiple transporters 

are induced, the contribution of each in in vivo drug absorption, distribution or clearance of the drug can 

be predicted using REF and transporter-expressing cells/vesicles as detailed in Section 4.2.1.  

Alternatively, such information can be obtained, in vitro, using primary cells (e.g. hepatocytes) by 

exposing them to different concentration of the inducing drug for several days Dixit et al., 2007).  Then, 

the magnitude and time course of increase in tissue transporter abundance (e.g. by QTP) or activity and 

the concentration of the inducing drug can be measured (Dixit et al., 2007). From these data the EC50 of 

the inducing drug and its maximal potential to induce the transporter (Emax) can be obtained. Using these 

data as well as the degradation half-life of the transporter, transporter-based DDI with the inducing agent 

can be predicted using PBPK modeling and simulation (Hanke et al., 2018a). To date, such predictions 

have mostly focused primarily on DDI caused by induction of P-glycoprotein in the intestine (Hanke et al., 

2018a). Though some claim that hepatic OATPs can be induced by rifampin, both in vitro and in vivo 

evidence have challenged this claim (Dixit et al., 2007; Rodrigues et al., 2020).  

In Table 5, we review published studies that have performed validation of transporter-based DDIs.  

Though most of these studies are focused on inhibitory DDI, some do include DDI where simultaneous 

inhibition and induction of transporters occurs (Hanke et al., 2018a).  Such predictions were often done 

using a static model, such as described in Eq. 23 above, in which the maximal concentration of the 

inhibitor is used for [I]. The static model assumes that the concentration of the inhibitor does not change 

over time, and thereby reflects a worst-case scenario. In addition, many studies assume a ft of 1, which 

likely overestimates the magnitude of DDIs. In recent years, PBPK modeling (i.e., dynamic approach), 

has been increasingly used to predict DDI magnitude over the entire plasma concentration-time profile of 

a substrate with dynamically varying inhibitor concentration, [I]. In principle, this dynamic approach 
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enables incorporation of inhibiting/inducing metabolites, dose staggering, concomitant use of multiple 

inhibiting drugs, net effect of inhibition and induction, and interplay of multiple enzymes and transporters. 

A summary of research articles that have used PBPK modeling to predict transporter-based DDIs is 

provided in Table 5. In most cases, the transporter-based CLint of victim drugs was either estimated from 

systemic PK data or incorporated an ESF applied to the in vitro-determined transporter-based intrinsic 

CL. In addition, the inhibition potential of the perpetrator (Ki, IC50) was optimized from that experimentally 

determined in vitro to best recapitulate the extent of DDIs observed in humans. Also, in many cases, 

there was no full characterization of the contribution of different transporters to the transporter-based CL 

(e.g., active sinusoidal uptake CL was assumed to be mediated solely by OATP1B1). This highlights the 

current limitations of these approaches to predict transporter-based DDIs using IVIVE-linked PBPK 

models. In contrast, using PET imaging, our group successfully predicted the extent of inhibition of 

sinusoidal uptake of rosuvastatin by cyclosporin (V. Kumar, Yin, et al., 2020, summarized in Table 5). In 

this case the contributions (ft) of OAT1B1, 1B3, 2B1, NTCP and passive diffusion to rosuvastatin 

sinusoidal hepatic uptake were predicted using transfected cells and the REF approach, and the extent of 

inhibition of these transporters by cyclosporin A was determined in vitro at the same cyclosporin A 

concentration as that measured in vivo (in the PET imaging study used to validate prediction), rather than 

determining IC50 or Ki. Although more studies are needed (the study mentioned here was limited in 

sample size, n=3), this suggests that the REF approach appears to predict well the ft of drugs by different 

transporters, and that misprediction of DDIs using IVIVE-linked PBPK models (without the use of ESF) 

might be due to misprediction of ft and/or inhibition potential of the perpetrator. In addition, inconsistency 

in the in vitro inhibition studies may be a contributing factor. First, pre-incubation of cells with inhibitors 

may be necessary. For example, Yoshikado et al. and Pahwa et al. demonstrated that the in vitro Ki 

values of OATP inhibitors following pre-incubation are close to their in vivo Ki values (Pahwa et al., 2017; 

Yoshikado et al., 2016). Second, substrate-dependent inhibition (due to multiple binding sites) (Belzer et 

al., 2013; Gerk et al., 2004; Izumi et al., 2013) may occur.  In several studies, the victim drugs used in 

vitro were probe substrates of transporters, which were not the target victim drugs in the DDI prediction. If 

the inhibitory capacity of perpetrator is substrate-dependent, this will result in a discrepancy in the in vitro-

in vivo translation of DDI with the target drugs. Thus, if possible, to avoid bias due to substrate-dependent 
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inhibition, in vitro inhibition data should be obtained for the clinically relevant perpetrator-victim pair. 

Therefore, a harmonized in vitro experimental design and precise acceptance criteria should be 

considered for accurate prediction of transporter-based DDI.  

7. Principles and experimental factors to consider to improve accuracy of IVIVE 

of transporter-based drug disposition and tissue concentrations 

In recent years, significant advances have been made in predictions of transporter-based drug disposition 

and tissue concentrations. In particular, the REF approach was validated with PET imaging data for both 

prediction of transporter-based CL and tissue concentrations and appears superior to the use of primary 

cells (suspended or plated) and physiological scaling. However, for both approaches, further refinements 

is needed to predict transporter-based drug CL, especially for OATP substrate drugs. Here, we discuss 

principles and experimental factors that could improve accuracy of IVIVE of transporter-based drug 

disposition, many of them challenging the assumption that the in vitro intrinsic activity of transporters 

(corrected for transporter abundance) is similar to that in vivo.  

7.1. Is the mechanism of transport in vivo replicated in vitro?  

This is critical for success in IVIVE of transporter-based drug disposition, irrespective of whether cells or 

vesicles are used for in vitro studies (Table 1). Among mechanisms of transport are the presence of a co-

transported substrate(s) (e.g. Na+ for NTCP, α-ketoglutarate for OATs), protons (e.g. pH effect on 

multidrug and toxin extrusion, MATE, transporters), or membrane potential (e.g. OCTs). For example, 

when using membrane vesicles, the activity of MRP1-4 can require inclusion of the co-transported 

glutathione (Borst et al., 1999; Loe et al., 1996). For OATPs, where CL by these transporters is 

underpredicted by current IVIVE approaches, the co-transported compound is unknow, but likely involves 

the exchange with an anionic intracellular compound (Stieger & Hagenbuch, 2014). Where this co-

transported compound is unknown (e.g. OATPs), vesicles cannot be used to measure transport activity. 

An in vitro to in vivo discrepancy in the intracellular concentration of this co-transported substance could 

potentially help explain the current underpredictions of OATP-mediated hepatic uptake CL. When 

measuring in vitro transport by electrogenic transporters (e.g. OCT), incorporation of the in vitro to in vivo 
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difference in membrane potential has been shown to improve IVIVE and prediction of OCT-mediated drug 

disposition in vivo ((Burt, Neuhoff, et al., 2016; Kikuchi et al., 2021; V. Kumar et al., 2018)).  

Allosterism is an example of another mechanism that should be considered. OATP transporters are 

allosteric (Gerk et al., 2004; Kindla et al., 2011). Therefore, it is possible that in vivo constituents in blood 

(a soluble factor or a protein – see below) can bind to the OATPs transporters, causing a conformational 

change of the transporter and thereby alter the drug’s affinity to the transporter. In this case, if this 

endogenous allosteric factor is absent in vitro, the drug’s CLint,in vitro will not replicate its CLin,in vivo.  

However, in preliminary studies in our laboratory, human plasma filtrate (Yin et al., 2022) did not affect 

statin uptake by OATP1B1-expressing cells, indicating an absence of an allosteric effect on OATP1B1-

mediated transport of statins by soluble constituents of plasma. Choosing the type of cells used or 

adjusting the experimental design for cell or vesicle uptake experiments, that replicates the mechanisms 

of transport in vivo, is critical for successful IVIVE of transporter-based drug disposition.   

7.2. Is the unbound drug concentration at the site of transport in vivo replicated in vitro?  

According to the free drug hypothesis, only unbound drug can passively diffuse or be transported across 

the cell membrane. Hence, an accurate estimation of the in vivo unbound fraction in plasma (for uptake 

transporters) or in the cells (for efflux transporters), at the site of transport, is important for successful 

IVIVE.  Numerous publications have questioned whether the drug unbound fraction measured in vitro 

accurately represents that present in vivo at the site of transport (Bowman & Benet, 2018; Bteich et al., 

2019; Francis et al., 2021). Instead, they have postulated a “protein-mediated uptake effect (PMUE)”, 

where the presence of plasma (proteins) in the in vitro studies, increases the apparent uptake CL of drugs 

by OATPs, thereby partially bridging the under prediction of the in vivo hepatic uptake CL by these 

transporters (Y.-A. Bi et al., 2020; N. Li et al., 2020; Liang et al., 2020). Several possible mechanisms for 

the PMUE have been proposed. Most of these postulate an increase in the in vivo drug unbound 

concentration (not captured by the in vitro protein binding studies) at the transport site caused by an 

interaction between the drug-protein complex and the lipid membrane of the cells or the membrane 

transporter itself (Bowman et al., 2019; Kim et al., 2019). As a result, the transport CL measured in vitro 

will be lower than that in vivo.  However, our studies with OATP1B1-transfected HEK293 cells indicate 
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that for the majority of statins studied, the supposed PMUE is likely an artifact of non-specific binding of 

the statin-albumin complex to the cells/labware (Yin et al., 2022). Additional studies are needed to 

determine if the same is true for the PMUE on OATP-mediated uptake of drugs by hepatocytes.  

7.3. Is post-translational transporter regulation in the in vitro cell models the same as in vivo?  

Post-translational modifications (PTMs), protein-protein interactions or protein-lipid interactions (i.e., 

scaffolding) can affect membrane transporter activity and abundance (Czuba et al., 2018; Lee et al., 

2020; Stieger & Hagenbuch, 2014). Isolation of plasma membrane from cell homogenates using a 

biotinylation method and quantification of transporter abundance at the plasma membrane can improve 

IVIVE of transporter-mediate drug CLint (V. Kumar et al., 2017; V. Kumar, Yin, et al., 2020; Sachar et al., 

2020). However, a limitation of this method is that it can only be used for cells and not tissues. Thus, this 

approach requires an assumption about the plasma membrane abundance of the transporters in tissues.  

PTMs can also affect transporter function without altering transporter membrane abundance, as recently 

shown for OCTs (Sprowl et al., 2016). Whether transporters are differentially post-translationally modified 

in primary cells, transfected cells (hence in vesicles) and in vivo, and if they are, the impact of such PTMs 

on transporter activity needs to be assessed.  

7.4. Does the lack of blood flow in the in the in vitro model affect active and passive uptake of 

drugs? 

 A major difference between in vitro (suspended or plated cells) and in vivo conditions is the flow and 

shear stress imposed on the endothelial cells of the organ of interest (e.g.  kidneys, brain, liver) by blood. 

While the effect of such factors on transporter-based CLint needs to be investigated, it has been shown 

previously that the unstirred water layer present in the static in vitro model affects permeability above a 

given permeability threshold (Korjamo et al., 2008, 2009). In this regards, MPS might offer potential 

advantages as they are designed to recapitulate the tissue environments with respect to fluid flow and 

shear stress (Chang et al., 2016).  

7.5. How does the choice of the CL model used to predict the in vivo CL of drug affect accuracy 

of IVIVE of transport-mediated CL? 
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For intermediate to high extraction drugs, the predicted organ CL extrapolated from in vitro studies can 

depend on the choice of the CL model used. Because of its simplicity, the well-stirred model is the most 

widely used model and is the basis of the ECM.  However, the use of more physiologically relevant 

models taking into account a gradual decrease in tissue concentrations along the organ (e.g., from the 

periportal to the perivenous regions of the liver), such as the parallel-tube or the dispersion model or a 5-

compartment liver PBPK model, can yield better predictions of organ CL for intermediate to high 

extraction drugs (Pang et al., 2019; Watanabe et al., 2009). But the choice of these models cannot bridge 

the gap between predicted and observed CL data for low extraction drugs. Recently, we compared the 

ability of the well-stirred model and the parallel tube model to predict the hepatic uptake CL of 

rosuvastatin (extraction ratio of around 0.6), and found only slight differences in the predicted values 

(Storelli et al., 2022a). Of note, the validity of predicting drug CL (from systemic concentrations) by 

inputting in vitro to in vivo extrapolated intrinsic CL into one of the above-mentioned CL models is the 

subject of much debate (Benet & Sodhi, 2021; Rowland et al., 2022). 

8. Conclusions 

Predicting transporter-based drug CL, tissue concentrations and DDIs from in vitro studies is challenging 

and requires further refinement. Nevertheless, within the last decade, enormous progress has been made 

in successfully predicting in vivo transporter-based drug CL, tissue concentrations and DDI, including the 

use of transporter-transfected cells and membrane vesicles using the REF (and in some cases the RAF) 

approach. It is important to keep in mind that each of the approaches outlined above to predict 

transporter-based drug CL and tissue concentrations, once validated for a given transporter, provides 

confidence to use that approach for any other drug transported by the same transporter. For example, 

once the REF approach has been thoroughly validated for OATP-transported drugs using imaging, it can 

be used with confidence to predict OATP-mediated hepatic uptake of another drug without conducting 

imaging studies for that drug. Although we have validated the REF approach for hepatic uptake 

(rosuvastatin, metformin) and efflux (rosuvastatin) as well as renal OAT transport of some drugs, 

validation with additional drugs that interrogate the same and other transporters (e.g. MATE1, MATE2-K) 

is needed before the approach can be widely used to predict transporter-based drug CL and tissue 
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concentrations. Going forward, we are confident that such additional research and validation will be 

conducted to enhance the success of the REF approach in predicting transporter-based CL and tissue 

concentrations of a wide variety of drugs. At that juncture, the REF approach can easily be combined with 

current approaches for IVIVE of metabolic clearance of drugs (Houston & Galetin, 2008) to predict in vivo 

clearance of drugs that are eliminated from the body by both transporters and metabolic enzymes.  
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Figure 1. Determination of in vitro active (CLint,active) and passive (CLint,pd) intrinsic clearance using 

cells or vesicles.  CLint,active and CLint,pd can be determined in vitro using either a time-dependent assay 

(A) or a concentration-dependent (or Michaelis-Menten) assay (B) over time when the uptake is linear. 

Passive diffusion CL of the drug can either be estimated by fitting a Michaelis-Menten model, 

incorporating both saturable (active) and non-saturable (passive) components, to the observed 

concentration-dependent data (panel B) or by fitting a linear model to the data obtained by one of the 

methods illustrated in panel C (applicable for both types of assays). That is, uptake determined using  a) 

mock cells/vesicles not expressing the transporter of interest; b) transfected cells/vesicles or primary cells 
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co-incubated with an inhibitor(s) at a concentration that completely inhibits the transporter(s); c) 

transfected cells/vesicles or primary cells incubated at 4 °C (on ice); d) self-inhibition (i.e., where the 

uptake of the labeled drug is measured in presence of saturating concentration of the non-labeled drug). 

The investigational drug is shown as a green hexagon, the inhibitor(s) is/are shown as a purple star. Jmax, 

maximal transport rate; Km,u, unbound affinity constant; [S]u, unbound substrate concentration in the 

incubation buffer.   
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Figure 2. Determination of efflux ratio (ER) and efflux clearance (CL) in vitro. (A) The ER is determined in 

vitro by the ratio of the apparent permeability of the drug from the basal to apical chamber (Papp,B→A) and 

from the apical to the basal chamber (Papp,A→B). This ratio is equivalent to the ratio of the B→A  and A→B 

intrinsic CLs (CLint,B→A and CLint,A→B, respectively). The ER is an in vitro inverse equivalent of the BBB; the 

apical chamber represents the blood compartment and the basal chamber represents the brain interstitial 

fluid (BIF). Assuming that drug efflux from the BIF is mainly mediated by the back flux of the drug from the 

BIF to the blood (i.e., negligible metabolism and bulk flow), Kp,uu can be extrapolated from the active ER 

(i.e., difference between ER in absence of inhibitor, (ER(-)inh,i) and ER in presence of inhibitors (ER(+)inh,i) or 

in mock cells) using the relative expression factor (REF). (B) Active efflux intrinsic CL can also be 

determined using membrane vesicles. The in vitro active intrinsic CL (CLint,active) is determined by the 

difference between the vesicular uptake of the drug in the presence of ATP (active + passive) and that in 

the presence of AMP or mock vesicles (passive only). Because the inside-out vesicles are a fraction of 

the total vesicles used, the percentage of inside-out vesicles (IOV%) must be determined for in vitro to in 

vivo extrapolation. IOV% can be estimated using an ectoenzyme (eg., 5-nucleotidase). The IOV% is then 

integrated into the REF for scaling of in vitro intrinsic CL to in vivo. AMP, adenosine monophosphate; 
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ATP, adenosine triphosphate; Pi, phosphate; MP, membrane protein; TA, transporter abundance; Pi, 

phosphate. 
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Figure 3. Schematic framework of different scaling approaches for IVIVE of transporter-mediated intrinsic 

clearance. 1°, primary; CLint, in vitro, active, in vitro active intrinsic clearance; CLint, in vitro, active, corrected, in vitro 

active intrinsic clearance corrected by REF or RAF; CLint, in vitro probe, in vitro intrinsic clearance of the probe 

substrate; CLint, in vivo probe, in vivo intrinsic clearance of the probe substrate used for the RAFin vivo approach; 

PSF, physiological scaling factor; QTP, quantitative targeted proteomics; RAF, relative activity factor; 

RAFin vitro, in vitro relative activity factor; RAFin vivo, in vivo relative activity factor; REF, relative expression 

factor. 
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Figure 4. Validation of in vitro to in vivo extrapolation (IVIVE) of clearances (CL) using imaging (e.g. 

positron emission tomography [PET] imaging) or systemic PK data. (A) PET imaging data taken over a 

period of time, when metabolism is negligible, are used to estimate the in vivo uptake and efflux CLs 

using a compartmental model. These estimated CLs are then compared with those predicted using IVIVE 

methods. (B) Using systemic PK data (e.g. using FF, forcing function, to estimate the CLs), two endpoints 

can be used to validate IVIVE of transporter-mediated CLs. For endpoint 1, the whole organ CL (CLorgan) 

observed in humans is compared to the one predicted based on the extrapolated intrinsic CL (CLint, in vivo) 
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and a CL model (e.g., parallel-tube or well-stirred model). For endpoint 2, the in vivo intrinsic CL used for 

validation is estimated based on the CLorgan and a CL model (e.g. parallel-tube or well-stirred model). This 

value is then compared to the predicted CLint, in vivo. The two endpoints are expected to yield similar 

outcomes for low extraction compounds. However, validation outcomes can differ for intermediate to high 

extraction compounds, for which blood flow (Q) plays a significant role in determining whole organ CL. 

For such drugs, mis-prediction of transporter-mediated in vivo organ CL from in vitro CLint will be 

dampened by blood flow, which is a significant determinant of organ CL for such drugs. Consequently, 

such mis-predictions may erroneously look accurate when using endpoint 1 when in fact they are not. 
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12. List of tables 

Table 1. Requirements of primary cells for successful in vitro to in vivo extrapolation (IVIVE) of transporter-mediated drug disposition 

Requirement Primary cells Transfected cells/ membrane vesicles 

Recapitulation of in vivo mechanism of transport (e.g., 

membrane potential, co-transported substrate) 

Yes; more likely to do so than transfected 

cells/membrane vesicles 

Yes 

Recapitulation of in vivo total and plasma membrane 

transporter abundance 

Yes, if using physiological scaling 

If no, use a transporter-abundance correction 

factor (RAF/REF) 

No, but need to use a transporter-abundance 

correction factor (REF/RAF) 

Human origin Yes No, but need to express the human 

transporters in a cell of human or non-human 

origin 

Endogenous transporters ablated No, but recognize that transport of a drug be 

mediated by multiple transporters present in 

the cells 

Yes, unless the contribution of the 

endogenous transporter is not significant in 

the transport of drug of interest 

RAF, relative activity factor; REF, relative expression factor  
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Table 2. Predictive performances of in vitro to in vivo extrapolation (IVIVE) approaches for predicting hepatic clearance (CLh) of 

transported drugs 

Transporters 

involved 

Drug In vitro system SF CL model Predicted 

parameter 

Validation method Predictive 

performance 

Comments Study 

OATPs 19 OATP1B1 

substrates 

including 

atorvastatin, 

pitavastatin, 

rosuvastatin, 

bosentan etc.  

PH  PSF WSM & 

PTM 

CLh 

 

Systemic PK 

(endpoint 1) 

WSM: 5% and 16% 

of predicted values 

fell within 2-fold of 

observed values in 

the absence and 

presence of 

plasma, 

respectively  

PTM: 11% and 

21% of predicted 

values fell within 2-

fold of the 

observed values in 

the absence and 

presence of 

plasma, 

respectively 

Assuming uptake was 

RDS of CLh 

PMUE included 

 

(Y.-A. Bi et al., 2020) 

CLint Systemic PK 

(endpoint 2) 

WSM and PTM: 

5% and 16% of 

predicted values 
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fell within 2-fold of 

observed values in 

the absence and 

presence of 

plasma, 

respectively  

OATP1B1, 

OATP1B3, 

OATP2B1, 

NTCP 

Rosuvastatin OATP1B3/NTCP 

(HEK293 

cells), OATP1B1 

(CHO cells), 

OATP2B1 

(MDCKII cells) 

 

REF  WSM CLs,uptake PET imaging  Underprediction 

(outside the 2-fold 

success criterion, 

unless uptake 

transporter-

mediated CL was 

determined in 

presence of 5% 

HSA) 

 (V. Kumar, Yin, et al., 

2020) 

OATP1B1, 

OATP1B3, 

OATP2B1, 

NTCP 

Rosuvastatin PH/ SH/ SCH PSF WSM CLs,uptake PET imaging  Underprediction 

(outside 2-fold 

range of the 

average observed 

value) 

Predicted CLs,uptake 

were comparable 

between PH, SH and 

SCH 

(V. Kumar, Yin, et al., 

2020) 

OATPs 8 OATPs-

substrates 

including 

pitavastatin, 

rosuvastatin etc. 

SH (+/- 10% 

human serum) 

PSF Estimated

using 

PBPK 

modeling 

CLint,s,uptake 

(active) 

Systemic PK 0/8 predictions fell 

within 3-fold of the 

observed values; 

1/8 predictions fell 

within 3-fold of the 

PMUE included (Liang et al., 2020) 
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observed values in 

the presence of 

10% human serum 

OCT1 Metformin PH PSF  WSM CLs,uptake PET imaging Fell outside the 2-

fold range of the 

observed value (i.e. 

P/O < 0.50) 

Corrected for PMA of 

OCT1 

 

(Sachar et al., 2020) 

OCT1 Metformin OCT1-expressing 

HEK293 cells  

REF  WSM CLs,uptake PET imaging Predicted CLh,uptake 

was within 2-fold of 

the observed value 

REF determined based 

on PMA of OCT1.  

When REF determined 

based on total OCT1 

abundance, predicted 

CLs,uptake was < 50% of 

the average observed 

value 

(Sachar et al., 2020) 

OATPs 11 OATPs-

substrates 

including 

pitavastatin, 

rosuvastatin, 

repaglinide, etc. 

SH PSF WSM or 

DM 

CLh,int,all  Systemic PK 

(endpoint 2) 

27% compounds 

fell within 5-fold of 

observed data 

when CLint,uptake was 

quantified in buffer; 

90% compounds 

fell within 5-fold of 

observed data 

when CLint,uptake was 

quantified in the 

Assuming uptake was 

RDS of CLh 

PMUE included 

(Kim et al., 2019) 
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presence of 

5%HSA 

  

 OATPs 

32 OATPs-

substrates, 

including 

pitavastatin, 

repaglinide, 

telmisartan, 

glyburide 

 

SH 

 

PSF  ECM  CLh  

 

Systemic PK 

(endpoint 1) 

method A: 

21 out of 32 fell 

within 3-fold of 

observed value;  

method B: 8 out of 

32 fell within 3-fold 

of the observed 

value 

 

Method A assumes 

that in vitro CLint,s,uptake 

values with BSA are 

equivalent to the in vivo 

CLint,s,uptake values, and 

in vitro CLint,met and 

CLint,pd values with (or 

without) BSA are 

equivalent to the in vivo 

values.   

Method B assumes 

that in vitro CLh,int,met, 

CLh,int,pd, and CLint,s,uptake 

clearance values 

without BSA are 

equivalent 

to the in vivo clearance 

values. CLint,bile is 

assumed to be zero for 

both method. 

(K. A. Riccardi et al., 

2019) 

 

CLint Systemic PK 

(endpoint 2) 

method A: 17 out of 

32 fell within 3-fold 

of the observed 

value; 

method B: 7 out of 

32 fell within 3-fold 

of the observed 

value 

OATPs 1-anilino-8-

naphthalene 

sulfonate, 

SH PSF DM CLh,int,all  Systemic PK 

(endpoint 2) 

Predicted values 

fell outside 3-fold of 

observed data 

Assumed uptake is the 

RDS of CLh 

 

(Miyauchi et al., 2018) 
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Pitavastatin 

OATPs, 

MRP2, BCRP, 

MDR1 

17 compounds, 

incl. OATP 

substrates such 

as rosuvastatin, 

pravastatin, 

valsartan 

SCH PSF WSM CLint,bile Systemic PK study 

with CLbile measured 

as the ratio of 

amount excreted in 

feces vs. plasma 

AUC 

CLint,bile: 8/17 

predictions were  

within 3-fold of the 

observed values 

Biliary CL in vitro was 

estimated using drug 

concentration in the 

medium, rather than 

the intracellular 

concentration 

(Kimoto et al., 2017b) 

OATP1B1, 

OATP1B3, 

OATP2B1 

Rosuvastatin SH, 

OATP1B1/OATP1

B3/OATP2B1-

transfected 

HEK293 cells 

REF DM CLh,int,all  Systemic PK 

(endpoint 2) 

P/O=0.96 using 

SH; P/O=0.97 

using transfected 

cells 

Assuming uptake is the 

RDS of CLh 

 

(Bosgra et al., 2014) 

OATPs 7 OATPs-

substrates 

including 

pitavastatin, 

rosuvastatin, 

valsartan 

SCH PSF Fitted 

value 

using 

PBPK 

modeling 

CLint,s,uptake 

(active) 

CLint,bile 

 

Systemic PK CLint,s,uptake (active): 

Underpredicted by 

12-to-161 fold 

CLint,bile: 

Overpredicted by 

3- to 41- fold 

 

Assuming active 

sinusoidal efflux was 0 

(Jones et al., 2012) 

AUC, area under the concentration-time profile; BSA, bovine serum albumin; CL, clearance; CLint,all, intrinsic clearance (function of all hepatobiliary CLs); CLint,bile, 

intrinsic biliary clearance; CLint,met, intrinsic metabolic clearance; CLint,pd, intrinsic passive diffusion clearance; CLint,s,uptake, intrinsic sinusoidal uptake clearance; C-T, 

concentration-time; DM, dispersion model; ECM, extended clearance model; H/BSA, human/bovine serum albumin; PBPK, physiologically based pharmacokinetic 

model; PET, positron emission tomography; PH, plated hepatocytes; PMA, plasma membrane abundance; PMUE, protein-mediated uptake effect; PK, 

pharmacokinetics; PSF, physiological scaling factor; PTM, parallel-tube model; P/O, predicted over observed; RAF, relative activity factor; REF, relative expression 

factor; RDS, rate-determining step; SCH, sandwich-cultured hepatocytes; SF, scaling factor; SH, suspended hepatocytes; WSM, well-stirred model.  
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Table 3. Predictive performances of in vitro to in vivo extrapolation (IVIVE) approaches for predicting renal clearance of transported 

drugs 

Transporters 

involved 

Drug In vitro system 
SF 

CL model Predicted 

parameter 

Validation method Predictive 

performance 

Comments Study 

OATs?, OCT2 Morphine and 

morphine-6-

glucuronide 

 

Vascularized 

human renal 

proximal tubule 

MPS 

PSF 

 

- 

 

CLr 

 

Systemic PK 

(endpoint 1) 

 

P/O between 0.5-2 PBPK model was also 

used and predicted 

well the systemic C-T 

profile of morphine and 

morphine 6-

glucuronide using the 

MPS, but not with 

plated PTC. 

(Imaoka et al., 2021) 

PTCs (2D plated) P/O < 50%  

OCT2; 

MATE1; 

MATE2K 

Metformin HEK293 cells REF In vitro Km 

and Jmax, 

and REF 

values 

were input 

into a 

PBPK 

model for 

IVIVE 

Cmax; AUC Systemic PK  Cmax: P/O between 

0.5-2 

AUC: P/O between 

0.5-2 

Prediction was 

corrected for OCT2 

PMA and for the 

membrane potential 

(Kikuchi et al., 2021) 

OAT1; OAT2; 

OAT3 

Acetazolamide; 

Adefovir; 

Amoxicillin; 

HEK293 cells REF, RAF WSM; CLr 

= (CLr,sec + 

CLr Systemic PK 

(endpoint 1) 

REF:  

RMSE= 2.0 (CI95% 

0.15-3.8) 

Assumed Freabs and 

passive diffusion are 

negligible. 

(A. R. Kumar et al., 

2021) 
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Bumetanide; 

Captopril; 

Cefazolin; 

Cefdinir; 

Cefotaxime; 

Cilostazol; 

Cimetidine; 

Famotidine; 

Fexofenadine; 

Furosemide; 

Gemfibrozil; 

Gemfibrozil 

Glucuronide; 

Hydrochlorothiazi

de; Ketoprofen; 

Ketorolac; 

Methotrexate; 

Olmesartan; 

Penciclovir; 

Pravastatin; 

Rosuvastatin; 

Sitagliptin; 

Torsemide; 

Zalcitabine 

CLfilt) * (1 

– Freabs) 

ME= 0.50 (CI95% -

0.40-1.2) 

 

RAF:  

RMSE=1.6 (CI95% 

0.058-3.1) 

ME= 0.015 (CI95% -

0.65-0.67) 

CLint,r,sec Systemic PK 

(endpoint 2) 

REF:  

RMSE= 15 (CI95% 

3.1-26) 

ME= 3.0 (CI95% -

2.9-9.0) 

 

RAF:  

RMSE= 9.8 (CI95% 

0.97-18) 

ME= -3.3 (CI95% -

7.1-0.45) 

 



 

59 
 

OCT2 Metformin OCT2 transfected 

HEK293 cells and 

MDCKII cells 

REF --- CLr,sec Systemic PK 

(endpoint 2)  

Predicted value 

within the observed 

range 

Prediction was 

corrected for OCT2 

PMA and for the 

membrane potential  

(V. Kumar et al., 2018) 

OAT1-3 Acetazolamide; 

Adefovir; 

Amoxicillin; 

Bumetanide; 

Captopril; 

Cefazolin; 

Cefdinir; 

Cefotaxime; 

Cilostazol; 

Cimetidine; 

Famotidine; 

Fexofenadine; 

Furosemide; 

Gemfibrozil; 

Gemfibrozil 

Glucuronide; 

Hydrochlorothiazi

de; Ketoprofen; 

Ketorolac; 

Methotrexate; 

Olmesartan; 

OAT1-3 

transfected 

HEK293 cells 

RAF WSM; CLr 

= (CLr,sec + 

CLfilt) * (1 

– Freabs) 

CLr Systemic PK 

(endpoint 1)  

AFE = 1.4 

 

Assumed Freabs is 

negligible. 

(Mathialagan et al., 

2017b) 

CLr,sec Systemic PK 

(endpoint 2) 

AFE = 1.89 
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Penciclovir; 

Pravastatin; 

Rosuvastatin; 

Sitagliptin; 

Torsemide; 

Zalcitabine 

OCT2, 

MATE1, 

MATE2K, 

OAT1, OAT3, 

MRP2, MRP4, 

BCRP, 

OCTN1, 

OCTN2 

Desipramine; 

Imipramine; 

Propranolol; 

Quinidine; 

Quinine; 

Verapamil; 

Atorvastatin; 

Cyclosporine A ; 

Ketoconazole; 

Amantadine; 

Atenolol; 

Chloroquine; 

Cimetidine; 

Digoxin; 

Fexofenadine; 

Metformin; 

Methotrexate; 

Pravastatin; 

LLC-PK1 cells 

(bidirectional 

assay) 

PSF WSM; CLr 

= (CLr,sec + 

CLfilt) * (1 

– Freabs)  

CLr  Systemic PK 

(endpoint 1) 

AFE = 1.47 Freabs was predicted 

from GFR and 

extrapolated intrinsic 

CL (apical to 

basolateral) 

(Kunze et al., 2014) 
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Tetracycline; 

Valsartan 

OAT1, OAT3 Rosuvastatin, 

Pravastatin, 

Pitavastatin, 

Valsartan, 

Olmesartan, 

Trichlormethiazide

, P-Amino-

Hippurate, 

Fexofenadine, 

Methotrexate, 

Benzylpenicillin  

Human kidney 

slices 

PSF DM CLr,sec Systemic PK 

(endpoint 1) 

9/10 fell within 3-

fold range 

 

Assumed that 

basolateral uptake is 

RDS of tubular 

secretion, and that  

Freabs is negligible. 

 

(Watanabe et al. 2011) 

CLint,r,sec Systemic PK 

(endpoint 2) 

Predicted value 

were 10-fold 

underestimated 

compared to 

observed value 

2D, two dimensions; AFE, average fold error; AUC, area under the concentration-time profile; CL, clearance; C-T, concentration-time; CI95%, 95% confidence 

interval; CLfilt, filtration clearance; CLr, renal clearance; CLr,sec, renal secretory clearance; CLint,r,sec, intrinsic renal secretory clearance; Cmax, maximal concentration; 

DM, dispersion model; Freabs, fraction of the drug reabsorbed; GFR, glomerular filtration rate; PBPK, physiologically based pharmacokinetic model; ME, mean 

error; MPS, microphysiological system; PET, positron emission tomography; PH, plated hepatocytes; PK, pharmacokinetics; PMA, plasma membrane abundance; 

PMUE, protein-mediated uptake effect; PSF, physiological scaling factor; PTC, proximal tubular cells; PTM, parallel-tube model; P/O, predicted over observed; 

RAF, relative activity factor; REF, relative expression factor; RMSE, root mean square error; RDS, rate-determining step; SH, suspended hepatocytes; SCH, 

sandwich-cultured hepatocytes; WSM, well-stirred model.  
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Table 4. Predictive performances of in vitro to in vivo extrapolation (IVIVE) approaches for predicting absorption and tissue concentrations of 

transported drugs  

Organ Transporters 

involved 

Drug In vitro system SF Predicted 

parameter 

Validation method Predictive 

performance 

Comments Study 

Absorption 

Intestine P-gp Digoxin Caco-2 REF CLpo Comparison of 

predicted and 

observed systemic C-

T profiles 

5/10 predicted CLpo 

were within 1.25-fold of 

the observed value 

10/13 predictions for IV 

studies were within 

1.25-fold of the 

observed value 

 

REF taken from a 

published study 

Neuhoff et al., 

2013 

Distribution – tissue or interstitial concentrations 

Brain P-gp and/or 

BCRP 

Delavirdine, 

erlotinib, 

etoposide, 

indomethacin, 

metoprolol, 

nelfinavir, 

pefloxacin, 

topiramate, 

verapamil, 

zidovudine 

MDCK-MDR1 and 

MDCK-BCRP 

(ER) 

REF to scale 

ER to 

Kp,uu,brain 

Other 

passive CLs 

were 

estimated by 

best fit of 

data to 

model 

Kp,uu,brain 

Kp,uu,CSF 

PET imaging 

(Kp,uu,brain) and CSF 

sampling (Kp,uu,CSF), 

and binding data 

Kp,uu,brain: 4/4 within 3-

fold the observed value 

Kp,uu,CSF: 78% within 3-

fold the observed value 

REF was not measured but 

estimated based on 

available REF value 

normalized using a probe 

substrate’s ER data from 

the authors study vs. REF 

from another study 

3C model incl. plasma, 

brain ISF and brain CSF 

Sato et al., 

2021 
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Brain  P-gp and/or 

BCRP 

Delavirdine, 

erlotinib, 

etoposide, 

indomethacin, 

metoprolol, 

nelfinavir, 

pefloxacin, 

topiramate, 

verapamil, 

zidovudine 

MDCK-MDR1 and 

MDCK-BCRP 

(ER) 

ESF on ER 

that provides 

best fit to full 

human 

dataset 

Other 

passive CLs 

were 

estimated by 

best fit of 

model to 

datal 

Kp,uu,brain 

Kp,uu,CSF 

PET imaging 

(Kp,uu,brain) and CSF 

sampling (Kp,uu,CSF), 

and binding data 

Kp,uu,brain: 4/4 within 3-

fold the observed value 

Kp,uu,CSF: 9/10 within 3-

fold the observed value 

3C model incl. plasma, 

brain ISF and brain CSF 

Sato et al., 

2021 

Brain  P-gp Morphine MDCKII-MDR1 

(ER) 

REF to scale 

CLefflux from 

in vitro data 

(ER and 

passive 

permeability)  

Brain ISF 

C-T profile 

Microdialysis Observed 

pseudoequilibrium ISF 

concentration within 

90% CI of simulated 

data 

Morphine is a weak P-gp 

substrate (ER=1.3) 

Verscheijden et 

al., 2021 

Brain  P-gp Verapamil, 

metoclopramide 

and desmethyl 

loperamide 

MDCK-MDR1cP-gp-

KO (ER) 

REF to scale 

ER to 

Kp,uu,brain 

Kp,uu,brain 

 

PET imaging (cER or 

Kp,brain, as available) 

and binding data if 

using Kp,brain 

All predicted Kp,uu,brain 

values fell within 2-fold 

of the observed value, 

2/3 were within 95% CI 

of the observed value 

 Storelli et al., 

2021 



 

64 
 

Brain  P-gp Verapamil, 

metoclopramide 

and desmethyl 

loperamide 

MDCK-MDR1cP-gp-

KO  

REF to scale 

active and 

passive CL 

from in vitro 

(estimated 

by modeling) 

to in vivo   

 

Kp,uu,brain 

 

PET imaging (cER or 

Kp,brain, as available) 

and binding data if 

using Kp,brain 

Predicted Kp,uu,brain 

values for 2/3 drugs fell 

within 2-fold of the 

observed value  

While Kp,uu,brain was 

relatively well predicted, 

unbound brain C-T profiles 

were underpredicted (5C 

model including 

membranes) 

Storelli et al., 

2021 

Brain P-gp Verapamil, 

desmethyl 

loperamide and 

zolmitriptan 

Mock and MDR1-

transfected LLC-

PK1 Cells (ER)  

REF to scale 

ER to 

Kp,uu,brain 

Kp,uu,brain 

 

PET imaging P/O were 0.42  for 

verapamil, 0.68 for 

desmethyl loperamide 

and 0.57 for 

zolmitriptan 

 

Authors used an incorrect 

definition of the net ER for 

scaling, which might have 

resulted in erroneous use 

of 0.1 correction factor on 

passive diffusion 

Also, not all drugs are 

selective P-gp substrates 

(only 2/6) and 3/6 drugs 

had an in vivo Kp,uu,brain > 1 

indicating that transporters 

may not be involved at the 

human BBB 

Nicolaï et al., 

2020 

Brain 

tumor 

(glioblast

oma) 

P-gp and 

BCRP 

AZD1775  MDCK-MDR1 and 

MDCK-BCRP 

(ER) 

REF to scale 

CLefflux from 

in vitro to in 

vivo 

Kp,uu,brain tumor Kp,uu,brain tumor estimated 

from Kp,brain tumor (from 

tumor resection) and 

binding data 

Predicted Kp,uu,brain tumor 

was 24% of the 

average observed 

value 

P-gp BBB abundance from 

healthy subjects was used 

instead of that from 

subjects with brain tumor 

Li et al., 2017 
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Brain  P-gp and/or 

BCRP 

Verapamil, 

diazepam, 

bupropion, 

lamotrigine, 

metoprolol, 

atenolol, 

levofloxacin, 

indomethacin, 

methotrexate 

Brain-like 

endothelial cells 

(generated from 

stem cells) grown 

on filter 

No scaling 

needed 

Kp,uu,brain CSF sampling 

(Kp,uu,CSF) 

r2=0.84 for the 

correlation between in 

vitro Kp,uu and in vivo 

Kp,uu,CSF 

CSF concentrations used 

as a surrogate for brain 

concentrations 

(Cecchelli et 

al., 2014) 

Liver OATPs, 

NTCP, BCRP, 

MRP2, P-gp 

Rosuvastatin SCH PSF to scale 

all in vitro 

passive and 

active 

hepatobiliary 

CLs from in 

vitro to in 

vivo 

Liver AUC PET imaging P/O liver AUC: 0.08-

0.14  

PTM resulted in slightly 

better predictions than 

WSM 

Underprediction of liver 

AUC was the result of 

underprediction of CLs,uptake 

and overprediction of 

CLs,efflux and CLbile  

 (Storelli et al., 

2022b) 

Liver OATPs, 

NTCP, BCRP, 

MRP2, P-gp 

Rosuvastatin Transfected 

HEK293 or CHO 

or MDCKII cells 

(OATP1B1, 1B3, 

2B1, NTCP) and 

HEK293 

membrane 

REF Liver AUC PET imaging P/O liver AUC: 0.43-

0.72 

PTM resulted in slightly 

better predictions than 

WSM;incubation with HSA 

or plasma improved 

predictions (PMUE) 

Underprediction seems to 

be explained by 

underprediction of CLs,uptake 

(Storelli et al., 

2022b) 
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vesicles (BCRP, 

MRP2, P-gp) 

Liver OATPs, NTCP Telmisartan SCH PSF+ESF to 

scale in vitro 

passive and 

active 

hepatobiliary 

CLs from in 

vitro to in 

vivo 

 (ESFs 

estimated 

from a set of 

7 OATPs 

substrates) 

Liver C-T 

profile 

PET imaging Predicted liver 

concentration-time 

profile agreed with the 

observed data (visual 

check) 

Simulated and observed 

liver concentrations 

included both parent 

compound and glucuronide 

metabolite 

(R. Li, Ghosh, 

et al., 2014) 

Liver OATPs, NTCP Pravastatin, 

rosuvastatin 

SH No scaling 

needed 

Kp,uu,liver Kp,uu,liver estimated 

from PK/PD modeling 

(IC50,in vivo/ IC50,in vitro for 

3-hydroxy-3-

methylglutaryl-CoA 

reductase inhibition) 

P/O=0.43 for 

pravastatin and 3.9 for 

rosuvastatin 

 (K. Riccardi et 

al., 2017) 

3C, three compartments; 5C, five compartments; AAFE, average absolute fold error; AUC, area under the concentration-time profile; BBB, blood brain barrier; 

cER, cerebral extraction ratio; CL, clearance; CLbile, biliary CL; CLs,efflux, sinusoidal efflux CL; CLefflux, efflux CL; CLs,uptake, uptake CL; CLpo, oral clearance; C-T, 

concentration-time; ER, efflux ratio; ESF, empirical scaling factor; HSA, human serum albumin; IC50, concentration to achieve 50% inhibition; ISF, interstitial fluid; 

IV, intravenous; Kp,uu,brain, ratio of unbound drug concentration in brain vs. plasma; Kp,uu,CSF, ratio of unbound drug concentration in cerebrospinal fluid vs. plasma; 
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Kp,uu,brain tumor, ratio of unbound drug concentration in brain tumor vs. plasma; P/O, predicted-over-observed ratio; PET, positron emission tomography; PMUE, 

protein-mediated uptake effect; PSF, physiological scaling factor; PTM, parallel-tube model; RAF, relative activity factor; REF, relative expression factor; CSF, 

cerebrospinal fluid; RMSE, root mean square error; SCH, sandwich-cultured hepatocytes; SH, suspended hepatocytes; SF, scaling factor, WSM, well-stirred 

model 
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Table 5: Predictive performances of in vitro to in vivo extrapolation (IVIVE) approaches for predicting transporter-based drug-drug interactions 

(DDIs). Unless otherwise indicated, predictions were validated using systemic PK data. 

Organ 
Transporters 

involved 
Perpetrator Victim In vitro system Model 

Predicted 

parameter 
Predictive performance Comments Study ID 

Liver, kidney, 

intestine 

BCRP, 

OATP1B1/3 

Rifampicin, 

cyclosporine, 

gemfibrozil, 

fenebrutinib, 

fostamatinib, 

capmatinib, 

grazoprevir, 

grazoprevir+elbasvir, 

darolutamide, 

velpatasvir, 

itraconazole 

Rosuvastatin Perpetrator’s IC50: 

OATP1B1- and 

OATP1B3-

transfected 

HEK293 cells; 

BCRP membrane 

vesicles 

 

Victim’s CLint,T: 

Hepatic: SCH + 

ESF 

 

Kidney: transfected 

HEK293 cells + 

ESF 

 

Intestine: optimized 

to recover PK 

PBPK modeling AUCR, CmaxR, 

C-T profiles 

Rifampicin IV: 

AUCR P/O = 0.96–1.07 

CmaxR P/O = 0.55–0.87 

Rifampicin PO: 

AUCRo P/O = 0.89–1.20 

CmaxR P/O = 0.62–0.76 

Cyclosporine: 

AUCR P/O = 0.73–0.55 

CmaxR P/O = 0.50–0.59 

Gemfibrozil: 

AUCR P/O = 1.06 

CmaxR P/O = 1.16 

Fenebrutinib: 

AUCR P/O = 0.81 

CmaxR P/O = 0.91 

Fostamatinib: 

AUCR P/O = 1.90 

CmaxR P/O = 2.99 

Capmatinib: 

Included 

preincubation of 

perpetrator (30 min) 

 

 

(Costales et al., 

2021) 
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AUCR P/O = 1.05 

CmaxR P/O = 1.47 

Grazoprevir: 

AUCR P/O = 0.79 

CmaxR P/O = 0.36 

Grazoprevir + Elbasvir: 

AUCR P/O = 0.92 

CmaxR P/O = 0.56 

Darolutamide: 

AUCR P/O = 2.70 

CmaxRP/O = 2.35 

Velpatasvir: 

AUCR P/O = 1.05 

CmaxRP/O = 1.55 

Itraconazole: 

AUCR P/O = 0.90 

CmaxR P/O = 0.81 

Liver, kidney, 

intestine 

OATP2B1, P-

gp, BCRP, 

OATP1B1/1B3 

and OAT3 

Rifampicin, gemfibrozil, 

probenecid 

 

Rosuvastatin Perpetrator’s IC50 

and Ki: 

collected from 

literature 

 

Victim’s CLint,T:  

Optimized to 

recover PK data 

PBPK modeling AUCR, CmaxR Rifampicin: 

AUCR GMFE = 1.19 

(range: 1.01-1.59) 

CmaxR GMFE = 1.28 

(range: 1.07-1.55) 

Gemfibrozil: 

AUCR GMFE = 1.33 

CmaxR GMFE = 1.32 

 (Hanke et al., 

2021) 
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 Probenecid: 

AUCR GMFE = 1.15 

CmaxR GMFE = 1.54 

 

Liver OATP1B1 Cyclosporin, rifampicin Pemafibrate Perpetrator’s Ki: 

HEK293 cells + 

ESF 

 

Substrate CLint,T: 

Cryopreserved 

human hepatocytes 

HEK293 cells 

 

 

PBPK modeling C-T profiles Good fit between predicted 

and observed C-T profiles 

(visual inspection) 

Pre-incubation of 

perpetrator included 

 

PMUE included 

(Park et al., 

2021) 

Liver, kidney OAT3, MRP4, 

OATP1B1 

Furosemide, rifampicin Probenecid Perpetrator’s Ki: 

Perpetrator Ki: 

Transfected 

HEK293 cells  

 

Victim’s CLint,T:  

Optimized to 

recover PK data 

 

 

PBPK modeling CmaxR 

AUCR 

Probenecid -furosemide: 

AUCR GMFE=1.17 

CmaxR GMFE =1.09 

 

Probenecid - rifampicin:  

AUCR GMFE =1.19 

CmaxR GMFE =1.85 

 

 (Britz et al., 

2020) 
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Liver, 

intestine 

BCRP, 

OATP1B1/3 

Fenebrutinib Rosuvastatin Victim’s CLint,T:  

Data collected from 

literature 

 

Perpetrator’s IC50: 

OATP1B1, 

OATP1B3, or OAT3 

– expressing 

HEK293 cells, 

BCRP-expressing 

MDCKII cells 

PBPK modeling CmaxR 

AUCR 

AUC ratio P/O = 0.61 

Cmax ratio P/O = 1.02 

IC50 values 

determined with 

probes substrate 

 

 

(Y. Chen et al., 

2020) 

Liver, 

intestine 

P-gp, OATP1B1 Rifampin Elagolix Perpetrator’s Ki: 

Used literature 

reported validated 

model 

 

Victim’s CLint,T:  

Estimated based on 

PK data 

 

PBPK modeling CmaxR 

AUCR 

CmaxR % PE = 14-27 

AUCR % PE = 28-39 

 

 

 

 

 (Chiney et al., 

2020) 

Liver, 

intestine 

P-gp Elagolix Digoxin Perpetrator’s Ki: 

Estimated based on 

DDI data  

Victim’s CLint,T:  

PBPK modeling CmaxR 

AUCR 

Cmax ratio % PE = 0.6-1 

AUC ratio % PE = 6-8 

 

  (Chiney et al., 

2020) 
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Used literature 

reported validated 

model 

 

Liver OATP1B1/3, 

OATP2B1, 

NTCP 

Cyclosporin Rosuvastatin Transfected 

HEK293 and 

MDCKII cells (REF 

approach) 

- % inhibition of 

rosuvastatin 

uptake  

The predicted % inhibition 

of rosuvastatin uptake by  

cyclosporin fell with the 

95% CI of that observed in 

vivo  

The inhibitor 

concentration and 

preincubation duration 

in vitro was kept the 

same as in vivo; 

Validated by PET 

imaging 

(V. Kumar, Yin, 

et al., 2020) 

Liver, kidney, 

intestine 

P-gp, BCRP, 

MRP2, OATPs 

Cyclosporin  Atorvastatin, 

cerivastatin, 

pravastatin, 

rosuvastatin, 

fluvastatin, 

simvastatin, 

lovastatin, 

repaglinide, 

bosentan 

Perpetrator’s Ki: 

collected from 

multiple literature 

sources 

 

Victim’s CLint,T:  

Optimized to 

recover PK data 

 

PBPK modeling CmaxR 

AUCR 

96% predicted PK 

parameters fell within 0.5–

2.0 fold of observed ones 

 (Yang et al., 

2020) 

Liver, 

intestine 

OATP1B1, P-gp Telaprevir Maraviroc Perpetrator’s Ki: 

Optimized to 

recover DDI with 

probe drugs 

 

PBPK modeling AUCR AUCR P/O= 0.83  

 

 

 

(Kimoto et al., 

2019) 



 

73 
 

Victim’s CLint,T: 

SCH, SH, HEK293 

cells + ESF 

Liver OATP1B1, 

OATP1B3 

GDC‐0810, 

rifampicin, 

cyclosporine, 

gemfibrozil 

Pravastatin Perpetrator’s Ki: 

HEK293 cells 

 

Victim’s CLint,T: 

OATP1B1/OATP1B

3-expressing 

HEK293 cells 

 

PBPK modeling CmaxR 

AUCR 

GDC-0810 

CmaxR P/O= 0.84-1.7 

AUCR P/O= 0.74-1.58 

Rifampicin 

CmaxR  P/O= 1.31 

AUCR P/O= 1.53 

Cyclosporine 

CmaxR  P/O= 0.32 

AUCR P/O= 0.17 

Gemfibrozil 

CmaxR  P/O= 1.63 

AUCR P/O= 1.52 

Included 

preincubation of 

perpetrator. 

Ki values determined 

with probes substrate 

(Y. Chen et al., 

2018) 

Liver, kidney, 

intestine 

P-gp Rifampicin, 

clarithromycin 

Digoxin Perpetrator’s IC50: 

Rifampicin:  

LLC-MDR1 cell 

 

Clarithromycin: 

Caco-2 cells 

 

Victim’s CLint,T: 

Optimized to 

recover PK data 

PBPK modeling CmaxR 

AUCR 

 

Rifampicin: 

6/7 AUCR P/O within 2-fold 

4/5 CmaxR P/O within 2-fold 

Clarithromycin: 

4/4 AUCR P/O within 2-fold 

2/2 CmaxR P/O within 2-fold 

 (Hanke et al., 

2018b) 
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Liver OATP1B1, 

OATP1B3 

Sacubitril Atorvastatin and 

simvastatin 

Perpetrator’s Ki: 

OATP1B1 

transfected 

HEK293 cells 

Victims’ CLint,T: SH 

(pooled) + ESF for 

atorvastatin and 

top-down 

estimation for 

simvastatin 

PBPK  AUCR, CmaxR Atorvastatin 

CmaxR P/O= 0.98 

AUCR P/O= 1.05 

 

Simvastatin 

CmaxR P/O= 1.25 

AUCR  P/O= 1.23 

Ki values determined 

with probe substrate, 

E217ß-G 

(Lin et al., 2017) 

Liver OATP1B1, 

OATP1B3 

Rifampicin Pravastatin Perpetrator’s IC50: 

transfected 

HEK293 cells 

 

Victim’s CLint,T:  

default Simcyp 

model (version 15) 

– not reported 

PBPK  AUCR, CmaxR AUCR P/O= 1.18  

CmaxR P/O= 1.04 

 

Included 

preincubation (60 

minutes); 

IC50 was determined 

with another victim 

drug, E217ß-G 

(Pahwa et al., 

2017) 

Intestine, 

liver, kidney 

OATP1B1, 

OATP1B3, 

OATP2B1, 

Cyclosporine, rifampin, 

gemfibrozil 

Rosuvastatin Perpetrators’ Ki: 

collected from 

literature and 

PBPK  AUCR, CmaxR Cyclosporine 

AUCR P/O= 0.71 

CmaxR P/O: 0.67 

Rifampin  

Ki values determined 

with probes substrates 

(Q. Wang et al., 

2017) 
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BCRP, NTCP, 

OAT3 

optimized to 

recover DDI data 

 

Victim’s CLint,T: 

optimized to 

recover PK, 

contribution 

determined from 

transfected cells, 

RAF and REF 

(collected from 

literature) 

 

AUCR P/O = 1.26 

CmaxR P/O = 0.85 

Rifampin IV 

AUC ratio P/O = 1.10 

CmaxR P/O = 0.74 

Gemfibrozil 

AUC ratio P/O = 0.95 

CmaxR P/O = 0.92 

Intestine, 

liver 

OATP1B1, 

BCRP 

Fostamatinib, 

eltrombopag, darunavir, 

lopinavir, clopidogrel, 

ezetimibe, fenofibrate 

Rosuvastatin Perpetrators’ Ki: 

Caco-2 cells 

(BCRP), OATP1B1 

transfected cells 

 

Victim’s CLint,T: 

Estimation using a 

middle-out 

approach (in vivo 

PK and in vitro 

hepatocytes data) 

Static  AUCR AUC ratio P/O= 

Fostamatinib: 1.03 

Eltrombopag: 1.03 

Darunavir: 0.98 

Lopinavir: 1.02 

Clopidogrel: 1.03, 1.04 

Ezetimibe: 1.07 

Fenofibrate: 0.99 

AUCR due to 

intestinal BCRP 

inhibition; 

Ki values determined 

with probes substrates 

(Elsby et al., 

2016) 
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Liver, kidney 

 

OATP1B1, 

OAT3 

 

Gemfibrozil and 

glucuronide metabolite  

 

Atorvastatin, 

pitavastatin, 

rosuvastatin, 

pravastatin, 

montelukast, 

cerivastatin,  

repaglinide 

Perpetrators’ Ki:  

Ki data collected 

from literature 

(hepatocytes, 

oocytes) 

 

Victims’ CLint,T:  

SCH + ESF 

Static AUC ratio AUCR P/O= 

Atorvastatin: 1.93 

Pitavastatin: 1.87 

Rosuvastatin: 1.42 

Pravastatin: 1.10 

Cerivastatin:0.98 

Repaglinide: 0.41-1.06 

Prediction improved 

by including inhibition 

by glucuronide 

metabolite 

(M. V. S. Varma 

et al., 2015) 

Repaglinide, 

cerivastatin (dual 

OATP and 

CYP2C8/3A 

substrates) 

Perpetrators’ Ki: 

see above 

 

Victims’ CLint,T:  

SCH +ESF 

PBPK C-T profiles Good fit between predicted 

and observed C-T profiles 

(visual inspection) 

Inhibition of renal 

OAT3 not included 

Liver OATP1B1 Rifampicin (IV and PO) Glyburide Perpetrator’s Ki: 

sourced from 

literature, optimized 

to recover PK data 

 

Victim’s CLint,T:  

SCH +ESF 

 

PBPK  C-T profiles, 

AUCR 

Good fit between predicted 

and observed C-T profiles 

(visual inspection); 

AUCR P/O was within 0.8-

1.25 

Ki values determined 

with probes substrates  

(M. V. S. Varma 

et al., 2014) 

Liver OATP1B1, 

OATP1B3, 

OATP2B1 

Cyclosporine  Repaglinide Perpetrator’s IC50: 

transfected 

HEK293 cells; 

 

PBPK  C-T profiles Good fit between predicted 

and observed C-T profiles 

(visual inspection) 

 

Included 

preincubation; 

(Gertz et al., 

2013) 
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Victim’s CLint,T:  

PH  + ESF (ft 

estimated based on 

in vivo PGx data) 

IC50 values 

determined with 

probes substrates 

Kidney OAT1, OAT3 Probenecid, 

S44121 

 

S44121, 

Tenofovir, 

Ciprofloxacin 

Perpetrator’s IC50: 

OAT1-/OAT3-

transfected 

Xenopus laevis 

oocytes  

 

Victim’s CLint,T: 

OAT1-/OAT3-

transfected 

HEK293 cells 

RAF (S44121) 

 

 

PBPK modeling AUCR 

CLrR 

CLnrR 

 

S44121 as victim: 

AUCR P/O=0.73, 0.71 

CLrR P/O=1.29, 1.36 

CLnrR P/O=1.41, 1.14 

Tenofovir as victim: 

AUCR P/O=1.12 

CLrR P/O=0.94 

CLnrR P/O=0.8 

Ciprofloxacin as victim: 

AUCR P/O=1.0 

CLrR P/O=1.0 

CLnrR P/O=0.83 

IC50 values 

determined with 

probes substrate 

(Ball et al., 2017) 

Kidney MATE1/2-K, 

OCT2 

Cimetidine Metformin Perpetrator’s IC50:  

transfected 

HEK293 cells 

Victim’s CLint,T: 

transfected 

HEK293 cells 

PBPK  AUCR Underpredicted (SA 

revealed Ki values needed 

to be decreased 8-fold to 

recover observed AUCR) 

Membrane potential of 

OCT2 was accounted 

for 

(Burt, Neuhoff, et 

al., 2016) 



 

78 
 

Unless otherwise mentioned, administration route of perpetrators and victim drugs is oral (PO). AUCR, ratio of area under the systemic concentration-time profile 

in the presence and absence of the inhibitor; C-T, concentration-time; CLint,T, transporter-mediated clearance; CmaxR, ratio of maximal (systemic) concentrations in 

the presence and absence of the inhibitor; CLrR, ratio of renal clearance in the presence and absence of the inhibitor; CLnrR, ratio of non-renal clearance in the 

presence and absence of the inhibitor. GMFE, geometric mean fold error; % PE, percentage prediction error; DDI, drug-drug interaction; E217ß-G, estradiol 17β-d 

Kidney OAT1, OAT3 Probenecid  13 renally cleared 

OATs substrates 

Perpetrator’s Ki: 

Transfected cells 

(OAT1, OAT3) 

 

  

Static AUCR 7/13 predicted AUCR were 

within 25% and 12/13 

within 50% error of 

observed values  

 

 

Ki values determined 

with probes substrates 

(Feng et al., 

2013) 

Intestine P-gp Itraconazole, verapamil, 

clarithromycin 

Dabigatran etexilate Perpetrators’ Ki: 

itraconazole: 

HEK293 

membranes 

vesicles, 

clarithromycin: 

MDCK cells, 

verapamil: Caco-2 

cells ; 

 

Victim’s CLint,T : 

Km from Caco-2 

cells and Vmax 

estimated to 

recover PK 

PBPK  AUCR, CmaxR Itraconazole 

CmaxR P/O= 1.20 

AUCR P/O= 0.85; 

Verapamil 

CmaxR  P/O= 0.69, 0.90 

AUCR  P/O= 0.75, 0.86 

Clarithromycin 

CmaxR P/O= 0.74, 1.32, 

1.17 

AUCR P/O= 0.77, 1.44, 

1.07 

Included inhibitory 

potencies of 

metabolites of 

itraconazole and 

verapamil 

Lang et al., 2021 
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glucuronide; ESF, empirical scaling factor; ft, fraction transported; GMFE, fold error on the geometric mean; IC50, concentration of inhibitor that inhibits 50% of 

transporter activity; IV, intravenous; Ki, inhibition constant; Km, affinity constant; P/O, predicted over observed; PBPK, physiologically-based pharmacokinetics; 

PGx, pharmacogenetic; PH, plated hepatocytes; PMUE, protein-mediated uptake effect; PK, pharmacokinetics; RAF, relative activity factor; REF, relative 

expression factor; SA, sensitivity analysis; SCH, sandwich-cultured hepatocytes; SF, scaling factor; SH, suspended hepatocytes; Vmax, maximal velocity 

(equivalent to Jmax, maximal transport rate). 
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